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We develop a practical quantum tomography protocol and implement measurements
of pure states of ququarts realized with polarization states of photon pairs (biphotons).
The method is based on an optimal choice of the measuring scheme’s parameters that
provides better quality of reconstruction for the fixed set of statistical data. A high
accuracy of the state reconstruction (above 0.99) indicates that developed methodology
is adequate.
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1 Introduction.

For the last several years many elegant experiments were performed in which different
kinds of multi-dimensional quantum states (qudits) were introduced [17–21, 23–26] (for
more details see the review [11]). Most of them are based on the states of light emitted
via spontaneous parametric down-conversion (SPDC). In this process photons of the laser
pump decay on the pairs of photons (biphotons) inside the crystal possessing non-zero
quadratic susceptibility. In stationary case the sum of daughter photons frequencies coin-
cides with the frequency of the pump ws + wi = wp and intensity of the biphoton light
emitted from the crystal is maximal when phase matching condition ks + ki = kp holds.
Choosing particular regime of SPDC one can prepare a whole family of the biphoton states
with different properties. In this paper we focus upon polarization states of biphotons al-
though some other qudits can be realized with photon pairs. Selecting so called frequency
degenerate (ws = wi) and collinear (ks||ki) regime of SPDC, polarization qutrits (d = 3)
can be realized. Preparation of arbitrary polarization qutrit (d = 3) was reported in [6]. The
experimental method for engineering with pure states of ququarts (d = 4) was presented
in [9, 10].
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Quality assurance of preparation and transformation requires a complete characteriza-
tion of these states, which can be accomplished through a procedure known as quantum
process tomography. The first protocol for reconstruction of polarization qutrits was intro-
duced in [7, 16]. The protocol for quantum tomography of polarization states of photon
pair propagating along two spatial modes was suggested in [12]. Further this protocol was
implemented and modified for the case of single spatial mode [9]. However in order to dis-
tinguish the photons forming biphoton, non-degenerate regime of SPDC was accomplished
to realize a ququart. This sort of states seems to be promising for quantum communica-
tion problems because it allows one to pass the states of two photons (both entangled and
product) along single spatial mode for example in optical fiber.

Although tomographic procedure has been used in many experiments and right now
serves as an “application tool”, still there are several problems related to simple and in
some sense optimal choice of protocol. By “optimal” protocol we mean firstly how to
implement the procedure with minimal number of measurements for achieving highest ac-
curacy. For example the remarkable paper [22] analyzes a minimal measurement scheme
for single-qubit tomography. Their analysis showed that the scheme is efficient in the sense
that it enables one to estimate the qubit state without enormous number of qubits - a few
thousand are sufficient for most practical applications. Also the work [22] indicates algo-
rithms for manipulations with qudits. But from practical point of view there is the second
reason to introduce an optimality of the protocol. Usually the experimentalist possess by
limited resources to perform the measurements. For example he has a set of retardant plates
with fixed optical thickness but he can not access any other particular plates which are nec-
essary to perform the protocol according to an optimal way (see previous point). Moreover
sometimes an experimentalist has a limited time for doing the measurement and he is not
able to accumulate as many statistical data as it would be necessary. One of the trivial
reason for that might be instability of the experimental set-up. So practically any measure-
ment set has a limited size and it is not convenient (or even is not possible) to increase it
for achieving complete volume. That is why it would be useful to take into account the
set of available tools and develop a protocol which gives the highest accuracy for fixed
experimental resources.

The present work is to address the experimental problem of realization of the optimal
state reconstruction for biphoton-based polarization ququarts. We restrict ourselves with
the protocol of quantum tomography suggested and tested earlier [9]. Basically the method
is based on an optimal choice of the measuring scheme’s parameters that provides better
quality of reconstruction with the fixed set of statistical data.

2 Quantum Tomography, Principle of Realization

An arbitrary quantum state is completely determined by a wave vector for pure state,
or by a density matrix for mixed state. To measure the quantum state one needs to perform
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a set of projective measurements and then to apply some computation procedure to the
data obtained at the previous stage. It is well known that the number of real parameters
characterizing a quantum state is determined by the dimension of the Hilbert space d. For
a pure state,

Npure = 2d− 2, (2.1)

and for a mixed state,

Nmixed = d2 − 1. (2.2)

However in practice the normalization is necessary to be established with the data so
the total number of measurements increases by one. According to Boht’s complementarity
principle, it is impossible to measure all projections simultaneously, operating with single
quantum state only. So, first of all, one needs to generate a lot of the same representatives
of a quantum ensemble [10]. In our experiment for preparation such states we used the
process of spontaneous parametric down-conversion (SPDC). So fixing the conditions un-
der which SPDC takes place we achieve the initial states which serve as a base for further
manipulations.

As it was already mentioned above we deal with the collinear and frequency non-
degenerate regime of biphoton field for which ks||ki, and ws 6= wi. From the point
view of polarization there are four natural states of photons pairs: |HsHi >, |HsVi >,
|VsHi >, |VsVi >. Then any pure polarization state of biphoton can be expressed as super-
position of four basis states:

|C >= c1|HsHi > +c2|HsVi > +c3|VsHi > +c4|VsVi > . (2.3)

Here ci = |ci|eiφi ,
∑4

i=1 |ci|2 = 1 are complex probability amplitudes. Thus ququart
represents a quantum polarization state of two qubits (photons), whose states can be either
entangled or non-entangled. For complete characterization of polarization ququarts and
their properties including methods for preparation, transformation and measurement we
refer to our previous work [9].

It is worthy to note that the universally accepted method for describing the multi-mode
quantum polarization states of photons is based on P-quasispin approach [13]. Application
of P-quasispin concept to the polarization ququart has been done in [14]. In paper [15]
it has been shown that polarization properties of two-mode biphoton field are completely
defined by the coherency matrix. It is a matrix consisting of fourth-order moments in the
electromagnetic field

K4 =




A E F G

E∗ B I K

F ∗ I∗ C L

G∗ K∗ L∗ D


 , (2.4)
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Figure 2.1: Setup for preparation and measurement of ququarts

A ≡ 〈a†sa†iasai〉 = |c1|2, B ≡ 〈a†sb†iasbi〉 = |c2|2,
C ≡ 〈b†sa†i bsai〉 = |c3|2, D ≡ 〈b†sb†i bsbi〉 = |c4|2.
E ≡ 〈a†sa†iasbi〉 = c∗1c2, F ≡ 〈a†sa†i bsai〉 = c∗1c3,

G ≡ 〈a†sa†i bsbi〉 = c∗1c4, I ≡ 〈a†sb†i bsai〉 = c∗2c3,

K ≡ 〈a†sb†i bsbi〉 = c∗2c4, L ≡ 〈b†sa†i bsbi〉 = c∗3c4.

(2.5)

The averaging in (2.5) is taken over the state (2.3). The polarization density matrix of
ququart state coincides with coherency matrix K4 and completely determines an arbitrary
ququart state. Thus in order to reconstruct the unknown ququart state all moments in (2.5)
have to be measured.

As it was mentioned earlier, to measure an unknown state it is necessary to perform a
set of projective measurements. At present, the only realistic way to register fourth-order
moments is using the Hanbury Brown-Twiss scheme. In order to be able to measure po-
larization moments (2.5) we supplied this scheme with retardant plates and polarization
prisms. Basically two protocols for quantum state reconstruction of ququarts can be ap-
plied [9]. In the first protocol the ququart is divided into two spacial/frequency modes
by means of dichroic mirror and then each photon of the pair is subjected by polarization
transformations separately. In the second protocol the ququart undergoes polarization (lin-
ear) transformations as a whole before the beamsplitter. Here we consider only the second
protocol since it seems to be more practical. The idea of the protocol is straightforward.
The ququart state is transformed by two retardant plates Wp1 and Wp2, putting in series
and after that it is split by beamsplitter into two spatial modes ended with single-photon de-
tectors D (Fig.2.1). Polarization prisms project the state onto vertical polarization. Pulses
coming from detectors are coupled on the coincidence scheme, which selects only those
of them coinciding in time with the accuracy of coincidence window (about 3 nsec in our
case). So each pulse coming from the coincidence scheme associates with projection of the
initial ququart subjected to given polarization transformation. Finally the output pulses of
the coincidence scheme accumulated during fixed time interval (coincidence rate) serve as
statistical data to be analyzed for the state reconstruction. The transformations performed
by the plates Wp1 and Wp2 are expressed in the form

|Ψout〉kl = Ĝ(δ1(s,i), θk)Ĝ(δ2(s,i), θl)|Ψin〉. (2.6)



Optimal Protocol for Polarization Ququart State Tomography 5

Matrix G is given by 4 × 4 matrix which is obtained by a direct product of two 2 × 2
matrices describing the SU(2) transformation performed on each photon [15]:

Ĝ ≡




tsti tsri rsti rsri

−tsr
∗
i tst

∗
i −rsr

∗
i rst

∗
i

−r∗s ti −r∗sri t∗sti t∗sri

r∗sr∗i −r∗s t∗i −t∗sr
∗
i t∗st

∗
i




=

(
ts rs

−r∗s t∗s

)
⊗

(
ti ri

−r∗i t∗i

)
, (2.7)

with complex coefficients of effective transmission

t1,2(s,i) = cos δ1,2(s,i) + i sin δ1,2(s,i) cos 2θk,l, (2.8)

and effective reflection

r1,2(s,i) = i sin δ1,2(s,i) sin 2θk,l. (2.9)

Here θk,l are the orientation angles of the first or second retardant plates. The parameters of
the plates, i.e. optical thicknesses for different wavelengths δ1,2(s,i) and their orientations,
are supposed to be known with high accuracy which relates to the final accuracy of the
state reconstruction. Disregarding the normalization, the number of events detected in the
experiment, i.e. coincidence rate Rkl is the projection of the transformed state |Ψout〉 onto
the state |VsVi〉 determined by the orientation of the polarization prisms. This projection is
given by the expression

Rkl ∝ |〈VsVi|Ψout〉kl|2. (2.10)

Thus the joint action of two retardant plates and polarization prisms provides the basis for
projective measurements.

The intensity of the event generation in each process can be expressed in terms of
squared modulus of the amplitude of a quantum process [1–3]

Rν = Mν
?Mν , (2.11)

Although the amplitudes of the processes cannot be measured directly, they are of the great-
est interest as these quantities describe fundamental relationships in quantum physics. It
follows from the superposition principle that the amplitudes are linearly related to the state-
vector components [1–3]. So the main purpose of quantum tomography is the reproduction
of the amplitudes and state vectors, which are hidden from direct observation. The linear
transformation of the state vector c = (c1, c2, c3, c4) into the amplitude of the process M is
described by a certain matrix X

Xc = M. (2.12)
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The matrix X is a so called instrumental matrix for a set of mutually complementary mea-
surements. Suppose that protocol contains m steps, which means that m consistent trans-
formations should be done with the initial state. Consequently the matrix X contains m

rows. So each row corresponds to various projection measurements under a quantum state.
To each row Xj (j = 1, 2, . . . ,m) of a length d we will construct a new row of a length
d2 which is determined as a direct product of row Xj and row X?

j . Then let us compose
another matrix B with rows introduced above. The size of the matrix B is m × d2 and
we assume that m ≥ d2. The important property of the protocol of measurement is its
completeness. The protocol is supposed to be complete if all d2 singular eigenvalues of the
matrix B are strictly positive. Such protocol provides with a reconstruction of an arbitrary
quantum state at sufficiently large sample size. However if several (or even single) singular
eigenvalues of the matrix are close to zero then the matrix becomes degenerate. Hence
in order to reconstruct unknown ququart state with this quasi-degenerate matrix one needs
to increase number of statistical data. We have found rank and singular eigenvalue of the
matrix B and introduced parameter R which is defined as the ratio between the minimal
nonzero singular eigenvalue and maximal one. The R value lies in a range from 0 to 1. It is
important to notice that the ratio R depends on parameters of experimental set-up only (in
our case these parameters are optical thicknesses of the quartz plates) and does not depend
at all on the state to be measured. Therefore the ratio R can serve as a testing parameter of
the protocol in the sense whether the protocol is optimal or not. Namely, the smaller R the
worse the protocol and the quality of the reconstructed state is supposed to be lower. In the
present paper we are not going to prove this statement mathematically. We just suggest the
empirical parameter and test its validity with particular experiments. In nearest future we
will develop this concept and give strict arguments related to the completeness of statistical
state reconstruction protocol [8]. In our experiment each run is specified by the orientation
angle of the Wp1 plate θ1 = 0◦, 15◦, 30◦, 45◦ for the complete rotation of the Wp2 plate
by 360◦ with step 10◦; i.e., 144 measurements have totally been made. Consequently in
our case matrix X consists of 144 rows (the total number of different orientations for both
plates in experiment) and 4 columns (the dimension of Hilbert space for ququarts). Each
row is formed in the following way. The initial state |Ψin〉 is transformed by the two quarts
retardant plates Wp1 and Wp2 and projected onto the vertical state |V1V2〉. Thus using the
formulas (2.7-2.9) the four-element row can be re-written in the form

Xj = 1/2(αsαi αsβi βsαi βsβi), (2.13)

where the values of the complex parameters as,i, bs,i are different for particular rows of the
measurement protocol:

αs,i = −t?1(s,i)(θk)r2(s,i)(θl)− r1(s,i)(θk)t2(s,i)(θl),
βs,i = −r?

1(s,i)(θk)r2(s,i)(θl) + t1(s,i)(θk)t2(s,i)(θl).
(2.14)
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Here indexes 1, 2 relate to the first(Wp1) or second(Wp2) retardant plates correspondingly.
Within the bounds of the proposed method of measurement, thicknesses of plates do not
seem to play a significant role and can be chosen arbitrary. Of course the experimentalist
should know the exact optical thickness of each plate to be used in further calculations.
However, below (see Section 3) we will show that only particular sets of plates with certain
thicknesses provide the optimal reconstruction of an unknown state.

3 Quantum Tomography, Simulation and Experiment

Let us analyze how the choice of plates’s thicknesses affect on the quality of state
reconstruction. We have calculated the ratio R for set of thicknesses of the first and second
quartz retardant plates. Specifically first plate varied within the limits from 0.8mm to 1mm
with the step 0.002mm and second plate varied within the limits from 0.5mm to 1mm with
the same step. Corresponding picture is shown on Fig.3.1. Thicknesses of the first and
second quarts retardant plates lie along the axis x, y correspondingly.

Figure 3.1: Dependence of ratio R on plates thicknesses

In Fig.3.1 light color indicates areas with high value of ratio R, and dark color indicates
areas with low value. It is obvious, that the rash choice of plates thicknesses most likely
will be wrong from the point of view of completeness of matrix B. For offered protocol the
maximum achievable parameter R takes on a value 0.09 and as it will be shown below, it
is quite enough for good quantum state reconstruction. For example, to receive such value
one can choose plates with thicknesses Wp1=0.988mm and Wp2=0.570mm. Particularly
for our experiment we have chosen the following two sets of plates: a) Wp1=0.988mm and
Wp2=0.836mm (optimal); b) Wp1=0.836mm and Wp2=0.536mm (non-optimal). For the
first set of plates the ratio is R = 0.0554 and for the second set R = 0.0013. Unfortunately,
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our choice has been limited by available plates, so we were not able to check their extremal
values.

In the simplest case, for example for state |Vs〉|Vi〉 we can simulate the procedure of the
basis state reconstruction. The difference between reconstructed sate (which was numeri-
cally simulated) and theoretical one is caused by information loss due to the finite number
of statistical data. As estimated parameters, we have considered the average information
losses

L = log10

1
1− F̄

, (3.1)

where F (fidelity) represents a correspondence between the theoretical and experimental
(or numerically simulated) state vectors at different thicknesses of the first and second
quarts retardant plates. Corresponding plot is shown on Fig.3.2. Here the thicknesses of
the first and second quarts retardant plates lie along the axis x, y. Thicknesses of both
plates were varied within the limits indicated on previous plot.

Figure 3.2: Dependence of average information losses L on plates thicknesses

In Fig.3.2 light color indicates areas with low value of information losses, and dark
color indicates areas with high value of information losses. Numbers at the right bar show
the accuracy level of the tomography protocol. For example, value 3 means that correspon-
dence between the theoretical and experimental state vectors (fidelity) is about 0.999.
Black “holes” in Fig.3.2 set areas, where matrix B becomes ill-conditioned. In other words
the figure presented at the plot serves as some sort of a “navigation map” for measurement
protocol. To achieve good quality of the measurement one should select the plates thick-
nesses in light areas and avoid dark areas. It is clearly seen that minima (dark areas) on
both plots (Fig.3.1 and Fig.3.2) coincide. Moreover Fig.3.1 shows that choosing the plates
one meets more limitations in terms of optimal protocol since the ratio R does not depend
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on the state to be measured. At the same time the parameter “average information losses
L” does. This fact has to be taken into account by performing statistical state reconstruc-
tion. The dependence of density of distribution on the accuracy information losses 1−F is
shown in Fig.3.3. We see that accuracy information losses for the optimal tomography are
characterized by density of distribution which is determined by the narrow high peak con-
centrated at low values of information losses (obviously less than 0.005). On the contrary,
non-optimal tomography is characterized by the wide density of distribution stretched up to
values 0.05. These differences disappear at sufficiently large sample size (which is related
directly to the number of statistical data ), but for equal quality of state reconstruction the
right choice of plates allows one to make smaller set of statistical data, i.e. reduce time
exposition.

Figure 3.3: Dependence of density of distribution on the accuracy information losses 1−F . Dot line
corresponds to optimal set of plates (optimal tomography), solid line corresponds to non-optimal set
(non-optimal tomography).

We applied suggested protocol to measure some particular set of ququart states Ψ. For
the generation of biphoton-based ququarts we used lithium-iodate 15 mm crystal (with
type-I phase matching) pumped with 5 mW cw horizontally polarized helium-cadmium
laser operating at 325 nm. The angle between the pumping wavevector and optical axis of
the crystal is equal to 58◦. Under these conditions, the product state |V702nmV605nm〉 is
generated in the crystal. The initial state was subjected to transformations done by dichroic
retardant plate in order to prepare some subset of ququart. This subset is known as a
product of two polarization qubits [27]. That subset of ququart states was to be recon-
structed. In particular, we used the 0.441mm length quartz plate whose orientation varied
as α = 0◦,−60◦. Since the thickness of the plate, quartz dispersion and orientation were
supposed to be known, we were able to calculate the result of the state transformation with
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high accuracy. In measurement part of setup we used two sets of retardant plates with
different thicknesses, optimal and non-optimal, and made the reconstruction procedure of
ququarts states at the fixed set of statistical data for each set. In both series of experi-
ments we gathered identical statistic equal 30-35 thousands events. According to protocol,
four sets of measurements were performed for each input state, so totally we performed
144 measurements of the coincidence rate as a function of orientation angles of Wp1 and
Wp2. While accumulating experimental data, the accidental coincidence rate Nacc, which
is expressed in terms of the rate of averaged single counts from each photodetector and
the coincidence-window width (T ) of the scheme as Nacc = 〈N1〉〈N2〉T , is extracted
from the total coincidence rate. For state reconstruction we used the maximum likelihood
method, that was developed in [4] and was successively applied to reconstruct states of
optical qutrits [5]. The result of ququarts reconstruction is given in Table 3.1. The value

Table 3.1: The result of ququarts reconstruction

fidelity
α (deg.) optimal set non-optimal set

0 0.999 0.974
−60 0.993 0.975

of parameter F is defined as F = |〈ctheory|cexp〉|2. It is clearly seen that obtained fidelity
values for optimal set of thicknesses is much higher than for non-optimal set. Fidelity for
all states in the first case (optimal) was above 0.99, in the second case (non-optimal) fidelity
was about 0.97.

4 Conclusion

In conclusion, we have suggested and tested an optimal protocol for polarization
ququarts state tomography. The protocol allows one to achieve highest accuracy of the state
reconstruction with available resources which experimentalist holds in his hands while do-
ing particular measurements. Then we investigated theoretically and experimentally the
accuracy of polarization ququart reconstruction depending on parameters available in ex-
periment (quartz plates thicknesses) at fixed set of statistical data. The developed method-
ology can be extended easily to other quantum states reconstruction as well as used for
optimization of various technological parameters of quantum tomography protocols.
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