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Abstract: In this paper, a simple transformation technique is used to reduce some class of nonlinear partial differential equation to the
elliptic-like equation F”(ξ )-rF(ξ )-sF(ξ )=0, and then the periodic and solitary wave solutions of some class of NLPDEs are constructed
by using improved (G’/G) -expansion method. Some new travelling wave solutions involving parameters, expressed by three types of
functions which are the hyperbolic functions, the trigonometric functions and the rational functions. The solitary wave solutions are
derived from the hyperbolic function solutions.
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1 Introduction

It is well known that nonlinear evolution equations
(NLEEs) are often presented to describe the motion of the
isolated waves, localized in a small part of space, in many
fields like hydrodynamic, plasma physics and nonlinear
optic. Many powerful methods have been proposed to
obtain exact solutions of nonlinear evolution equations,
such as inverse scattering method [1], Backlund
transformation method [2,3]. Hirota’s bilinear scheme [4,
5]. homogeneous balance method [6]. Riccati equation
rational expansion method [7,8]. the tanh-method [9,10].
and so on.

In recent years, with the development of symbolic
computation packages like Maple and Mathematica,
which enable us to perform the tedious and complex

computation on computer The (G
′

G )-expansion method
proposed by Wang et al. [11]. is one of the most effective
direct methods to obtain travelling wave solutions of a
large number of NLEEs,such as the KdV equation,the
mKdV equation, the variant Boussinesq equations,the
Hirota–Satsuma equations,and so on .Later, the further
developed methods named the generalized

(G
′

G )-expansion method,the modified (G
′

G )-expansion

method and the extended (G
′

G )-expansion method have
been proposed in Refs. [12,13,14]. respectively. As we
know, when using the direct method, the choice of an
appropriate ansatz is great importance . In this paper, by
introducing a new general ansatze, we propose the

improved (G
′

G )-expansion method, which can be used to
obtain travelling wave solutions of NLEEs.

2 Description of the improved (G′

G )-expansion
method

Suppose that a nonlinear evolution equation, say in two
independent variables x and t, is given by

N(u,ut ,ux,utt ,uxx,uxt , ...) = 0, (2.1)

where u = u(x, t) is an unknown function, N is a
polynomial in u = u(x, t) and its various partial
derivatives, in which the highest order derivatives and
nonlinear terms are involved. To determine u explicitly,
we take the following five steps:
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Step 1:
Use the travelling wave transformation:

u(x, t) = u(ξ ), ξ = x−wt, (2.2)

where w is a constant to be determined latter. Then, the
NLEE (2.1) is reduced to a nonlinear ordinary differential
equation (NLODE) for u = u(ξ )

N(u,−wu
′
,u

′
,w2u

′′
,u

′′
,−wu

′′
, ...) = 0. (2.3)

Step 222:
We suppose that the NLODE (2.3) has the following
solution:

u(ξ ) =
−1

∑
i=−m

ai(
G
′

G )i

(1+β (G′

G ))i
+a0 +

m

∑
i=1

ai(
G
′

G )i

(1+β (G′

G ))i
, (2.4)

where β , ai (i = −m,−m+ 1, ...,m− 1,m) are constants
to be determined later, m is a positive integer, and G =
G(ξ ) satisfies the following second order linear ordinary
differential equation(LODE) :

G
′′
+µG = 0,

(2.5)
where µ is a real constant. The general solutions of Eq.
(2.5) can be listed as follows.When µ < 0, we obtain the
hyperbolic function solution of Eq. (2.5)

G(ξ ) = A1 cosh
√
−µξ +A2 sinh

√
−µξ , (2.6)

where A1 and A2 are arbitrary constants.When µ > 0, we
obtain the trigonometric function solution of Eq. (2.5)

G(ξ ) = A1 sin
√

µξ +A2 cos
√

µξ , (2.7)

where A1 and A2 are arbitrary constants.When µ = 0, we
obtain the rational function solution of Eq. (2.5)

G(ξ ) = A1 +A2ξ (2.8)

where A1 and A2 are arbitrary constants.
Step 3:
Determine the positive integer m by balancing the highest
order derivative and nonlinear terms in Eq. (2.3).
Step 4:
Substituting (2.4) along with Eq. (2.5) into Eq. (2.3) and

then setting all the coefficients of (G
′

G ) of the resulting
system’s numerator to zero, yields a set of
over-determined nonlinear algebraic equations for w,β
and ai(i =−m,−m+1, ...,m−1,m).
Step 5:
Assuming that the constants w,β ,
ai(i = −m,−m + 1, ...,m − 1,m) can be obtained by
solving the algebraic equations in Step 4, then
substituting these constants and the known general
solutions of Eq. (2.5) into (2.4), we can obtain the explicit
solutions of Eq. (2.1) immediately.

3 Exact solutions of the elliptic-like equation

Let us consider the following elliptic-like equation

F
′′
(ξ )− rF(ξ )− sF3(ξ ) = 0, (3.1)

where r and s are arbitrary constants.
By balancing the highest order derivative terms and

nonlinear terms in Eq. (3.1), we find that Eq. (3.1) own
the solutions in the form

F(ξ ) = a0 +
a1(

G
′

G )

1+β (G′

G )
+

b1(1+β (G
′

G ))

(G′

G )
, (3.2)

where G = G(ξ ) satisfies Eq. (2.5),β ,a0,a1,b1,r and s are
constants to be determined latter.

Substituting (3.2) along with Eq. (2.5) into Eq. (3.1)

and then setting all the coefficients of (G
′

G ) of the
resulting system’s numerator to zero, yields a set of
over-determined nonlinear algebraic equations for
β ,a0,a1,b1,r and s . Solving the over-determined
algebraic equations by Maple or Mathematica, we can
obtain the following results:
Case 1:

a0 =−
√

2
s µβ , a1 = 0, b1 =

√
2
s µ, µ = r

2
Case 2:

a0 =
√

2
s µβ , a1 = 0, b1 =−

√
2
s µ, µ = r

2
Case 3:

a0 =
√

2
s µβ , a1 =−

√
2
s −

√
2
s µβ 2, b1 = 0, µ = r

2
Case 4:

a0 =−
√

2
s µβ , a1 =

√
2
s +

√
2
s µβ 2, b1 = 0, µ = r

2
Using Case 1,2, (3.2) and the general solutions of Eq.

(2.5), we can find the following travelling wave solutions
of elliptic-like equation(3.1)When µ < 0 and r l 0, we
obtain the hyperbolic function solutions of Eq. (3.1)

F(ξ ) =±
√

2
s

µβ ±

√
2
s µ(

√
−µ

(A1 sinh
√
−µξ +A2 cosh

√
−µξ )

×[(A1+βA2
√
−µ)cosh

√
−µξ

+(A2+βA1
√
−µ)sinh

√
−µξ ], (3.3)

where β ,A1,A2 are arbitrary constants and rl0
In particular, when setting β = A1 = 0 , A2 ̸= 0, the

solutions (3.3) can be written as

F(ξ ) =±
√

−r
s

tanh

√
−r
2

ξ . (3.4)

Setting again β = 0,A1 > 0,A2
1 > A2

2 the following kink-
shaped solution of Eq. (3.1)

F(ξ ) =±
√

−r
s

tanh(

√
−r
2

ξ +ξ0), (3.5)
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where ξ0 = tanh−1 A1
A2

.
Using Case 3,4, (3.2) and the general solutions of Eq.

(2.5), we can find the following travelling wave solutions
of elliptic-like equation(3.1)

F(ξ ) =±
√

2
s

µβ±

(
√

2
s +

√
2
s µβ 2)(

√
−µ(A1 sinh

√
−µξ +A2 cosh

√
−µξ ))

((A1 +βA2
√
−µ)cosh

√
−µξ +(A2 +βA1

√
−µ)sinh

√
−µξ

,

(3.6)

where β ,A1,A2 are arbitrary constants
In particular, when setting β = A1 = 0 , A2 ̸= 0, the

solutions (3.6) can be written as

F(ξ ) =±
√

−r
s

coth

√
−r
2

ξ . (3.7)

Setting again β = 0,A1 > 0,A2
1 >A2

2 the following singular
soliton solution of Eq. (3.1)

F(ξ ) =±
√

−r
s

coth(

√
−r
2

ξ +ξ0), (3.8)

where ξ0 = tanh−1 A1
A2

.
When µ > 0 and r > 0 we get the trigonometric

function solutions of Eq. (3.1)

F(ξ ) =±
√

2
s

µβ ±

√
2
s µ

√µ(A1 cos
√µξ −A2 sin

√µξ )
× [((A1 −βA2

√
µ)sin

√
µξ

+(A2 +βA1
√

µ)cos
√

µξ )]. (3.9)

In particular, when setting β = A1 = 0 , A2 ̸= 0, the
solutions (3.9) can be written as

F(ξ ) =±
√

r
s

cot
√

r
2

ξ . (3.10)

Setting again β = 0,A1 > 0,A2
1 >A2

2 the following periodic
solutions of Eq. (3.1)

F(ξ ) =±
√

r
s

cot(
√

r
2

ξ +ξ1), (3.11)

where ξ1 = tan−1 A2
A1

.
Using Case 3,4, (3.2) and the general solutions of Eq.

(2.5), we can find the following periodic solutions of
elliptic-like equation(3.1)

F(ξ ) =±
√

2
s

µβ±

(
√

2
s +

√
2
s µβ 2)(

√µ(A1 cos
√µξ−A2 sin

√µξ ))
((A1−βA2

√µ)sin
√µξ+(A2+βA1

√µ)cos
√µξ ) , (3.12)

where β ,A1,A2 are arbitrary constants.
Setting β = 0,A1 > 0,A2

1 > A2
2 the following singular

soliton solution of Eq. (3.1)

F(ξ ) =±
√

r
s

tan(
√

r
2

ξ +ξ1), (3.13)

where ξ1 = tan−1 A2
A1

.
When µ = 0 and r = 0 we get the rational function

solutions of Eq. (3.1)

F(ξ ) =±
√

2
s
(

A2

A1 +A2ξ +A2β
), (3.14)

where β ,A1,A2 are arbitrary constants.

4 Exact solutions of some class of NLPDEs

In this section, we use three examples to illustrate the
applicability of our method to solve NLPDEs.

Example 1:
Let us first consider a class of nonlinear partial

differential equations[15,16]:

iut +n(uxx +α1uyy)+β1 |u|2 u+ γ1uv = 0, (4.1a)

α2vtt +(vxx −β2vyy)+ γ2(|u|2)xx = 0, (4.1b)

where n,αi,βi,γi (i = 1,2) are real constants and
n ̸= 0,β1 ̸= 0,γ1 ̸= 0,γ2 ̸= 0.

The important cases of Eqs. (4.1) are as follows. In
fact, if one takes

v = 0,ux = 0,n = 1,

then Eqs. (4.1) represent the nonlinear Schrodinger
equation

iut +α1uyy +β1 |u|2 u = 0. (4.2)

Also, if one takes

v = v(x, t),n = 1,α1 = 0,β1 =−2k, (4.3a)
β2 = 0,γ1 = 2,α2 =−1,γ2 =−1, (4.3b)

then Eqs. (4.1) become the generalized Zakharov (GZ)
equations [17]

iut +uxx −2k |u|2 u+2uv = 0, (4.4a)

vtt − vxx +(|u|2)xx = 0. (4.4b)

If one takes

n =
1
2

σ2,α1 = 2n,β1 = k,γ1 =−1, (4.5a)

α2 = 0,β2 = α1,γ2 =−2k,σ2 =±1, (4.5b)
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then Eqs. (4.1) is the Davey–Stewartson (DS) equations
[18]

iut +
1
2

σ2(uxx +σ2uyy)+ k |u|2 u−uv = 0, (4.6a)

vxx −σ2vyy −2k(|u|2)xx = 0. (4.6b)

For our purpose, we introduce the following
transformations:

u = eiθ F(ξ ),v =V (ξ ),
θ = px+qy+ kt,ξ = x+ cy+dt, (4.7)

where p,q,k,c and d are real constants.
Substituting (4.7) into (4.1), we can know that

d = −2n(p + α1qc), and F,V satisfy the following
system:

−(k+ p2n+nα1q2)F +(n+nα1c2)F
′′

+β 1F3+γ1FV= 0, (4.8a)

(α2d2 −β2c2 +1)V
′′
+ γ2(F2)

′′
= 0. (4.8b)

Integrating Eq. (4.8b) twice with respect to ξ and taking
the integration constant as zero yields

V =− γ2

α2d2 −β2c2 +1
F2. (4.9)

Substituting Eq. (4.9) into Eq. (4.8a) yields

F
′′
(ξ )− rF(ξ )− sF3(ξ ) = 0, (4.10)

where

r =
k+ p2n+nα1q2

n+nα1c2 ,s =
−β1(α2d2 −β2c2 +1)+ γ1γ2

(n+nα1c2)(α2d2 −β2c2 +1)
.

Then the solutions of Eqs. (4.1) are

{
u(x,y, t) = ei(px+qy+kt)F(ξ ),

v(x,y, t) =− γ2
α2d2−β2c2+1 F2(ξ ). (4.11)

The expression F(ξ ) appearing in these solutions is given
by relations (3.3)–(3.14) , where
ξ = x + cy + dt,d = −2n(p + α1qc) p,q,c are real
constants.

Example 2. We consider the Maccari system [19,20]:{
iut +uxx +uv = 0,

vt + vy +(|u|2)x = 0.
(4.12)

Maccari system was derived from the
Kadomtsev–Petviashvili equation by Attilio Maccari,and
discussed its Lax pairs explicitly demonstrated.

Using the wave transformations

u = ei(px+qy+kt)F(ξ ),v =V (ξ ), (4.13)

where ξ = x+ cy+ dt, amplitude F(ξ ) is a real function,
where p,q,k and c are real constants. Substituting (4.13)
into (4.12),we

can know that

F
′′ − (k+ p2)F +FV = 0, (4.14a)

(c+d)V
′
+2FF

′′
= 0. (4.14b)

Integrating Eq. (4.14b) with respect to ξ and taking the
integration constant as zero yields

−(c+d)V = F2, (4.15)

Substituting Eq. (4.15) into Eq. (4.14a) yields

F
′′
(ξ )− rF(ξ )− sF3(ξ ) = 0, (4.16)

where r = k+ p2,s = 1
c+d .

Then the solutions of Eqs. (4.12) are{
u(x,y, t) = ei(px+qy+kt)F(ξ ),

v(x,y, t) =− 1
c+d F2(ξ ). (4.17)

The expression F(ξ ) appearing in these solutions is given
by relations (3.3)–(3.14) , where ξ = x + cy + dt,
p,q,c,k,d are real constants and c ̸=−d.

Example 3. Let us first consider a new integrable
coupled nonlinear schrodinger equations [21]

iϕt +χϕxx ∓2µ(
|ϕ |2 + |ω |2

|ϕ |2 |ω |2
)ϕ = R1, (4.18a)

iωt +χωxx ∓2µ(
|ϕ |2 + |ω|2

|ϕ |2 |ω|2
)ω = R2, (4.18b)

where the perturbative terms R1 and R2, and the real
parameters χ and µ are, respectively, defined as follows

R1 =
2χϕ 2

x

ϕ
,R2 =

2χω2
x

ω
,χ =

α +δ
α(α −δ )

,µ =
α2 −δ 2

α2δ
,

with α and δ as two real constants.
For our purpose, we introduce the following

transformations:

ϕ(x, t) = e−i(kx+lt+δ1)F−1(ξ ),

ω(x, t) = e−i(kx+lt+δ2)F−1(ξ ), (4.19)

where ξ = ax+ 2kχat,F(ξ ) is a real function, k, l and a
are the real parameters. The phase constants δ1 and δ2
represent the
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complex envelopes ϕ and ω . Substituting (4.19) into
(4.18), yields

F
′′
(ξ )− rF(ξ )− sF3(ξ ) = 0,

where

r =
l +χk2

a2χ
,s =

∓4µ
a2χ

.

Then the solutions of Eqs. (4.18) are

{
u(x,y, t) = e−i(kx+lt+δ1)F−1(ξ ),
v(x,y, t) = e−i(kx+lt+δ2)F−1(ξ ).

(4.20)

The expression F(ξ ) appearing in these solutions is given
by relations (3.3)–(3.14) , where ξ = ax+ 2kχat, k, l and
a are the real constants.

5 Conclusions

The improved (G
′

G ) -expansion method is applied
successfully for solving the system of a class of nonlinear
partial differential equations, a new integrable coupled
nonlinear Schrodinger equations, the Maccari
system.These exact solutions include the hyperbolic
function solutions, trigonometric function solutions and
rational function solutions. When the parameters are
taken as special values, the solitary wave solutions are
derived from the hyperbolic function solutions.This
method has more advantages: it is direct and concise.
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