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Abstract: Both mathematics and science are important for one another and have a close relationship. It is impossible to dispute the

significance of mathematics in a number of scientific disciplines, including electrical engineering, physics, biology, and medicine. Due

to a number of applications of mathematical biology in the twenty-first century, researchers have taken a special interest in this field.

Due to the complexity of the underlying connections, both deterministic and stochastic epidemiological models are founded on an

inadequate understanding of the infectious network. Over the past several years, the use of different fractional operators to model the

problem has grown, and it is now a common way to study how epidemics spread. New fractional operators, the infectious disease

model has been studied in this paper. By using different numerical techniques and the time fractional parameters, the mechanical

characteristics of the fractional order model are identified. The uniqueness and existence have been established. The model’s local and

global stability analysis has been found. In order to justify the theoretical results, numerical simulations are carried out for the presented

method in the range of fractional order to show the implications of fractional and fractal orders. We applied very effective numerical

technique to obtain the solutions of the model and simulations. Also, we present conditions of existence for a solution to the purposed

epidemic model and to calculate the reproduction number in certain state conditions of the analyzed dynamic system. Infectious disease

fractional order model is offered for analysis with simulations in order to determine the possible efficacy of disease transmission in

the Community. The Fractal fractional operator is employed to study the dynamical transmission of diseases effect on society which

is helpful for analysis, decision making, and disease control. Are treated with the Banach contraction principle. Microorganisms,

interactions between individuals or groups, and environmental, social, economic, and demographic factors on a broader scale are all

examples. Finally, numerical simulations that demonstrate the impact of fractional parameters on our found solutions are built to

study the impact of the system parameter on the disease’s spread. In conclusion, fractional operators in mathematical models can help

decision-makers make better choices regarding the course of action to take in an epidemic situation. Further, we suggested some future

work directions with the help of the new hybrid fractional operator. Fractional Calculus is a prominent topic for research within the

discipline of Applied Mathematics due to its usefulness in solving problems in many different branches of science, engineering, and

medicine. Recent researchers have identified the importance of mathematical tools in various disease models as being very useful to

study the dynamics with the help of fractional and integer calculus modeling.

Keywords: Epidemic model, fractional derivative, integral inequality, singular, non-singular, constant proportional, kernels.

1 Introduction

A mathematical model is a made-up micro world where objects act in accordance with well-defined rules. In order to
express these principles of behavior in a clear and succinct manner, mathematics gives us a language, which forces and
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aids us in stating our assumptions. Once a mathematical model has been created, mathematical analysis often
accompanied with computer simulations helps us explore the model’s overall behavior and uncover the implications of
our assumptions. when a result, within the framework of the model, we are able to anticipate the future of our fictional
world and investigate how these predictions vary when the laws regulating the entities the model describes change [1].
An ecologically imbalanced interaction between a microbial infectious agent and a host leads to infectious illnesses. As a
result [2] provides information on the population’s exposure and environmental impact. In this regard, it is crucial to
comprehend how the aforementioned components interact in order to foster the creation of efficient management, health
aid, and policy measures [3]. Because of biological evolution, as well as social and environmental changes brought on by
industrialization and development, epidemiological scales of viral illnesses are uncertain. The modifications are
unavoidable and can’t be stopped [4,5,6]. Frequent diseases among humans such as tuberculosis (TB), polio, smallpox,
and diphtheria significantly exacerbated death and disability prior to the development of vaccinations [7]. There
nonetheless exists an immense burden of infectious illness on lower and middle-income economies, especially neglected
tropical diseases, HIV infection, tuberculosis, and malaria exhibiting high mortality and morbidity rates. Contrary to
periodic and endemic ailments, mortality from new and reappearing pathogens remains elevated [8]. Within the last
seventy years, the analysis of infectious disease patterns has developed into a complex, interdisciplinary field that
combines epidemiology, health care administration, social science, philosophy, mathematics, and biology to comprehend
and forecast the progression of the disease [9,10]. Some application with fractional order model for natural and
biological phenomena studied in [11,12,13] and some epidemic model with fractional such as Marburg virus [14],
cancer [15].

Late in 2019, a new epidemiological disease was identified in Wuhan, a city in the Chinese province of Hubei. The
new beta coronavirus, which has a serious impact on the human respiratory system, was identified by researchers as the
infectious disease’s root cause. Chinese authorities identified the virus as practical, capable of spreading disease, in the
beginning of January 2020. The virus caused the problem [16]. When the disease dynamics of a novel infection are still
unknown, mathematical modelling is used to estimate the number of patients in worst- and best-case scenarios [17,18].
For the purpose of better understanding the dynamics of the COVID-19 transmission model, numerous mathematical
models have been created and to offer health authorities with additional information on how to restrict the disease’s
spread [19,20]. In an attempt to provide an adequate dynamical framework to investigate the evolution of pandemic
propagation, a number of scholars have presented fractional-order dynamical models for analyzing viral transmission.
Numbers were utilized to quantitatively depict the COVID-19 epidemic as isolated classes in fractional order [21]. They
applied the modified predictor-corrector approach and the fourth-order Runge-Kutta (RK4) technique to recreate the
proposed model. Q-homotopy examination, a rapid and effective quantitative technique, was utilized by Yadav et al. [22]
to analyze the fractional order Covid-19 model. We applied the Liouville-Caputo approach to the fractional operator. A
quantitative evaluation of the suggested model was done as well using the generalized Adams-Bashforth-Moulton
methodology. Fractal fractional, Atangana-Baleanu, and Atangana-Toufik Farman et al. [23] created fractional
derivatives for the COVID-19 model using Atangana-Baleanu senses. Understanding the COVID-19 outbreak is made
easier by these cutting-edge methods. The generalized Mittag-Leffler law was used to solve the issue together with
different fractional operators. A comprehensive examination of a four-compartment COVID-19 mathematical model was
carried out in [24]. Fuzzy and random methods were used to handle the unique COVID-19 model, and the
Adams-Bashforth method was used to find the numerical answers for the arbitrary model. In addition, they investigated
the suggested model under ABC derivatives through numerical simulations adopting the fractional Adam Bashforth
method. Antiviral HIV therapies have reduced AIDS fatalities globally, and organizations around the world are
attempting to make preventative and curative therapies more widely available in underdeveloped nations. In the
fractional order HIV/AIDS model, Khan et al. [25] investigated the Liouville-Caputo and Atangana-Baleanu-Caputo
derivatives. The Laplace and Sumudu transforms were used to generate the specific iterative results. To research the
impact of HIV viral screening on the transmission among those who aren’t aware they are infected, [26] developed a
model of the human immunodeficiency virus infection’s fractional order spread. Using Caputo-Fabrizio and fractal
fractional methods, a fractional-order model of HIV/AIDS including a section for antiretroviral treatments was
investigated in [27]. The Sumudu transform was used to get the findings for the proposed concepts. Some application of
modified Atangana-Baleanu [28], piecewise fractional analysis [29], intravenous drug model [30],piecewise constant for
chemo-immunotherapy [31] and SEIQR model [32].

The Ebola virus causes ebola, a viral hemorrhaging illness that infects humans and primates as well. In sub-Saharan
Africa’s tropical regions, ebola outbreaks come and go. The World Health Organization reports that there were 24 Ebola
outbreaks between 1976 and 2012, totaling 2,387 cases and 1,590 fatalities [33]. Ebola virus (Ebola) outbreaks destroyed
large populations in Western Africa in 2014. This epidemic was the deadliest among Ebola threats since 1976, with more
than 16,000 clinically confirmed cases and almost 70% death cases [34]. The epidemic is primarily occurring in a region
with weak public health infrastructure [35]. There are four distinct Ebola virus species that can be found in west or
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equatorial Africa. When the more virulent variants reach the human population, they spread mostly by contact with
bodily fluids that are contaminated and can cause significant epidemics in places with inadequate resources. Extensive
replication of the virus, decreased immunity, abnormal reactions to inflammation, considerable fluid and electrolyte
expenses, and high mortality are characteristics of a disease caused by these viruses [36]. To model the transmission of
this disease in the three nations afflicted by the 2014 outbreak Guinea, Liberia, and Sierra Leonea number of methods
have been put forth. By including a second variable for the number of vaccines, [37] considers the optimum control
problem of the Ebola epidemic with vaccination limitations and transmission in [38]. A key defense against Ebola virus
outbreaks is the isolation method, which is used when there is no effective treatment or vaccine. A deterministic
compartmental model for evaluating the effects of isolation to contain the Ebola virus was provided by researchers in
[39]. The demographic effects, latent detectable and undetectable compartments, and separation of infectious persons
were all considered in the model. To comprehend the spread of this epidemic disease, Farman et al. [40] provided a
nonlinear time-fractional mathematical model of the Ebola Virus. Cancer is a complex illness characterized by multiple
tempo-spatial alterations in cell physiology that eventually lead to malignant tumors. The disease’s biological goal is
abnormal cell proliferation (neoplasia). The primary cause of illness and mortality in most cancer patients is tumor cell
invasion of surrounding tissues and distant organs. According to the research, around 25− 30% of all cancer-related
fatalities are caused by cigarettes, 30− 35% by diet, 15− 20% by infections, and the remainder by other variables such
as radiation, stress, physical activity, environmental contaminants, and so on [41,42]. Cancer incidence appears to be
substantially lower in many developing countries, most likely due to increased death rates from infectious disease or
injury. Cancer incidence is anticipated to rise by 100% to 180% over the next 15 years as life expectancy rises, the senior
population grows, and childhood disease is successfully controlled [43]. Some application of mathematics for different
types of cancer studied in [44,45].

Panda et al. [46,47] provide useful advice for figuring out whether the novel coronavirus model can be solved using
fractional derivatives with fuzzy mappings. We looked into the fractional operators from the Caputo, Caputo-Fabrizio,
and Atangana-Baleanu classes. Numerous mathematical concepts created by Atangana and Araz have recently been used
to predict how infectious disease transmission will behave. Among these, the reproductive number idea has been used to
analyze the stability of the spread in a number of published articles. A number of conditions were presented to indicate
whether [48] would be stable or unstable. Atangana and Baleanu developed a fractional order derivative to answer
numerous important problems in fractional calculus. Non-locality and non-singularity make up the core of their
derivation. We accomplish a chaotic behaviour that the local derivative could not have generated [49].We explored some
of the favourable properties of the new derivative and applied them to solve the fractional heat transfer model. It is
suggested that new derivatives with nonlocal and nonsingular kernels be used in this work [50]. Atangana developed
useful tools that could be used to apply the new derivative to the nonlinear Fisher’s reaction-diffusion equation. We
provided a solution to the altered equation using the concept of an iterative process. Using the notion of fixed points, [51]
we proved the strategy’s stability. On some information theory-based research projects, Atangana and Badr collaborated.
We also discuss the existence of the connected solutions in terms of the fixed-point theorem. A full analysis of the
singularity of the coupled solutions is also given. We create distinct coupled solutions for the modified system using an
iterative procedure, and [52] In order to provide, on the one hand, the many definitions of fractional calculus for practical
issues in [53], Atangana and Secer created this remark. In this study, it is suggested to approximate the numerically
generated fractional derivative by Atangana and Nieto. Along with a number of numerical simulations for various orders
of derivation, the updated equation can be solved. The African Humid Tropics (AHT) have been the attention of
Tchoundjeu et al. [54] since 1987. Despite having access to abundant natural resources, the small-scale farmers in AHT
are among the world’s poorest. They have traditionally relied on subsistence agriculture and the extraction of forest
products for their food and other necessities. Alternatives must now be explored as a result of rising land pressure and
falling cash crop commodity prices after years of disastrous deforestation. According to a study by Tchientche et al. [55],
promoting the consumption of local vegetables could assist develop countries reduce malnutrition and food insecurity.
According to research by Aguilar and Atangana, the exponential decay law or the Mittag-Leffler law can explain some
physical occurrences in nature but the power law cannot. We propose a power-law exponential Mittag-Leffler kernel in
this paper with three fractional orders. Numerous beneficial traits are acquired. For the three instances mentioned in [56],
numerical solutions were found. The exponential kernel, Caputo-Fabrizio derivative, and Hilfer fractional derivative are
employed in a novel fractional model for the human liver [57,58].

The system behaves consistently even when the fractal order π fluctuates and the fractional order value ν = 0.5.
Considering the intricacy and nonlinearity of the problem, the Adams-Bashforth method was used in [59]. Describes a
numerical method [60] for predicting the parameters of fractional-order corona virus systems using a modified hybrid
method and fractional recovery SIR models [61] under appropriate restrictions. The Adams technique was statistically
simulated by the researchers using data from the Cape Verdean islands dengue fever outbreak in 2009. Fractional
derivatives [62] in dengue outbreaks were used in this simulation. It is evident that both fractional models provide results
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that are almost equal up until the highest level of the affected population, but the system with the changed parameters
better replicates the epidemic’s latter stages [63]. Time-fractional PDEs were analyzed using convergent series with
calculable components, which is a recently created analytical technique known as the q− Homotopy analysis approach
[64]. Fixed point theory was implemented to examine the existence and uniqueness of the solution to the fractional-order
epidemic model of childhood diseases [65]. [66] looked explored the conditions for fractional reverse and fractional
Hopf bifurcation. They examined equilibrium stability and the stability of the Hopf bifurcation with regard to the illness
control parameter, the dread intensity, and fractional order [67]. The integer order version of the original SIR epidemic
model is stable. When periodic and noisy forces are applied to the system, the behavior of the system changes. The
system’s numerous dynamical tendencies are illustrated by its level of fractional derivative order, seasonality, and noise,
together with different system attributes [68]. We can examine and predict the entire tumor-formation process using this
model [69]. According to A. Atangana et al. [70]’s study, the A-B fractional derivative, which is based on the generalized
Mittag-Leffler function, enhances the chaotic behaviors of the membrane potential’s spiking-bursting conduct in
photographs. Particularly obvious is the transition from the extended exponential to the generalized M-L
function-induced trend. This should be contrasted with the outcomes attained when the model was constructed using a
common differential operator. The fractional order recovery model is studied by C. N. Angstmann et al. [71], who
mention model reduction to the Kermack-McKendrick age-structured SIR model and the Hethcote-Tudor integral
equation SIR model. By transforming the logic from a continuous-time stochastic process to a discrete-time one, the
model equations can be solved analytically. Additional methods for predicting the progression of the disease and, in
some cases, influencing how long it requires to reach stable states have been made available through fractional
derivatives. Our upcoming study will explore regulating the vaccination term u [72] in order to obtain a more optimum
strategy with additional fractional derivatives with a non-singular kernel. Using GMMP and MH-NMSS-PSO, this work
by T. Li et al. [73] calculated fractional-order dengue fever system parameters. Because of additional fractional orders
and parameters, the numerical findings closely matched the data. In order to take advantage of the fractional order
derivative of Atanagana-Baleanu, the findings are thus obtained and shown in [74] utilizing the recently proposed
method, which is effectively applied to a variety of real-world applications. The value of α = 1,0.95,0.9,0.85 and the
graphical results for the fractional dengue model were both attained. Contrary to integer order derivative, the graphical
results demonstrate that useful information may be obtained at each time level and derivative. In the examination of
dengue data, the vector host model performs better than the SIR model. For the purpose of reducing the number of
infected and vulnerable populations and increasing the number of recovered groups, the fractional optimal control
challenge for this fractional dynamic system is investigated. Additionally, a plan for an analytical approach to solving the
issue is offered. In addition to modelling epidemics, the proposed method might also be utilized to model wireless sensor
network switching stability and data packet delay dynamics [75]. Due to the difficulty of dealing with stochastic and
random factors and the potential cost implications of dealing with uncertainty, fuzzy ideas may be the best option for
simulating these systems in reality [76].

Scientists and scholars are paying increasing attention to a mathematical model of infectious disease that uses
non-integer order. Undoubtedly, traditional epidemiological models can only be specified through a definite order, in
contrast to fractional order derivative models, which do not have a fixed order. The non-fixed order of the fractional
derivative improves its modelling skills. As new fractional operator ideas created to address the shortcomings of prior
fractional order derivatives, the exponential decay, power law kernel, Mittag-Leffler kernel, and certain hybrid operators
are employed for the epidemic model. With these fresh operators, modelling problems that occur in technology and
research has been effective. A relatively new operator in fractional calculus is the fractal-fractional operator. Fractional
order modelling, which is an extension of the integer-order derivative, is a helpful technique for studying the nature of
diseases. In addition, a new parameter introduced by the fractional order system can improve mathematical simulations.
After making an overview, we discuss a number of problems with these representations, look at some interesting
methods for giving them generic systems, and suggest a different strategy: fractional calculus. Its main advantages
include reality capture, memory-related capture, multistage construction, and improved data fitting. Fractional epidemic
models provide a potent tool for doing so compared to integer-order models, which either ignore or make it impossible to
account for the memory and heredity aspects of the systems. When it comes to data fitting, the fractional variant provides
one more degree of independence than the integer model. Finally, we suggest that the concerned parties might gain from
the development of numerical techniques that allow mathematical models to be fitted to actual data.

2 Definitions Related to Fractional Calculus

In any event, any model based on classical derivatives, we have some constraints due to the order of differential
equations being considered. To get over these limitations, several authors have turned to fractional calculus, a relatively
new branch of mathematics. The differential operators employed in fractional calculus are fractional order or
non-integer, which have memory features and can be utilized to demonstrate a variety of natural occurrences, facts and
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natural truths with anomalous behaviour and nonlocal dynamics. Researchers are very interested in fractional calculus
[77]. In [78,79] researchers used various mathematical strategies to extend classical calculus to the fractional order using
fractional order modelling. The residual power series method, spectral methods, method of collocation and Fourier
transform method, as well as other new computer approaches, have recently been employed to manage classical and
fractional order differential equations and associated systems [80,81]. Since fractional-order models have been used to
anticipate dynamical real-world procedures, mathematical modelling of dynamical real-world processes or phenomena is
quite good. The operators described have emerged in a variety of domains, including chemistry, physics and
engineering.Researchers’ interest in the fields of mathematics [82], engineering, biology [83] and fluid mechanics [84].
Recently, several fractional order mathematical models have been investigated by researchers for diseases like Hepatitis
B [85], HIV/AIDS with new fractional techniques in [86], Covid-19 [23], TB [87] etc.

This section will describe the basic notions, and concepts of fractional operators that will be helpful, as well as the
models, and methods, used in further chapters.

2.1 Riemann-Liouville

Some of the original most commonly used structures of fractional operators were evolved by Riemann and Liouville.

Definition 1.[88] Consider a function Z(t) where Z(t) ∈ H1[0,T ], T > 0. Let 0 < α < 1, then the Riemann-Liouville

fractional integral of Z(t) is defined as

RLIα
0,t(Z(t)) =

1

Γ (α)

∫ t

0
(t − τ)α−1[Z(τ)]dτ. (1)

2.2 Caputo Fractional Derivative

To overcome the hassles related to physical problems in Riemann Liouville, Caputo introduced new fractal operator. In
real-world complications, it permits to use of both conditions initial and boundary and is very effective for modeling.

Definition 2.[89] A Caputo derivative of fractional order ρ ∈ [0,1], for the function Z(t) can be defined as

∁Dα
t (Z(t)) =

1

Γ (n−α)

∫ t

0

Zn(τ)

(t − τ)α−n+1
]dτ, n = [α]+ 1. (2)

Definition 3.[89] The corresponding integral operator of fractional order α ∈ [0,1] is defined:

∁Iα
t (Z(t)) =

1

Γ (α)

∫ t

0
(t − τ)α−1Z(τ)dτ. (3)

2.3 Caputo-Fabrizio Fractional Derivative

Definition 4.[88] Consider a function, Z(t) and Z(t) ∈ H1[0,T], T > 0. Let α > 0 and n− 1 < α < n, n ∈ N, then the

Caputo-Fabrizio derivative is defined as:

CF Dα
0,t(Z(t)) =

M(α)

1−α

∫ t

0
α

′
(τ)exp[

α(τ − t)

1−α
]dτ, (4)

where M(0) = 0 = M(1).

Definition 5.[88] The Caputo-Fabrizio integral is defined as

CF Iα
0,t(Z(t)) =

2(1−α)

(2−α)M(α)
ρ(t)+

2α

(2−α)M(α)

∫ t

0
Z(τ)dτ. (5)
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2.4 Atangana-Baleanu-Caputo Fractional Derivative

Definition 6.[50] Antagana-Baleanu-Caputo (ABC) can be defined as:

ABC
0 Dα

t (Z(t)) =
AB(α)

1−α

∫ t

α

d

dτ
Z(τ)Eα

(
−α

(t − τ)α

1−α

)
dτ (6)

Where Eα is the Mittag-Leffler function and AB(α) is a normalization function.

Remark.For eq (6), a Laplace transformation is presented as:

L[ABC
0 Dα

t (Z(t))](S) =
AB(α)

1−α

SαL[Z(τ)](S)− Sα−1Z(0)

Sα + α
1−α

. (7)

using ST for (6), we obtain

ST [ABC
0 Dα

t (Z(t))](S) =
AB(α)

1−α +αSα
[STZ(t)−Z(0)]. (8)

Definition 7.Atangana-Baleanu fractional integral of order α of a function Z(t) can be expressed as [90]

ABC
0 Iα

t (Z(t)) =
1−α

AB(α)
Z(t)+

α

AB(α)Γ (α)

∫ t

α
Z(τ)(t − τ)α−1dτ. (9)

2.5 Modified Atangana-Baleanu Derivative in Caputo sense

Definition 8.[91] Let Z ∈ L1(0,T ), the MABC derivative of order 0 < α < 1, is defined by

MABCDα
0 Z(t)

=
AB(α)

1−α

[
Z(t)−Eα(−µαtα)Z(0)− µα

t∫

0

(t − τ)α−1
Eα ,α

(
−µα(t − τ)α)

Z(τ)dτ
]
, (10)

where µα = α
1−α and

AB(α) = 1−α +
α

Γ (α)
. (11)

The Laplace transform of MABC derivative is as follows:

L
{

MABCDα
t Z(t);s

}
=

AB(α)

(1−α)

sαL {Z(t);s}− sα−1Z(0)

sα + µα
,

∣∣∣µα

sα

∣∣∣< 1. (12)

2.6 Fractal-Fractional Operators

Definition 9.[92] Let 0 ≤ α , β ≤ 1 then Z(t) in the Riemann-Liouville for fractal fractional operator for power law

kernel is defined as :

FFPD
α ,β
0,t (Z(t)) =

1

Γ (n−α)

d

dtβ

∫ t

0
(t − τ)n−α−1Z(τ)dτ (13)

d

dτβ
Z(τ) = limt→τ

Z(t)−Z(τ)

tβ − τβ
(14)

The associated integral is defined as:

FFPI
α ,β
0,t (Z(t)) =

1

Γ (α)

∫ t

0
(t − τ)α−1τ1−β Z(τ)dτ (15)
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Definition 10.[92] Let 0 ≤ α , β ≤ 1 then Z(t) in the Riemann-Liouville for fractal fractional operator having
exponentially decaying kernel is given as :

FFED
α ,β
0,t (Z(t)) =

M(α)

Γ (n−α)

d

dtβ

∫ t

0
exp[−

α

1−α
(t − τ)n−α−1]Z(τ)dτ (16)

where α > 0, β ≤ n ∈ N, and M(0) = M(1) = 1.
The associated integral is given by:

FFE D
α ,β
0,t (Z(t)) =

β (1−α)tβ−1Z(t)

M(α)
+

αβ

M(α)

∫ t

0
τα−1Z(τ)dτ (17)

Definition 11.[92] Let 0 ≤ α , β ≤ 1 then Z(t) in the Riemann-Liouville for fractal fractional operator with generalized
Mittag-Leffler kernel (FFM) is defined as:

FFMD
α ,β
0,t (Z(t)) =

AB(α)

1−α

d

dtβ

∫ t

0
Eα [−

α

1−α
(t − τ)α ]Z(τ)dτ (18)

where 0 < α, β ≤ 1 and AB(α) = 1−α + α
Γ (α) .

The related integral is given by:

FFMD
α ,β
0,t (Z(t)) =

β (1−α)tβ−1Z(t)

AB(α)
+

αβ

AB(α)

∫ t

0
τα−1(t − τ)Z(τ)dτ (19)

2.7 Proportional and Hilfer Generalized Operators

Definition 12.In [93] ,the general non-fractional differential operator, also familiar as Proportional or Conformable, was

presented as;
PDα

t Z(t) = K1(α, t)Z(t)+K0(α, t)Z′(t) (20)

where K0(α, t) = αt1−α , K1(α, t) = (1−α)tα (21)

Moreover, K0 and K1 are functions of t and α∈[0,1], which satisfy the conditions given below ∀t∈R

lim
α→0+

K0(α, t) = 0, lim
α→1−

K0(α, t) = 1, K0(α, t) 6= 0, α ∈ (0,1] (22)

lim
α→0+

K1(α, t) = 1, lim
α→1−

K1(α, t) = 0, K1(α, t) 6= 0, α ∈ [0,1) (23)

Moreover, a special case, can be compelling for us, where the functions K0 and K1 are constants with respect to t ,
depending on α only, known as Constant Proportional (CP) operator and is defined as follows;

CPDα
t Z(t) = K1(α)Z(t)+K0(α)Z′(t) (24)

Definition 13.In [94] , a Hybrid Fractional Operator,known as Proportional-Caputo (PC),was developed by merging the
Proportional Operator and Caputo Fractional Derivative;

PC
0 Dα

t Z(t) =
1

Γ (1−α)

∫ t

0

(
K1(α,τ)Z(τ)+K0(α,τ)Z′(τ)

)
(t − τ)−α dτ (25)

= RL
0 I1−α

t

[
K1(α, t)Z(t)+K0(α, t)Z′(t)

]
(26)

Consider the case, when K0 and K1 are independent of t as in the CPDα , known as Constant Proportional-Caputo

(CPC)operator and is expressed as follows;

CPC
0 Dα

t Z(t) =
1

Γ (1−α)

∫ t

0

(
K1(α)Z(τ)+K0(α)Z′(τ)

)
(t − τ)−αdτ (27)

= K1(α) RL
0 I1−α

t Z(t)+K0(α) C
0 Dα

t Z(t) (28)

Definition 14.[95] If α ∈ (0,1] and γ ∈ C, Re(γ)> 0.The fractional operator

cI
γ,α
t Z(t) =

1

αγΓ (γ)

∫ t

c
e

α−1
α (t−τ)(t − τ)γ−1Z(τ)dτ (29)

is known as the left-sided generalized proportional integral of order γ of the function Z.
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3 Contribution of Fractional on Epidemic Model

Colonialism, enslavement, and conflict contributed to the global spread of deadly diseases in premodern times. Over the
past two decades, improvements in hygiene, healthcare accessibility, and medicine have reduced viral illnesses’ mortality
and morbidity. However, the burden of infectious diseases remains significant in low and lower middle-income countries,
with HIV, tuberculosis, malaria, and neglected tropical diseases still being highly related to mortality and morbidity [96].
A mathematical model follows pre-established rules, allowing us to explain and examine assumptions’ implications.
Analysis and simulations help determine the model’s behavior and consequences. Understanding pathophysiology and
transmission of infectious diseases is crucial for prevention and control. Scientists create models to forecast disease
spread and infection numbers using mathematical data and interactions between hosts, pathogens, or vectors [97]. Khan
et al. developed a mathematical model for COVID-19 using the omicron variant, highlighting the impact of fear on
people’s actions and reducing new cases [98]. Zhang et al. developed a model for assessing diabetic patients’
microvascular perfusion and early-stage artery damage [99]. Mathematical model for Ebola virus population dynamics,
including bats, immune response, and vaccine [100]. Fractional calculus is a mathematical field that explores real and
complex number powers of differentiation and integration operators. It is used in historical modeling and has properties
beyond conventional derivatives. Fractional derivatives and integrals are not local attributes, making them useful in
medical fields [101].

Farman and colleagues [102] suggested a LADM approach for fractional order model. According to Lyapunov’s
theory, Dhanalakshmi et al. [103] published a stability study of a fractional-order tumour system that correlates
tumor-immune with treatment. The use of the reduced differential transform technique for two fractional-order cancer
tumour models in the Caputo sense is discussed in [104]. To examine the consequences of heterogeneous vector biting
exposure on the human population, researchers [105] developed and tested a fractional-order model for malaria disease
transmission utilizing the Atangana-Baleanu derivative in Caputo sense. The nonlinear delayed Ross-Macdonald model
for malaria transmission was generalized to a unique fractional-order model in [106], which improved the dynamics and
added complexity. A stochastic model for co-infection with pneumonia and typhoid was published in [107] to examine
the varied connections between the two diseases under the effect of preventative measures that consider environmental
noise and piecewise fractional derivative operators, as well as some applications in [108]. A compartmental model for
the transmission of dengue fever with nonlinear forces of infection via fractional derivative was created in citation 130.
Researchers evaluated a dengue epidemic model with an Atangana-Baleanu fractional derivative using some well-known
results from fixed point theory [109]. [110] makes an attempt to imitate the use of illegal drugs by combining the
Mittag-Leffler kernel with the Atangana-Baleanu fractional derivative. In comparison to the deterministic heroin
epidemic model the stochastic model is more accurate [111]. A heroin model is proposed with ABC derivative in [112],
and some others operator used in [113,114,115]
Using a fractional derivative from Caputo and Fabrizo, researchers [116] have looked at a biological smoking model. A
nonlinear fractional mathematical model for the smoking pandemic that takes into account two age groups is presented
in [117]. Often emphasizes using the Caputo-Fabrizio differential operator [118] to analyze the dynamics of the
fractional order stopping smoking model. Zeb [119] used fractional for smoking and some others include in [120,121]. A
fractional-order derivative [122] for a complex system of glucose-insulin regulation; [123] employed the
Atangana-Baleanu derivative to analyze the fractional optimal control model for COVID-19 and diabetes co-dynamics.
The study of a model for diabetes awareness that is created by a nonlinear interaction between the number of diabetes
patients and the cumulative density of awareness-raising campaigns is illustrated by [124], which shows potential results.
The novel fractional for glucose-insulin regulatory system on diabetes mellitus using the Atangana Baleanu-Caputo
derivative along with stability results was explored by researchers [125]. A fractional-order mathematical model with
three parts was created by [126] for communities of people with diabetes. The effectiveness of neural networks and
fractional order calculus for system identification has been demonstrated. In their publication [127], they applied these
approaches to build a fractional order neural network (FONN) for system identification. [128] investigated the stability
studies for fractional-order Hopfield type neural networks. For neural networks with ring or hub architectures, the
stability area of a steady state has been extensively characterised, and the critical fractional order values for which Hopf
bifurcations may occur have been discovered [129]. An example of fractional-order neural networks with mixed delays
that exhibit periodic oscillation caused by delays in [130]. In [131] demonstrated how fractional-order cellular neural
networks may be optimized by using metaheuristics like DE and APSO.
[132] developed a fractional Zika virus model with a mutation that results in birth abnormalities in infected pregnant
women and distributes the illness through society. A mathematical model for the Zika virus was provided and examined
by [133], and the results were thoroughly examined. In [134] addressed the fractional mathematical model that
represents the kinetics of the Zika virus’s spread, one of the VBDs. In [135] suggested employing delay differential
equations of fractional order to create an epidemiological model for the Zika virus. A fractional-order derivative-based
model for the growth of ZIKV infection during the outbreak in six key French Polynesian archipelagos was constructed
and studied by [136]. A nonlinear fractional-order model was proposed by [137] as a way to explain and grasp the
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foot-and-mouth outbreaks. A fractional-order model for the spread and treatment of foot-and-mouth disease is presented
and examined in [138]. Fractional order mathematical model to explain how the hand, foot, and mouth illness spreads
[139]. The maximum principle of Pontryagin is used to derive the optimality control conditions. In [140] used a
computer model to investigate the frequency of hand, foot, and mouth illness, a viral infectious disease. A time-delayed
foot-and-mouth disease model that takes into account pertinent biological and ecological aspects, the effects of
immunization, and disease carriers was given by [141].

4 Contribution of Fractional to Overcome the Impact of Disease

4.1 Ebola Model in Fractional Order with Caputo Derivative

Let’s examine some of the main components of Ramos et al. [142]’s compartmental mathematical epidemic model and
fractional order system is 




CD
υ1,υ2
0,t S(t) = Λ − (βII +βHH +βDD)S− (τ + µ)S,

CD
υ1,υ2
0,t E(t) = S (βII +βHH +βDD)− (µ + τ + δ )E,

C
D

υ1,υ2
0,t I(t) = δE − (µ + γ)I,

CD
υ1,υ2
0,t H(t) = γI − (µ +λ +α)H,

CD
υ1,υ2
0,t R(t) = αH − (µ + τ)R,

CD
υ1,υ2
0,t D(t) = λ H −θD.

(30)

with

S(0) = S0 ≥ 0,H(0) = H0 ≥ 0,E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0,D(0) = D0 ≥ 0. (31)

There has been a mathematical investigation of the non-linear epidemiological model of Ebola virus sickness and therapy.
To assess the effects of the fractional derivative on the treatment sections and ascertain the benefits of the parameters used
in this Ebola dynamics model, several simulation tests depending on parameter values are carried out. By using fractal
fractional derivative, the model produces numerical representations for a range of fractional values in accordance with the
steady state point. Numerous numerical techniques can be used to analyze the end time value of a certain parameter in
order to examine how different parameters affect the dynamics of the fractional order model.

Figures (1)-(6) illustrate graphs of approximations of solutions versus various fractional orders. As shown in Figures
(1)-(6), as fractional values decrease, S(t) and R(t) increase, while E(t),I(t), H(t), and D(t) decrease. The behaviour in
all graphs changes when the fractional values are reduced, indicating that the roots will function more effectively if the
fractional values are lower than the classical derivative. These simulations demonstrate how changes in value affect the
model’s behaviour. The simulation also shows how the health of Ebola patients may change over time. The significance
of the research for forming judgements and setting boundaries thus grows. Different numerical techniques and the time
fractional parameters are used to identify the mechanical characteristics of the fractional order model. The dynamics of the
model have changed, according to simulations. With the aid of fractional values and discoveries from multiple dimensions,
the findings of the nonlinear system memory were also identified. Without imposing any more requirements, it provides a
better technique for how you want to manage the sickness. The numerical results show how the dynamics in the different
fractional orders behave [143].
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Fig. 1: S(t) with Caputo fractional derivative
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Fig. 2: E(t) with Caputo fractional derivative
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Fig. 3: I(t) with Caputo fractional derivative
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Fig. 4: H(t) with Caputo fractional derivative
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Fig. 5: R(t) with Caputo fractional derivative
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Fig. 6: D(t) with Caputo fractional derivative

4.2 Omicron Variant with Caputo-Fabrizio Derivative

It is crucial to assess several approaches for COVID-19 infectious dynamics in the face of numerous intervention plans.
A variety of analysts have created novel epidemic models for COVID-19 in a homogeneous host population utilizing a
range of intervention tactics, as noted in [144], given the critical importance of intervention approaches.

CF
D

ϖ
0,tS = ℓ0 − ℓ1S−

ℓ2S(I+ ℓ3Ia)

N
− ℓ4SM,

CF
D

ϖ
0,tE =

ℓ2S(I+ ℓ3Ia)

N
+ ℓ4SM− (1− ℓ5)ℓ6E− ℓ5ℓ7E− ℓ1E,

CF
D

ϖ
0,tI = (1− ℓ5)ℓ6E− (ℓ8 + ℓ1)I,

CF
D

ϖ
0,tIa = ℓ5ℓ7E− (ℓ9 + ℓ1)Ia,

CF
D

ϖ
0,tR = ℓ8I(t)+ ℓ9Ia− ℓ1R, (32)

CF
D

ϖ
0,tM = ℓ10I + ℓ11Ia− ℓ1M.

The associated variables S, E, I, Ia, R, M can be illustrated as susceptible, exposed, infected, asymptotically infected,
recovered and reservoir persons. In case of parameters, ℓ0, ℓ1 represent birth and mortality rates,ℓ2, ℓ3, ℓ4 describe the
transmission coefficient, multiple, and disease transmission. ℓ5 is an infection of asymptotic, parameter ℓ6 show
incubation, while ℓ7 is infected transmission. Moreover, we illustrate the rate of recovery as ℓ8, asymptotic persons as ℓ9,
while asymptotic and reservoir transmission pathogens are ℓ10, ℓ11 respectively. For the better representation of (32), we
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simplify it by adding some constants.

CF
D

ϖ
0,tS = ℓ0 − ℓ1S− ℓ13S(I+ ℓ3Ia)− ℓ4SM,

CF
D

ϖ
0,tE = ℓ1S− ℓ13S(I+ ℓ3Ia)+ ℓ4SM+ ℓ14E− ℓ15E− ℓ1E,

CF
D

ϖ
0,tI = ℓ14E− ℓ16I,

CF
D

ϖ
0,tIa = ℓ15E− ℓ17Ia, (33)

CF
D

ϖ
0,tR = ℓ8I+ ℓ9Ia− ℓ1R,

CF
D

ϖ
0,tM = ℓ10I+ ℓ11Ia− ℓ1M,

with initial condition

S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Ia(0)≥ 0, R(0)≥ 0, M(0)≥ 0.

where ℓ13 = ℓ2
N
, ℓ14 = (1− ℓ5)ℓ6, ℓ15 = ℓ5ℓ7, ℓ16 = ℓ8 + ℓ1 and ℓ17 = ℓ9 + ℓ1. The numerical simulations describe the

influences of ℓ = 0.85, 0.9, 0.95, 1.0 are shown in figure (7) which memory effect of fractional [145].
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Fig. 7: Simulation of Compartments of Model with Caputo fractional derivative

4.3 Fractional-Order Bovine Babesiosis Disease with ABC

classical model is modified in [146], we have subsequent fractional order model in time t

DβU = (µB +α)(1−U −V)−βBUZ,

DβV = βBUZ −λBV, (34)

Dβ Z = βT (1−Z)V − µT pZ,

with initial constraints U(0) = 0.4,V (0) = 0.5,Z(0) = 0.6
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The analytical solution of the fractional differential equation was given as a nonlinear system utilizing the Caputo
and ABC derivative. With starting values of U(0) = 0.4, V (0) = 0.5, and Z(0) = 0.6, we represent U(t), V (t), and Z(t)
in this model. Figure (8) illustrates the numerical outcomes of U(t), V (t), and Z(t) for various fractional estimations
of β obtained by utilizing Caputo and ABC fractional derivative. Numerical simulations of an updated epidemic model
with arbitrary order have been used to show the correlation between fractional order and relaxation time. This discovery
provides important details about the use of fractional order modelling to the dynamics of the babesiosis disease and tick
population. [147].
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Fig. 8: Simulation of Compartments of Model with ABC fractional derivative

4.4 Measles Epidemic Model with Hybrid Operator (Constant Proportional with Caputo, Caputo

Fabrizio, ABC)

Here, we give the measles transmission dynamics model citation 171 in terms of a time-fractional order variant. The model
is divided into six sections: The letters S stand for susceptible individuals, V for persons who have received vaccinations,
E for the exposed area, I for infected individuals, T for those who have received treatment, and R for those who have
recovered from infection. The above description can be expressed as a set of differential equations of time-fractional order,
as shown below: 




CPC
0 D

η
t S(t) = (1− ε)ρ +(1− γ2)αV− (γ1 +ω)S− β νI

N
SI− β νT

N
ST,

CPC
0 D

η
t V(t) = ερ −

(
ω +(1− γ2)α

)
V+ γ1S,

CPC
0 D

η
t E(t) = β νI

N
SI+ β νT

N
ST− (γ3 +ω + µ)E,

CPC
0 D

η
t I(t) = µE− (γ4 +ω + δI)I,

CPC
0 D

η
t T(t) = γ4I− (ω + δT)T,

CPC
0 D

η
t R(t) = γ3E+ δII+ δTT−ωR.

(35)

with non-negative initial constraints,

S(0) = S0,V(0) = V0,E(0) = E0,I(0) = I0,T(0) = T0,R(0) = R0 (36)

where, A composite measurement called β ≥ 0 assesses both the rate of contact and the possibility of transmission. νI and
νT, respectively, measure the reduction in transmissibility of infected and treated individuals who do not finish therapy
compared to infectious individuals. ε is the percentage of newcomers to the community who are immunised or have
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parental immunity, α is the rate at which a vaccine loses its efficacy after a single dose, ω is the natural fatality rate, µ is
the rate at which unprotected people become infected, γ1 and γ2 displays the proportion of vaccine recipients who receive
the second dose of the vaccine, γ3 represents the measles therapy rate, and γ4 represents the treatment rate for infected
individuals. The natural restorable rate for infected people is δI, whereas the recovery rate for people who have received
treatment is δT. All of the metrics should be positive and backed by biological factors.

The simulation of the taken into consideration version is depicted inside the figures in this phase by using parameter’s
values from [148] are are ε = 0.250, ρ = 0.950, α = 0.1, γ1 = 0.15, γ2 = 0.1, γ3 = 0.08, γ4 = 0.05, ω = 0.0069, µ =
0.678,0.885, δI = 0.04762, δT = 0.136, β = 0.03739,0.575, νI = 0.913, and νT = 0.978. Those simulations demonstrate
how variations in value have an effect at the model’s behavior. We have employed initial points as S0 = 45, V0 = 15,
E0 = 10, I0 = 20, T0 = 5 and R0 = 5 such that the total population under examination is N = 100. The series result with
CPC operator according to distinct values of η is simulated in Figures (9)-(10) for both the R0 < 1 and Rstar > 1, while the
series result with CPABC operator according to distinct values of η is simulated in Figures (11)-(12) for both the R0 < 1
and R⋆ > 1, and the series result with CPCF operator according to distinct values of η is simulated in Figures (13)-(14)
for both the R0 < 1 and R⋆ > 1, using MATLAB. The simulations of measles epidemic model for R0 < 1 with CPC and
CPABC operators demonstrated in Figure (9) and (11) respectively, for distinct values of fractional order η show all the
compartments converging to their disease free equilibrium. While Figures (10) and (12) describe the endemic case R⋆ > 1.
We have used different values of fractional order η = 0.95, η = 0.90, η = 0.85 and η = 0.80. Fractional order derivations,
which might be the most outstanding and dependable compared to classical order, had been shown to be greater efficient
in explaining bodily approaches. In contrast, those operators are extra worthwhile than current non-integer order fashions.
To track the end time value of the given parameter and look at how various factors have an effect on the dynamics of the
fractional order version, an expansion of numerical strategies may be used. The supplied numerical results represent the
conduct of the dynamics that may be observed within the one-of-a-kind fractal orders.
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Fig. 9: Simulation of transmission dynamics of Measles epidemic for R0 < 1 with CPC
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Fig. 10: Simulation of transmission dynamics of Measles epidemic for R0 > 1 with CPC
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Fig. 11: Simulation of transmission dynamics of Measles epidemic for R0 < 1 with CPABC
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Fig. 12: Simulation of transmission dynamics of Measles epidemic for R0 > 1 with CPABC
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Fig. 13: Simulation of transmission dynamics of Measles epidemic for R0 < 1 with CPCF
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Fig. 14: Simulation of transmission dynamics of Measles epidemic for R0 > 1 with CPCF

5 Fractional Order Application on Epidemic Model

New fractional operators, the infectious disease model has been studied in this paper. The mechanical features of the
fractional order model are discovered using various numerical methods and time-dependent fractional parameters.
Presence and originality have been proven. The model’s local and global stability analysis has been found. Numerical
simulations are performed for the proposed method in the spectrum of fractional order to demonstrate the consequences
of fractional and fractal orders as a way to support the theoretical findings. We used an exceptionally effective numerical
strategy to get the model and simulation’ answers. Also, we present conditions of existence for a solution to the purposed
epidemic model and to calculate the reproduction number in certain state conditions of the analyzed dynamic system.
Infectious disease fractional order model is offered for analysis with simulations in order to determine the possible
efficacy of disease transmission in the Community. For this reason, we employed the proposed fractal fractional
derivative model in the example of Wuhan, China, with the given beginning conditions. In conclusion, again the
mathematical models with fractional operators can facilitate the improvement of the decisions making for the measures
in management of an epidemic situation. Here are the fractional differential equations that are used in the compartmental
mathematical epidemic model proposed by Parsamanesh et al. [149] to clarify how viruses spread:





CF
0 Dα

t S(t) = (1− q)Λ − β SI
N

− (µ + p)S+ γI+ εV,
CF
0 Dα

t I(t) = β SI
N

− (µ + γ +α)I,
CF
0 Dα

t V (t) = qΛ + pS− (µ + ε)V.

(37)

where the initial conditions are

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0,V (0) =V 0 ≥ 0. (38)

Where S(t) stand for the susceptible group of population over time t, I(t) stand for the infected group of population
over time t and V (t) stand for the vaccinated group of population over time t. The parameters of the proposed model are
define in table 1.
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Table 1: Parameters details of Model

Parameters Definitions

µ Natural Mortality Rate

β Contact Rate

γ Treatment Rate

ε Losing Immunity Rate

q Vaccination Rate in Newcomers individuals

p Vaccination Rate in Susceptible individuals

Λ population per unit of time, which could include new immigrants or babies

α The hypothetical scenario also includes a rate of death due to diseases.

N Total Population

The total population is
N(t) = S(t)+ I(t)+V(t). (39)

5.1 Positiveness and Boundedness of Solutions

Lemma 1. Let initial conditions be {
S0, I0,V 0

}
⊂Ψ . (40)

Then if the solutions {S, I,V} exist, they are all positive for all t > 0

Proof. For proof, consider I.

CF
0 Dα

t I(t) =
β SI

N
− (µ + γ +α)I, (41)

So,
S ≥ 0.

Therefore
CF
0 Dα

t I(t) =−{(µ + γ +α)} I, (42)

which in turn leads to
I(t)≥ I(0)e−{(µ+γ+α)}t . (43)

This shows that I(t) is positive for ∀t ≥ 0. On the other hand, we have that

I(t)≥ 0. (44)

In case of V (t)
CF
0 Dα

t V (t) = qΛ + pS− (µ + ε)V, (45)

We get
S ≥ 0.

V (t)≥−(µ + ε)V.

This leads to
V (t)≥V (0)e−(µ+ε)t ,

which shows that V (t) is positive for ∀t ≥ 0. On the other hand

CF
0 Dα

t V (t)≤ qΛ + pS. (46)

Having the norms, i.e
‖Ξ‖∞ = max

t∈D f

|Ξ(t)|. (47)

It is essential to note that due to the system’s biological soundness.

‖S‖∞, ‖I‖∞, ‖V‖∞, < ∞ ∀t ≥ 0. (48)

CF
0 Dα

t V (t)≤ qΛ + p‖S‖∞. (49)
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Theorem 1. Assuming that a function Φ(t) is continuous and bounded for t ∈ [0,∞[, then for 0 < α ≤ 1.

lim
t→∞

1

tα+1Γ (α)

∫ t

0
Φ(ϑ)(t −ϑ)α−1dϑ = 0. (50)

Proof. For proof, since Φ(t) is continuous and bounded, then for all t ∈ [0,∞[ there exists K < ∞ such that ‖Φ‖∞ =
supt∈Dt

|Φ(t)|< K.

lim
t→∞

1

tα+1Γ (α)

∫ t

0
Φ(ϑ)(t −ϑ)α−1dϑ ≤ lim

t→∞

1

tα+1Γ (α)

∫ t

0
|Φ(ϑ)|(t −ϑ)α−1dϑ , (51)

≤ lim
t→∞

1

tα+1Γ (α)

∫ t

0
sup

η∈(0,ϑ )

|Φ(η)|(t −ϑ)α−1dϑ ,

≤ lim
t→∞

‖Φ‖∞

tα+1Γ (α)

∫ t

0
(t −ϑ)α−1dϑ ,

≤ lim
t→∞

K

tΓ (α + 1)
= 0. (52)

We now assume that Φ(t) is bounded, then

‖Φ‖∞ = sup
t∈DΦ

|Φ(t)|< K < ∞. (53)

We define as
C〈Φ(t)〉α ,κ1 =

1

tαΓ (α)

∫ t

0
Φ(ϑ)(t −ϑ)α−1dϑ , (54)

then
C〈Φ(t)〉α ,κ1 ≤

∣∣C〈Φ(t)〉α ,κ1
∣∣ ≤ 1

tαΓ (α)

∫ t

0
|Φ(ϑ)|(t −ϑ)α−1dϑ ,

≤
K

tαΓ (α + 1)
tα ,

≤
K

Γ (α + 1)
,

Now, we consider the class S(t)

S(t)− S(0) =
1

Γ (α)

∫ t

0

(
(1− q)Λ −

β SI

N
− (µ + p)S+ γI+ εV

)

+
σ1

Γ (α)

∫ t

0
S(ϑ)(t −ϑ)α−1dB1ϑ .

(55)

Dividing by tα , so we have

S(t)− S(0)

tα
=

1

tαΓ (α)

∫ t

0

(
(1− q)Λ −

β SI

N
− (µ + p)S+ γI+ εV

)

+
σ1

tαΓ (α)

∫ t

0
S(ϑ)(t −ϑ)α−1dB1ϑ .

=
(1− q)Λ

Γ (α + 1)
−βC〈

SI

N
〉α − (µ + p)C〈S〉α + γC〈I〉α + εC〈V 〉α

+
σ1

tαΓ (α)

∫ t

0
S(ϑ)(t −ϑ)α−1dB1ϑ ,

C〈S〉α =
(1− q)Λ

Γ (α + 1)(µ + p)
+

1

(µ + p)

[
−

S(t)− S(0)

tα
−βC〈

SI

N
〉α + γC〈I〉α + εC〈V 〉α

+
σ1

tαΓ (α)

∫ t

0
S(ϑ)(t −ϑ)α−1dB1ϑ

]
.

(56)
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Then, we have

lim
t→∞

C〈S〉α =
(1− q)Λ

Γ (α + 1)(µ + p)
. (57)

We consider the class I, we have the following

I(t)− I(0) =
1

Γ (α)

∫ t

0

(
β SI

N
− (µ + γ +α)I

)

+
σ2

Γ (α)

∫ t

0
I(ϑ)(t −ϑ)α−1dB2ϑ ,

(58)

and dividing by tα yields

I(t)− I(0)

tα
=

1

tαΓ (α)

∫ t

0

(
β SI

N
− (µ + γ +α)I

)

+
σ2

tαΓ (α)

∫ t

0
I(ϑ)(t −ϑ)α−1dB2ϑ ,

C〈I〉α =
β

(µ + γ +α)

C

〈
SI

N
〉α +

1

(µ + γ +α)

[
−

I(t)− I(0)

tα
+

σ2

tαΓ (α)

∫ t

0
I(ϑ)(t −ϑ)α−1dB2ϑ

]
,

so

lim
t→∞

C〈I〉α = 0. (59)

We consider the class V , we have the following

V (t)−V(0) =
1

Γ (α)

∫ t

0
(qΛ + pS− (µ + ε)V )

+
σ3

Γ (α)

∫ t

0
V (ϑ)(t −ϑ)α−1dB3ϑ ,

(60)

and dividing by tα yields

V (t)−V(0)

tα
=

1

tαΓ (α)

∫ t

0
(qΛ + pS− (µ + ε)V )

+
σ3

tαΓ (α)

∫ t

0
V (ϑ)(t −ϑ)α−1dB3ϑ ,

V (t)−V(0)

tα
=

qΛ

Γ (α + 1)
+ pC〈S〉α − (µ + ε)C〈V 〉α

+
σ3

tαΓ (α)

∫ t

0
V (ϑ)(t −ϑ)α−1dB3ϑ ,

C〈V 〉α =
qΛ

(µ + ε)Γ (α + 1)
+

1

(µ + ε)

[
−

V (t)−V(0)

tα
+ pC〈S〉α +

σ3

tαΓ (α)

∫ t

0
V (ϑ)(t −ϑ)α−1dB3ϑ

]

so

lim
t→∞

C〈V 〉α =
qΛ

(µ + ε)Γ (α + 1)
.

Therefore, we write

lim
t→∞

C〈S〉α =
(1− q)Λ

Γ (α + 1)(µ + p)
. (61)

lim
t→∞

C〈I〉α = 0. (62)

lim
t→∞

C〈V 〉α =
qΛ

(µ + ε)Γ (α + 1)
. (63)
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Theorem 2. Epidemic infectious model (37) solution is distinct and constrained in R3
+ according to initial conditions.

Proof. We control it by 



CF
0 Dα

t S(t)
∣∣∣
S=0

= (1− q)Λ + γI+ εV ≥ 0,

CF
0 Dα

t I(t)
∣∣∣
I=0

≥ 0,

CF
0 Dα

t V (t)
∣∣∣
V=0

= qΛ + pS ≥ 0.

(64)

According to equation (64), the solution cannot escape the hyper plane if {S(0); I(0);V(0)} ∈ R3
+, hence proved.

5.2 Well Posedness of the Model and Biological Feasibility

In this section we show that model is well-posedness and solution in feasible region for all t. We have

CF
0 Dα

t N(t) = Λ − µN−αI. (65)

So in the absence of disease, then
CF
0 Dα

t N(t) = Λ − µN. (66)

We want that the function N(t) is a positively increasing function dN
dt

> 0

CF
0 Dα

t N(t)≥ N(t)<
Λ

µ
. (67)

It has

Ω =

{
(S, I,V ) ∈ R3

+ : S+ I+V = N(t)<
Λ

µ

}
. (68)

Here, R3
+ is the positive cone of R3

+, which also includes its faces in the lower dimensions.

5.3 Analysis of Equilibrium Points and Sensitivity Analysis

By using the system (37), the system has two solutions, when I = 0, the disease free equilibrium points E0 is

E0 = (S0, I0,V 0), where S⋆ = Λ(µ(1−q)+ε)
µ(µ+ε+p)

, I⋆ = 0,V ⋆ = Λ(µq+p)
µ(µ+ε+p)

.

When I > 0, the endemic equilibrium points E⋆ = (S⋆, I⋆,V ⋆), where

S⋆ = Λ(µ+γ+α)
β µ

{
1− α(R0−1)

µR̂0+α(R̂0−1)

}
, I⋆ = Λ(R0−1)

µR̂0+α(R̂0−1)
,

and

V ⋆ = qΛ
µ+ε

{
1− p(µ+αq+ε)

q(µ+p+ε){µR̂0+α(R̂0−1)}

}
.

The reproductive number R0 details given in [150], we have

R0 =
β (µ(1− q)+ ε)

(µ + γ +α)(µ + ε + p)
. (69)

The responsiveness of R0 may be investigated by taking into account the partial derivatives of reproductive number for
the pertinent parameters.

∂R0

∂β
=

(µ(1− q)+ ε)

(µ + γ +α)(µ + ε + p)
> 0,

∂R0

∂ µ
=

(µ + γ +α)(µ + ε + p)β (1− q)−β (µ(1−q)+ ε){2µ+ p+ ε +α + γ}

(µ + γ +α)2(µ + ε + p)2
< 0,

∂R0

∂q
=

−β µ

(µ + γ +α)(µ + ε + p)
< 0,

∂R0

∂ε
=

(µ + ε + p)β −β (µ(1− q)+ ε)

(µ + γ +α)(µ + ε + p)2
> 0,
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∂R0

∂γ
=−

β (µ(1− q)+ ε)

(µ + γ +α)2(µ + ε + p)
< 0,

∂R0

∂α
=−

β (µ(1− q)+ ε)

(µ + γ +α)2(µ + ε + p)
< 0,

∂R0

∂ p
=−

β (µ(1− q)+ ε)

(µ + γ +α)(µ + ε + p)2
< 0,

Clearly, R0 is quite sensitive to changes in the parameter. β and ε are expanding whereas µ ,q,γ,α and p are decreasing
in this study paper.

5.4 Uniqueness and Existence of the System

In this section, we have

Theorem 3. Assume the existence of positive constants, λi, λ i such that

i. |Hi(xi, t)−Hi(x
′

i, t)| ≤ λi|xi − x
′

i| ∀i ∈ {1,2,3} (70)

ii. |Hi(xi, t)|
2 ≤ λi(1+ |xi|) ∀(x, t) ∈ R3 × [0,T ] (71)

Proof. We now recall our model





CF
0 Dα

t S(t) = (1− q)Λ − β SI
N

− (µ + p)S+ γI+ εV = H1(t,S, I,V ),
CF
0 Dα

t I(t) = β SI
N

− (µ + γ +α)I = H2(t,S, I,V ),
CF
0 Dα

t V (t) = qΛ + pS− (µ + ε)V = H3(t,S, I,V ).

(72)

We start with the function H1(t,S, I,V ). Then, we will show that

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 ≤ λ1

∣∣S1 − S2
∣∣2 . (73)

Then, we write
∣∣H1(S

1, t)−H1(S
2, t)

∣∣2 =
∣∣∣∣−

β I(S1 − S2)

N
− (µ + p)(S1 − S2)

∣∣∣∣
2

, (74)

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 =

∣∣∣∣−
{

β I

N
+ µ + p

}
(S1 − S2)

∣∣∣∣
2

,

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 =

∣∣∣∣
{

β I

N
+ µ + p

}
(S1 − S2)

∣∣∣∣
2

,

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 ≤

{
2

β 2|I|2

N2
+ 2(µ + p)2

}∣∣(S1 − S2)
∣∣2 ,

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 ≤

{
2

β 2 sup0≤t≤T |I|
2

N2
+ 2(µ + p)2

}
∣∣(S1 − S2)

∣∣2 ,

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 ≤

{
2

β 2|I|2∞
N2

+ 2(µ + p)2

}∣∣(S1 − S2)
∣∣2 ,

∣∣H1(S
1, t)−H1(S

2, t)
∣∣2 ≤ λ1

∣∣(S1 − S2)
∣∣2 ,

where

λ1 =

{
2

β 2|I|2∞
N2

+ 2(µ + p)2

}
.

∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 =

∣∣∣∣−
β S(I1 − I2)

N
− (µ + γ +α)(I1 − I2)

∣∣∣∣
2

, (75)
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∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 =

∣∣∣∣−
{

β S

N
+(µ + γ +α)

}
(I1 − I2)

∣∣∣∣
2

,

∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 =

∣∣∣∣
{

β S

N
+(µ + γ +α)

}
(I1 − I2)

∣∣∣∣
2

,

∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 ≤

{
2β 2|S|2

N2
+ 2(µ + γ +α)2

}∣∣(I1 − I2)
∣∣2 ,

∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 ≤

{
2β 2 sup0≤t≤T |S|

2

N2
+ 2(µ + γ +α)2

}
∣∣(I1 − I2)

∣∣2 ,

∣∣H2(I
1, t)−H2(I

2, t)
∣∣2 ≤

{
2β 2|S|2∞

N2
+ 2(µ + γ +α)2

}∣∣(I1 − I2)
∣∣2 ,

where

λ2 =

{
2β 2|S|2∞

N2
+ 2(µ + γ +α)2

}
.

∣∣H3(V
1, t)−H3(V

2, t)
∣∣2 =

∣∣−(µ + ε)(V 1 −V 2)
∣∣2 , (76)

∣∣H3(V
1, t)−H3(V

2, t)
∣∣2 =

∣∣(µ + ε)(V 1 −V 2)
∣∣2 ,

∣∣H3(V
1, t)−H3(V

2, t)
∣∣2 ≤ (µ + ε)2

∣∣(V 1 −V 2)
∣∣2 ,

∣∣H3(V
1, t)−H3(V

2, t)
∣∣2 ≤ λ3

∣∣(V 1 −V 2)
∣∣2 ,

where
λ3 =

{
(µ + ε)2

}
.

We verified each function’s initial condition twice. The second criterion of our model has now been verified.

|H1(S, t)|
2 =

∣∣∣∣(1− q)Λ −
β SI

N
− (µ + p)S+ γI+ εV

∣∣∣∣
2

, (77)

|H1(S, t)|
2 =

∣∣∣∣(1− q)Λ + γI+ εV −

{
β I

N
+(µ + p)

}
S

∣∣∣∣
2

,

|H1(S, t)|
2 ≤ 5

{
(1− q)2Λ 2 + γ2|I|+ ε2|V |+

{
β |I|

N
+(µ + p)

}2

|S|2

}
,

|H1(S, t)|
2 ≤ 5

{
(1− q)2Λ 2 + γ2 sup

0≤t≤T

|I|+ ε2 sup
0≤t≤T

|V |+

{
β sup0≤t≤T |I|

N
+(µ + p)

}2

|S|2

}
,

|H1(S, t)|
2 ≤ 5

{
(1− q)2Λ 2 + γ2|I|∞ + ε2|V |∞ +

{
β |I|∞

N
+(µ + p)

}2

|S|2

}
,

|H1(S, t)|
2 ≤ 5

{
(1− q)2Λ 2 + γ2|I|∞ + ε2|V |∞

}




1+

{
β |I|∞

N
+(µ + p)

}2

|S|2

5{(1− q)2Λ 2 + γ2|I|∞ + ε2|V |∞}




,

|H1(S1, t)|
2 ≤ λ 1

(
1+ |S|2

)
,

under the condition

[ {
β |I|∞

N +(µ+p)
}2

|S|2

5{(1−q)2Λ2+γ2|I|∞+ε2|V |∞}

]
< 1.

|H2(I, t)|
2 =

∣∣∣∣
β SI

N
− (µ + γ +α)I

∣∣∣∣
2

, (78)
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|H2(I, t)|
2 =

∣∣∣∣
{

β S

N
− (µ + γ +α)

}
I

∣∣∣∣
2

,

|H2(I, t)|
2 ≤ 2

{
β 2|S|2

N2
+ 2(µ + γ +α)2

}
|I|2 ,

|H2(I, t)|
2 ≤ 2

{
β 2 sup0≤t≤T |S|2

N2
+ 2(µ + γ +α)2

}
|I|2 ,

|H2(I, t)|
2 ≤ 2

{
β 2|S|2∞

N2
+ 2(µ + γ +α)2

}
|I|2 ,

|H2(I, t)|
2 ≤ 2

{
β 2|S|2∞

N2
+ 2(µ + γ +α)2

}{
1+ |I|2

}
,

|H2(I, t)|
2 ≤ λ 2

(
1+ |I|2

)
.

|H3(V, t)|
2 = |qΛ + pS− (µ + ε)V |2 , (79)

|H3(V, t)|
2 ≤ 3q2Λ 2 + 3p2|S|2 + 3(µ + ε)2 |V |2 ,

|H3(V, t)|
2 ≤ 3q2Λ 2 + 3p2 sup

0≤t≤T

|S|2 + 3(µ + ε)2 |V |2 ,

|H3(V, t)|
2 ≤ 3q2Λ 2 + 3p2|S|2∞+ 3(µ + ε)2 |V |2 ,

|H3(V, t)|
2 ≤ 3

{
q2Λ 2 + 3p2|S|2∞

}
{

1+
(µ + ε)2 |V |2

{q2Λ 2 + 3p2|S|2∞}

}
,

|H3(V, t)|
2 ≤ λ 3

(
1+ |V |2

)
,

under the condition

{
(µ+ε)2|V |2

{q2Λ2+3p2|S|2∞}

}
< 1.

The solution to the system we have ultimately arises and is unique in light of the conditions at hand.

Max





[ {
β |I|∞

N +(µ+p)
}2

|S|2

5{(1−q)2Λ2+γ2|I|∞+ε2|V |∞}

]
,

{
(µ+ε)2|V |2

{q2Λ2+3p2|S|2∞}

}
.

< 1 (80)

5.5 Local Asymptotical Stability

Letting F = β SI
N

, the Jacobian matrix of the model (37) at E⋆ has the following form

J⋆ =




b1 − (µ + γ +α) b2 b3

−b1 + γ −b2 − (µ + p) −b3 + ε
0 p −(µ + ε)


 (81)

in which

b1 =
∂F

∂ I

∣∣∣
E⋆

=
β S⋆(N⋆− I⋆)

N⋆2
, (82)

b2 =
∂F

∂S

∣∣∣
E⋆

=
β S⋆(N⋆− I⋆)

N⋆2
, (83)

b3 =
∂F

∂V

∣∣∣
E⋆

=−
β S⋆I⋆

N⋆2
. (84)

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 4, 507-544 (2023) / www.naturalspublishing.com/Journals.asp 531

The characteristic equation of matrix J⋆ is

ϒ (λ ) = b3 + b2λ + b1λ 2 +λ 3, (85)

where

a1 =−trs(J⋆),

a1 =−b1 + b2 +(µ + γ +α)+ (2µ + p+ ε). (86)

a2 =−
1

2
(trs(J⋆2)− trs2J⋆),

a2 =−b1 + b2 +(µ + γ +α)+ (2µ + p+ ε),

=−b1(2µ + p+ ε)+ b2(2µ + p+ ε)+ b3p+ µ(µ + p+ ε)+ (µ+ γ +α). (87)

a3 =−(detJ⋆),

a3 =−b1µ(µ + p+ ε)+ b2(µ +α)(µ + ε)+ b3p(µ +α)+ µ(µ + γ +α)(µ + p+ ε). (88)

We have

b1 = (µ + γ +α)

{
1−

µ(R0 − 1)

µR̂0 +α(R̂0 −R0)

}
. (89)

b2 = µ(β − (µ + γ +α))

{
(R0 − 1)

µR̂0 +α(R̂0 −R0)

}
. (90)

b3 =−µ(µ + γ +α)

{
(R0 − 1)

µR̂0 +α(R̂0 −R0)

}
. (91)

Obviously b3 < 0 and b1 = (µ + γ +α)
{

(µ+α)(R̂0−R0)+µ

µR̂0+α(R̂0−R0)

}
> 0.

Moreover, notice that the equilibrium E⋆ exists if R0 > 1 and this implies

β > β

{
µ(1− q)+ ε

µ + p+ ε

}
> (µ + γ +α), (92)

and thus, b2 > 0.
Using equation (92), we obtain Now

−b1 + b2 =−(µ + γ +α)+ µβ

{
R0 − 1

µR̂0 +α(R̂0 −R0)

}
, (93)

thus

a1 = µβ

{
R0 − 1

µR̂0 +α(R̂0 −R0)

}
+(2µ + p+ ε)> 0. (94)

We can see that

−b1(2µ + p+ ε)+ b3p+(µ + γ +α)(2µ + p+ ε) = (µ + γ +α)(2µ + ε)

{
R0 − 1

µR̂0 +α(R̂0 −R0)

}
, (95)

and therefore,

a2 = (µ + γ +α)(2µ + ε)

{
R0 − 1

µR̂0 +α(R̂0 −R0)

}
+ b2(2µ +α + ε)+ µ(µ + p+ ε)> 0. (96)
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Now we have

a3 = µ(µ + p+ ε)(µ + γ +α)

{
µ(R0 − 1)

µR̂0 +α(R̂0 −R0)

}
+(β (µ + ε)

− (µ + p+ ε)(µ + γ +α))µ(µ +α)

{
R0 − 1

µR̂0 +α(R̂0 −R0)

}

+ µ(µ + p+ ε)(µ + γ +α).

(97)

Besides, R̂0 > R0 and R0 > 1 implies β (µ + ε)> (µ + p+ ε)(µ + γ +α).
Therefore,

a3 > µ(µ + p+ ε)(µ + γ +α)

{
1+

µ(R0 − 1)

µR̂0 +α(R̂0 −R0)

}
> 0. (98)

Now we have

a1a2 − a3 = (µ + ε)(a2 − b2(µ +α))+ (µ + γ +α)(a2 − µ(µ + p+ ε))+ (−b1+ b2 + µ + p)a2

+ b1µ(µ + p+ ε)− b3p(µ +α),
(99)

= (µ + ε)(a2 − b2(µ +α))+ ((µ + γ +α)− b1)(a2 − µ(µ + p+ ε))+ (b2+ µ + p)a2 − b3µ(µ +α).

We see that b1 = (µ + γ +α)
{

1− µ(R0−1)

µR̂0+α(R̂0−R0)

}
< (µ + γ +α),and as a result

a1a2 − a3 > (µ + ε)(a2 − b2(µ +α))+ (b2+ µ + p)a2 − b3 p(µ +α)> 0. (100)

In preceding relations, we got a1 > 0,a2 > 0,a3 > 0 and a1a2−a3 > 0. Its satisfied Routh Hurwitz criterion, hence proved.

5.6 Global Stability Analysis of the Proposed Model

We first investigate the stability characteristics of the infectious epidemic model.

5.7 Lyapunov for Endemic Case of the Infectious Model

All independent variables in the model were established using the endemic Lyapunov function in our case, the harmful
equilibrium is {S, I,V},L < 0,E⋆.

5.7.1 First Derivative of Lyapunov

Theorem 4.The Lyapunov function, {S, I,V}, L < 0 are endemic functions. The endemic equilibrium is E∗. The suggested
model’s endemic equilibrium points E⋆ are globally asymptotically stable when the reproductive number R0 > 1.

Proof.The Lyapunov function is used to establish the theorem in the following way

L(S⋆, I⋆,V ⋆) =

(
S− S⋆− S⋆ log

S⋆

S

)
+

(
I − I⋆− I⋆ log

I⋆

I

)
+

(
V −V ⋆−V ⋆ log

V ⋆

V

)
. (101)

As a result, when we use the derivative with respect to t, we get the following.

CF
0 Dα

t L≤

(
S− S⋆

S

)
Ṡ+

(
I− I⋆

I

)
İ +

(
V −V ⋆

V

)
V̇ . (102)
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The following is how their derivative values may now be written

CF
0 Dα

t L≤

(
S− S⋆

S

)(
(1− q)Λ −

β SI

N
− (µ + p)S+ γI+ εV

)

+

(
I− I⋆

I

)(β SI

N
− (µ + γ +α)I

)

+

(
V −V ⋆

V

)(
qΛ + pS− (µ + ε)V

)
.

(103)

substituting values S = S− S⋆, I = I − I⋆ and V =V −V ⋆ leads to

CF
0 Dα

t L≤

(
S− S⋆

S

)(
(1− q)Λ −

β (S− S⋆)(I − I⋆)

N
− (µ + p)(S− S⋆)+ γ(I− I⋆)+ ε(V −V ⋆)

)

+

(
I− I⋆

I

)(β (S− S⋆)(I − I⋆)

N
− (µ + γ +α)(I− I⋆)

)

+

(
V −V ⋆

V

)(
qΛ + p(S− S⋆)− (µ + ε)(V −V ⋆)

)
.

(104)

The above can be organized as follows

CF
0 Dα

t L≤ Λ −
ΛS⋆

S
− qΛ +

qΛS⋆

S
−

β I(S− S⋆)2

SN
+

β I⋆(S− S⋆)2

SN
−

(µ + p)(S− S⋆)2

S
+ γI− γI⋆

−
γIS⋆

S
+

γI⋆S⋆

S
+ εV − εV ⋆−

εVS⋆

S
+

εV ⋆S⋆

S
+

β S(I− I⋆)2

NI
−

β S⋆(I − I⋆)2

NI

−
(µ + γ +α)(I− I⋆)2

I
+ qΛ + pS− pS⋆−

qΛV ⋆

V
−

pSV ⋆

V
+

pS⋆V ⋆

V
−

(µ + ε)(V −V ⋆)2

V
.

(105)

For clarity, we may rewrite the above equivalency as follows

CF
0 Dα

t L≤Θ −Θ ⋆, (106)

where

Θ = Λ +
qΛS⋆

S
+

β I⋆(S− S⋆)2

SN
+ γI+

γI⋆S⋆

S
+ εV +

εV ⋆S⋆

S
+

β S(I− I⋆)2

NI
+ qΛ + pS+

pS⋆V ⋆

V
, (107)

and

Θ ⋆ =
ΛS⋆

S
+ qΛ +

β I(S− S⋆)2

SN
+

(µ + p)(S− S⋆)2

S
+ γI⋆+

γIS⋆

S
+ εV ⋆+

εV S⋆

S
+

β S⋆(I − I⋆)2

NI

+
(µ + γ +α)(I− I⋆)2

I
+ pS⋆+

qΛV ⋆

V
+

pSV ⋆

V
+

(µ + ε)(V −V ⋆)2

V
.

(108)

It is achieved that if Θ <Θ ⋆, this yields CF
0 Dα

t L< 0, however when S = S⋆, I = I⋆ and V =V ⋆

0 =Θ −Θ ⋆ ⇒ CF
0 Dα

t L= 0. (109)

The recommended model has the largest compact invariant set, as can be shown.

{
(S⋆, I⋆,V ⋆) ∈ Γ ;CF

0 Dα
t L= 0

}
. (110)

The model under examination has an endemic equilibrium called E⋆. The Lasalles invariance principle states that if
Θ <Θ ⋆ is globally asymptotically stable in Γ , then E⋆ is also worldwide asymptotically stable in Γ .
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5.7.2 Second Derivative of Lyapunov

The second derivative, in our opinion, will add more details.

CF
0 Dα

t (
CF
0 Dα

t L) =
CF
0 Dα

t L̇= CF
0 Dα

t

{(
1−

S⋆

S

)
CF
0 Dα

t S+

(
1−

I⋆

I

)
CF
0 Dα

t I+

(
1−

V ⋆

V

)
CF
0 Dα

t V

}
. (111)

=

(
CF
0 Dα

t S

S

)2

S∗+

(
CF
0 Dα

t I

I

)2

I∗+

(
CF
0 Dα

t V

V

)2

V ∗

+

(
1−

S∗

S

)
CF
0 Dα

t Ṡ+

(
1−

I∗

I

)
CF
0 Dα

t İ+

(
1−

V ∗

V

)
CF
0 Dα

t V̇ ,

(112)

Then we have

=

(
CF
0 Dα

t S

S

)2

S∗+

(
CF
0 Dα

t I

I

)2

I∗+

(
CF
0 Dα

t V

V

)2

V ∗

+

(
1−

S∗

S

)(
−

β S[CF
0 Dα

t I]+β [CF
0 Dα

t S]I

N
− (µ + p)[CF

0 Dα
t S]+ γ[CF

0 Dα
t I]+ ε[CF

0 Dα
t V ]

)

+

(
1−

I∗

I

)(
β S[CF

0 Dα
t I]+β [CF

0 Dα
t S]I

N
− (µ + γ +α)[CF

0 Dα
t I]

)

+

(
1−

I∗

V

)(
p[CF

0 Dα
t S]− (µ + ε)[CF

0 Dα
t V ]

)

(113)

=Π̇(S, I,V )+

(
1−

S∗

S

)(
−

β S[CF
0 Dα

t I]+β [CF
0 Dα

t S]I

N
− (µ + p)[CF

0 Dα
t S]+ γ[CF

0 Dα
t I]+ ε[CF

0 Dα
t V ]

)

+

(
1−

I∗

I

)(
β S[CF

0 Dα
t I]+β [CF

0 Dα
t S]I

N
− (µ + γ +α)[CF

0 Dα
t I]

)
+

(
1−

I∗

V

)(
p[CF

0 Dα
t S]− (µ + ε)[CF

0 Dα
t V ]

)
.

(114)

Now replacing Ṡ, İ and V̇ with their respective formula and then putting together positive and negative factors, we have

CF
0 Dα

t L̇=Θ1 −Θ2. (115)

Then we have
I f Θ1 >Θ2 then CF

0 Dα
t L̇> 0,

I f Θ1 <Θ2 then CF
0 Dα

t L̇< 0,

I f Θ1 =Θ2 then CF
0 Dα

t L̇= 0.

(116)

Following that, the second-order sign’s significance is explained.

5.8 Numerical Scheme with Different Kernel

In this section, we used different kernel such as exponential decay, power law and Mittag Leffler kernels with fractal
fractional operator for numerical solution.

First, consider exponential decay kernel for system





FFED
α ,κ1
0,t S(t) = (1− q)Λ − β SI

N
− (µ + p)S+ γI+ εV,

FFED
α ,κ1
0,t I(t) = β SI

N
− (µ + γ +α)I,

FFED
α ,κ1
0,t V (t) = qΛ + pS− (µ + ε)V.

(117)

For simplicity, we write above equation as follows





FFED
α ,κ1
0,t S(t) = G1(t,S, I,V ),

FFED
α ,κ1
0,t I(t) = G2(t,S, I,V),

FFED
α ,κ1
0,t V (t) = G3(t,S, I,V ).

(118)
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Where 



G1(t,S, I,V ) = (1− q)Λ − β SI
N

− (µ + p)S+ γI+ εV,

G2(t,S, I,V ) = β SI
N

− (µ + γ +α)I,
G3(t,S, I,V ) = qΛ + pS− (µ + ε)V.

(119)

The subsequent results are obtained by using a fractal fractional integral with an exponential kernel:

S(tn+1) = S(tn)+
1−α

M (α)

[
t1−κ1
n G1(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G1(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

∫ tn+1

tn

G1(t,S, I,V )ϑ 1−κ1dϑ ,

(120)

I(tn+1) = I(tn)+
1−α

M (α)

[
t1−κ1
n G2(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G2(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

∫ tn+1

tn

G2(t,S, I,V )ϑ 1−κ1dϑ ,

(121)

V (tn+1) =V (tn)+
1−α

M (α)

[
t1−κ1
n G3(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G3(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

∫ tn+1

tn

G3(t,S, I,V )ϑ 1−κ1dϑ .

(122)

For this particular model, we might employ the subsequent technique.

S(tn+1) = Sn +
1−α

M (α)

[
t1−κ1
n G1(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G1(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

[23t
1−κ1
n G1(tn,S(tn), I(tn),V (tn))∆ t

12
−

4t
1−κ1
n−1 G1(tn−1,S(tn−1), I(tn−1),V (tn−1))∆ t

3

+
5t

1−κ1
n−2 G1(tn−2,S(tn−2), I(tn−2),V (tn−2))∆ t

12

]
,

(123)

I(tn+1) = In +
1−α

M (α)

[
t1−κ1
n G2(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G2(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

[23t
1−κ1
n G2(tn,S(tn), I(tn),V (tn))∆ t

12
−

4t
1−κ1
n−1 G2(tn−1,S(tn−1), I(tn−1),V (tn−1))∆ t

3

+
5t

1−κ1
n−2 G2(tn−2,S(tn−2), I(tn−2),V (tn−2))∆ t

12

]
,

(124)

V (tn+1) =Vn +
1−α

M (α)

[
t1−κ1
n G3(tn,S(tn), I(tn),V (tn))− t

1−κ1
n−1 G3(tn−1,S(tn−1), I(tn−1),V (tn−1))

]

+
α

M (α)

[23t
1−κ1
n G3(tn,S(tn), I(tn),V (tn))∆ t

12
−

4t
1−κ1
n−1 G3(tn−1,S(tn−1), I(tn−1),V (tn−1))∆ t

3

+
5t

1−κ1
n−2 G3(tn−2,S(tn−2), I(tn−2),V (tn−2))∆ t

12

]
.

(125)

For Power Law kernel, we can have the following

S(tn+1) =
1

Γ (α)

n

∑
j=2

∫ t j+1

t j

G1(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ , (126)

I(tn+1) =
1

Γ (α)

n

∑
j=2

∫ t j+1

t j

G2(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ , (127)

V (tn+1) =
1

Γ (α)

n

∑
j=2

∫ t j+1

t j

G3(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ . (128)

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


536 KS Nisar et al. : Mathematical epidemiology: a review ...

A subsequent numerical pattern can be obtained.

S(tn+1) =
(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)×W1

+
(∆ t)α

Γ (α + 2)

n

∑
j=2

[
t
1−κ1
j−1 G1(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G1(t j ,S j, I j,V j)− 2t

1−κ1
j−1 G1(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)

]
×W3,

(129)

I(tn+1) =
(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)×W1

+
(∆ t)α

Γ (α + 2)

n

∑
j=2

[
t
1−κ1
j−1 G2(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G2(t j,S j, I j,V j)− 2t

1−κ1
j−1 G2(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)

]
×W3,

(130)

V (tn+1) =
(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)×W1

+
(∆ t)α

Γ (α + 2)

n

∑
j=2

[
t
1−κ1
j−1 G3(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G3(t j,S j, I j,V j)− 2t

1−κ1
j−1 G3(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)

]
×W3.

(131)

Where

W1 = {(n− j+ 1)α − (n− j)α} , (132)

W2 = {(n− j+ 1)α(n− j+ 3+ 2α)− (n− j)α(n− j+ 3+ 3α)}+
(∆ t)α

2Γ (α + 3)
, (133)

W3 =
{
(n− j+ 1)α

{
2(n− j)2 +(5α + 10)(n− j)+ 6α2+ 18α + 12

}

− (n− j)α
{

2(n− j)2 +(3α + 10)(n− j)+ 2α2+ 9α + 12
}}

. (134)

For Mittag- Leffler kernel, we can have the following

S(tn+1) = S0 +
1−α

A B(α)
t1−κ1
n G1(tn,Sn, In,Vn)

+
α

Γ (α)A B(α)

n

∑
j=2

∫ t j+1

t j

G1(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ ,

(135)

I(tn+1) = I0 +
1−α

A B(α)
t1−κ1
n G2(tn,Sn, In,Vn)

+
α

Γ (α)A B(α)

n

∑
j=2

∫ t j+1

t j

G2(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ ,

(136)

V (tn+1) =V0 +
1−α

A B(α)
t1−κ1
n G3(tn,Sn, In,Vn)

+
α

Γ (α)A B(α)

n

∑
j=2

∫ t j+1

t j

G3(ϑ ,S, I,V )ϑ 1−κ1(tn+1 −ϑ)α−1dϑ .

(137)

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 4, 507-544 (2023) / www.naturalspublishing.com/Journals.asp 537

We can get the following numerical scheme

S(tn+1) =
1−α

A B(α)
t1−κ1
n G1(tn,Sn, In,Vn)

+
α(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)×W1

+
α(∆ t)α

Γ (α + 2)A B(α)

n

∑
j=2

[
t
1−κ1
j−1 G1(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G1(t j ,S j, I j,V j)− 2t

1−κ1
j−1 G1(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G1(t j−2,S j−2, I j−2,V j−2)

]
×W3,

(138)

I(tn+1) =
1−α

A B(α)
t1−κ1
n G2(tn,Sn, In,Vn)

+
α(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)×W1

+
α(∆ t)α

Γ (α + 2)A B(α)

n

∑
j=2

[
t
1−κ1
j−1 G2(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G2(t j,S j, I j,V j)− 2t

1−κ1
j−1 G2(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G2(t j−2,S j−2, I j−2,V j−2)

]
×W3,

(139)

V (tn+1) =
1−α

A B(α)
t1−κ1
n G3(tn,Sn, In,Vn)

+
α(∆ t)α

Γ (α + 1)

n

∑
j=2

t
1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)×W1

+
α(∆ t)α

Γ (α + 2)A B(α)

n

∑
j=2

[
t
1−κ1
j−1 G3(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)

]
×W2

n

∑
j=2

[
t
1−κ1
j G3(t j,S j, I j,V j)− 2t

1−κ1
j−1 G3(t j−1,S j−1, I j−1,V j−1)− t

1−κ1
j−2 G3(t j−2,S j−2, I j−2,V j−2)

]
×W3.

(140)

5.9 Numerical Simulations and Discussion

The non-linear epidemiological model of an infectious disease with vaccination has been studied mathematically.
Numerous numerical simulations according to the parameter values are conducted to evaluate the role of the fractional
derivative on the vaccination sections as a way to recognize the sound effects caused by the parameters employed in this
infectious dynamics model. The model provides numerical representations for different fractional values that are
consistent with the steady-state point using the fractal fractional derivative. Numerous numerical techniques can easily
be employed to examine the end-time value of a certain parameter as a way to investigate how various factors affect the
dynamics of the fractional order infectious model. Figures (15) through (17) display graphs of approximations of
solutions against various fractional orders. As shown in figures (15)-(17) according to exponential decay kernel, power
law kernel and Mittag Leffler kernel of the proposed system S(t),I(t) and R(t) rise as fractional values fall. The behaviour
in all figures changes as the fractional values are decreased, indicating that the solution will be more successful if the
fractional values are lower than the classical derivative. These simulations demonstrate how variations in value have an
effect on the model’s behaviour. Additionally, the simulation clearly illustrates how the condition of persons who have
tuberculosis would change over time. As a result, the study becomes even more crucial for making choices and putting
controls in place.
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Fig. 15: Simulation of Compartments of Model with Exponential Decay kernel
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Fig. 16: Simulation of Compartments of Model with Power Law kernel
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Fig. 17: Simulation of Compartments of Model with Mittag Leffler kernel

6 Conclusion

In the past two years, publishers, chief writers, and younger researchers have voiced concerns about the division that has
developed within the field of fractional calculus. The splitting came about as a consequence of the creation of fractional
differential operators with non-singular kernels, which in reality sparked a revolution in this area by providing fresh
opportunities for both theoretical and practical uses of fractional calculus. However, certain scholars believed that
differential operators with non-singular kernels and fractional derivatives with singular kernels would both satisfy the
conditions of the classical derivative in a comparable manner for a variety of reasons. This defies logic since these
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operators do quite different tasks. As a result, a fresh mathematical model was developed to show how fractional calculus
will live on. If real data are used to run the numerical simulations, the behaviour of each class of the model under an
erroneous increase in time may be assessed. This will show that the model is reliable. Mathematics in biology is one of
the fields with the quickest development rates since it helps in the prediction of the emergence and resurgence of
non-infectious diseases. These projections and forecasts can be made using integer and fractional-order modelling,
which includes ordinary or partial differential equations. Fractional derivatives more specifically have shown a memory
effect and hereditary qualities, giving them an additional trustworthy tool for forecasting the underlying dynamics of
real-world systems in a number of fields of science and engineering. By defining derivatives and integrals for any real
order, fractional calculus is a modification of traditional calculus. In systems with high-order movements and
complicated nonlinear processes, fractional operators are more accurate at mimicking some occurrences than ordinary
derivatives and ordinary integrals. There are two basic causes for this. Mathematical fractional techniques and research
of excellent quality have improved our ability to anticipate and manage infectious diseases. Administrators in crisis can
utilize the fractional order of the derivative, which can be employed for simulating not promotional infections at the
microscopic level, to calculate the behaviour of infection. We suggested the Covid-19 model with a modified kernel for
future direction utilizing fractional derivative. We may decide to do additional research on this topic later on as a result of
the new information. For instance, the mathematical model can be changed by considering numerous dynamical patterns
and looking at those structures using numerous derivatives.

This article provided fresh analysis that might be more useful for teaching, for example, about how infectious
diseases propagate. This study investigated the stability of the reproduction number obtained by computing the
reproduction number as the second derivative of the nonlinear component of an infectious class. The second derivative of
the Lyapunov function and the sign of the second derivative of every category were employed in recognizing the waves.
The mathematical model was subsequently solved using a numerical strategy based on Newton’s polynomial
interpolation. The deterministic infectious model’s rate of reproduction and results showed that the fractional derivative
field was long-lived. This is significant not only as a huge number of entrants will continue to enter this industry, but the
reality that only a small part of its current uses are really in use. Consequently, despite the very few articles that have
been published in opposition to them, the use of fractional differential and integral operators with nonsingular kernels
will endure and be prevalent in all fields of science, technology, and engineering to arrive at useful conclusions. The past
few years have seen a rise in the use of fractional derivatives in non-commercial models. The main advantage of
fractional calculus is the possibility to simulate memory effects. In comparison to classical models, fractional models
also provide a higher degree of freedom, making them very advantageous for fitting real data when it is provided.
Additionally, fractional epidemic models that use multiple numerical methods to adapt mathematical models to
real-world information can aid relevant organizations in avoiding or reducing the spread of infectious diseases in society.
These findings are particularly beneficial to medical professionals in terms of planning, putting control methods into
practice, the effects of treatment, and the spread of diseases to prevent infection in society and save lives.
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[131] E. Tlelo-Cuautle, A. M. González-Zapata, J. D. Dı́az-Muñoz, L. G. de la Fraga and I. Cruz-Vega, Optimization of fractional-order

chaotic cellular neural networks by metaheuristics, Eur. Phys. J. Spec. Topic. 231(10), 2037-2043 (2022).

[132] A. Ali, S. Islam, M. R. Khan, S. Rasheed, F. M. Allehiany, J. Baili and H. Ahmad, Dynamics of a fractional order Zika virus

model with mutant, Alexandria Engn. J. 61(6), 4821-4836 (2022).

[133] R. Begum, O. Tunc. , H. Khan, H. Gulzar and A. Khan, A fractional order Zika virus model with Mittag–Leffler kernel, Chaos

Solit. Fract. 146, 110898 (2021).

[134] H. M. Ali and I. G. Ameen, Optimal control strategies of a fractional order model for Zika virus infection involving various

transmissions, Chaos Solit. Fract. 146, 110864 (2021).

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


544 KS Nisar et al. : Mathematical epidemiology: a review ...

[135] R. Rakkiyappan, V. P. Latha and F. A. Rihan, A fractional-order model for Zika virus infection with multiple delays, Complexity

2019, 1-20 (2019).

[136] R. Prasad, K. Kumar and R. Dohare, Caputo fractional order derivative model of Zika virus transmission dynamics, J. Math.

Comput. Sci. 28(2), 145 (2023).

[137] T. B. Gashirai, S. D. Hove-Musekwa and S. Mushayabasa, Optimal control applied to a fractional-order foot-and-mouth disease

model, Int. J. Appl. Comput. Math. 7(3), 73 (2021).

[138] T. B. Gashirai, S. D. Hove-Musekwa and S. Mushayabasa, Dynamical analysis of a fractional-order foot-and-mouth disease

model, Math. Sci. 15(1), 65-82 (2021).

[139] R. Shi and T. Lu, Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth disease, J. Appl. Math.

Comput. 64(1-2), 565-590 (2020).

[140] B. Ghanbari, A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease,

Adv. Differ. Equ. 2020(1), 1-20 (2020).

[141] T. B. Gashirai, S. D. Hove-Musekwa and S. Mushayabasa, Lyapunov Stability Analysis of a Delayed Foot-and-Mouth Disease

Model with Animal Vaccination, Disc. Dyn. Nat. Soc. 2020, 1-13 (2020).

[142] R. Seck, D. Ngom, B. Ivorra and A. M. Ramos, An optimal control model to design strategies for reducing the spread of the

Ebola virus disease, Math. Biosci. Engin. 19(2), 1746-1774 (2022).

[143] A. Hasan, A. Akgül, M. Farman, F. Chaudhry, M. Sultan and M. De la Sen, Epidemiological analysis of symmetry in transmission

of the Ebola virus with power law kernel, Symmetry 15(3), 665 (2023).

[144] A. Muniyappan, B. Sundarappan, P. Manoharan, M. Hamdi, K. Raahemifar, S. Bourouis and V. Varadarajan, Stability and

numerical solutions of second wave mathematical modeling on covid-19 and omicron outbreak strategy of pandemic: Analytical

and error analysis of approximate series solutions by using hpm, Math. 10(3), 343 (2022).

[145] M. Farman, H. Besbes, K. S. Nisar and M. Omri, Analysis and dynamical transmission of Covid-19 model by using Caputo-

Fabrizio derivative, Alexandria Eng. J. 66, 597-606 (2023).

[146] Z. U. A. Zafar, K. Rehan and M. Mushtaq, Retracted article: fractional-order scheme for bovine babesiosis disease and tick

populations, Adv. Differ. Equ. 2017(1), 1-19 (2017).

[147] A. Ahmad, M. Farman, P. A. Naik, N. Zafar, A. Akgul and M. U. Saleem, Modeling and numerical investigation of fractional-

order bovine babesiosis disease, Numer. Meth. Part. Diff. Equ. 37(3), 1946-1964 (2021).

[148] Jaharuddin and T. Bakhtiar, Control policy mix in measles transmission dynamics using vaccination, therapy, and treatment, Int.

J. Math. Math. Sci. 2020, 1-20 (2020).

[149] M. Parsamanesh, M. Erfanian and S. Mehrshad, Stability and bifurcations in a discrete-time epidemic model with vaccination

and vital dynamics, BMC Bioin. 21, 1-15 (2020).

c© 2023 NSP

Natural Sciences Publishing Cor.


	 Introduction
	 Definitions Related to Fractional Calculus
	Contribution of Fractional on Epidemic Model
	Contribution of Fractional to Overcome the Impact of Disease
	Fractional Order Application on Epidemic Model 
	 Conclusion

