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Abstract: In this paper we study and investigate the Lag synchronization (LS) arblipotic complex nonlinear systems by using
passive control theory. LS of these hyperchaotic complex systenpasive control has not received enough attentions, as far as we
know, in the literature. Based on the property of the passive system #is&v@aontroller is stated to achieve LS of two identical
hyperchaotic complex Lorenz systems. These complex systemsrapp@any important fields of physics and engineering. The
analytical results of the controllers, which have been calculated by usingaheme, are tested numerically and good agreement
is obtained.
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1 Introduction synchronization in unidirectional coupled external cavit
semiconductor lasersl$,17,18] have demonstrated the

There are several kinds of synchronization between twd®’€S€Nce of lag time between the drive and response
chaotic or hyperchaotic systems have been identified a@S€'s intensities. The similar experiments for chaotic
complete (or full) synchronization1[2], generalized cireutts [.19]. havg also demonstrated the .complete
synchronization 3], phase synchronizationd] and lag ~ SY"chronization, i.e., the states of two chaotic systems
synchronization (LS) §,6,7,8,9,10,11,12,13,14,15]. remain identical in the course of temporal evolution, is

They represent the difference in the degree of correlatio ractmglly |mpossmle for the presence of the signal
between interacting systems6][ Among these ransmission time and evolution time of response system

synchronizations, complete synchronization is the|tself. Thus, knowledge of the lag synchronization is of

strongest in the degree of correlation and describes thgonsmerable pract|ca] Importance. I.n LS the state of the
interaction of two identical systems, leading to their response system at timds asymptotically synchronous

trajectories remaining identical in the course of temporalv;{'th trhe d):éve system ath t'mxdet . T'd rnamely,
evolution, i.e.xd(t) = X (t), wherexd(t) andx (t) are the thWHX (t) —x(t—1)[| = 0, wherex((t) and X'(t) are
states of the drive and response systems, respectiveljhe states of the drive and response real systems,
Generalized synchronization, as introduced forrespectively. Complete synchronization is special case of
drive-response systems, is defined as the presence ofl&5 whent = 0.
functional relationship between the states of the respons&ecently, some control methods, such as observer-based
and drive systems, ie.xd(t) = f(X'(t)). Phase scheme,20] impulsive control, P1] projective approach,
synchronization is the situation where two coupled[22,23] and adaptive control,24,25] have been applied
hyperchaotic systems keep their phases in step with eactp the lag synchronization for chaotic and hyperchaotic
other while their amplitudes remain uncorrelated. systems.

In the typical synchronization regimes, lag Passivity is part of a broader and general theory of
synchronization has been proposed as the coincidence afissipativity, which can be found in Refs2§,27] and
the states of chaotic systems in which one of the systemsarious others references therein. The main idea of
is delayed by a finite time. Many experimental passivity theory is that the passive properties of system
investigations and computer simulations of chaoscan keep the system internally stable. So, to make the
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system stable, one can design a controller which rendergy = (Y1, Y, ..., )" is a smooth nonlinear vector figld
the closed loop system passive using passivity theoryDot represents derivative with respect to time and an
During the last decade the passivity theory has played awverbar denotes complex conjugate variables.

important role in designing an asymptotically stabilizing In this paper we study the phenomenon of the LS of
controller for nonlinear systems28§,29,30l. These hyperchaotic complex nonlinear systems of the fofn (
references show that the main feature of the passivevia passive control theory which is not detected yet in the
control approach lies in the fact that the controller designliterature.

includes, at a fundamental level, the system structural Remark 1: Then—dimensional hyperchaotic complex
properties that can be exploited to solve a given controlnonlinear systeml{ can be rewritten in the real form as:
problem. It is also shown that the passive control has

many advantages: e.g. clear physical interpretation, less n=%n, )
control effort required or ease in implementation. T oon:
Therefore, passive control has been widely investigated’"here’l = (N11, N2, N21, N22, -, M1, Nn2) ERisa
and applied27,28,29,30]. state real vector(j = 1,2,...,n), nj1, nj2 are real functions

LS via passivity is not detected yet in the literature. So,2nd¥ is a smooth nonlinear vector field.

the motivation of this paper is to investigate the LS of  Remark2: Most of hyperchaotic complex systems can
n-dimensional hyperchaotic complex nonlinear systems2€ described bylj, such as complex Lorenz, Chen aridl L
by using passive control theory and compare our result$YStems 81,32). For example, the hyperchaotic complex
with those in Bl. In [3]] LS of n-dimensional LOrenzsystem3s 34is:
hyperchaotic complex nonlinear systems is investigated n=a(zn—2z)+iz
by using nonlinear control scheme. 7= V2 —2o— 2173+ i7z4

The organization of this paper is as follows. Section 2 25 = 1/2(Zi22+ Bo71) — [32’3 3)
presents the description of-dimensional hyperchaotic 20 =1/2(212+ 221) 7024’
complex nonlinear systems. Basic conceptions of ’
passivity theory are stated in Section 3. In Section 4 wehere 7z — (21, 22, 73, z)7, W = (Yn, Yo, s,
achieve LS between two identical hyperchaotic complex )T = (a(z — 21) + iz, Y& — 2o — 2173 + +iz,
Lorenz systems. The analytical forms of the controllers of{ 2(zz2+271) — Bzs, 1/2(2ize+ 7)) — 023)7, @, y
this example are derived based on passivity theory. Ilang B are positive parameterszi = ni1 + i1z,
Section 5, the numerical results are illustrated to,, — N21+ N2z are complex functions ang (j = 1,2,
emphasize the validity of the theoretical investigations.| _ 1 2), 73 = Na1, Z4 = Na1 are real functions and is a
Finally, conclusions are drawn in Section 6. control parameter.

This hyperchaotic example has been introduced recently
. . in our work [33]. For the case&x = 20, 3 =5, y= 40 and
2 DQSCI’IptIOﬂ of hyperchaotic complex o = 13 we calculated the Lyapunov exponents as:
nonlinear systems L = 17745 {» = 0.2043 3 = 0, {s = —18.7918

. . . ... (s = —30.8533, {§ = —388889 and its Lyapunov
A complex dynamical system is called hyperchaotic if it J -\ ansion isD =~ 3.10530. Therefore systensgl( hpas a

is d_e@erminisf[i.c, has long-term aperic_)qi(_: behavjqr, andhyperchaotic behavior sincé and {, are positive, see
exhibits sensitive dependence on the initial conditions. AFig. 1, for more dynamical properties, see R88][ '

hyperchaotic complex attractor is defined as a complex
chaotic attractor with at least two positive Lyapunov

exponents. The sum of Lyapunov exponents must b . : - :
negative to ensure that system is dissipative. It is evee‘)’ Basic conceptions of passivity theory in

more complicated than chaotic complex systems and he:byperChaOtiC complex nonlinear systems
more unstable manifolds. Due to hyperchaotic complex

systems with characteristics of high capacity, high We consider the h_yperchaotic complex nonlinea.lr systems
security and high efficiency, it has a broadly applied with the controller in the general form as follows:
potential in nonlinear circuits, secure communications, . -
lasers, neural networks, biological systems and so on. zf_w(z,Z)Jrcp(z,zﬁ_, (4)
. : y=h(z2),

Therefore, research on hyperchaotic complex nonlinear
systems is extremely important nowadag4,B32,33,34, where = = (Vi,Va, ...,vm)T is the input (or "controller”)
35,36,37,38,39,40,41,42]. _ ; - _ 7

Consider then—dimensional hyperchaotic complex -5 stV (5=12..m),n>my=(y1,Y2,,Ym)

" " foll ) yp P is the outputg and them columns of@ are smooth vector
noniineéar system as follows. fields anch is a smooth mapping.

z=Y(z, z2), (1)  The real form of systen¥ can be written as:
where the state complex vector= (z1, 2, ..., z,)" € C", n=%(n)+en)y, 5
zi = np+ine (= 12..n), i = V=1, A=H(n), (%)
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Fig. 1: Hyperhaotic attractors of system:
(@) In(n1, n3, ne) space. (b) Ir(n1, N3, ne) space. (c) I(nz, N3, ns) space. (d) In(ny, na, Ne) space.

wherev = (Vi1, V12, V21, V22, ...., Vi1, vmz)T andA = Definition 2 [44]: The system of the form5] is said
(A1, A2, A3, As,..., Aom)T. For every initial condition to have relative degree [1, 1, ..., 1] t= 0 if the matrix
n(0) and every input(-), there is a maximally defined L oH(0O) is nonsingular.
solutionn(-) of the system§), and corresponding output
A(-) [26,27). We suppose that the vector fielfi has at Definition 3 [45]: The system §) is passive if the
least one equilibrium point. Without loss of generality, we following two conditions are satisfied:
can assume that the equilibrium pointigs= 0. If the (1) ¥(n) and @(n) exist, ¥ and the 2n columns of®
equilibrium point is not atn = 0, we can shift the are smooth vector fields ati(n) is a smooth mapping.
equilibrium point ton = 0 by coordinate transfornf). (2) V t >0, there is a real valuew satisfying the
inequality:

Definition 1 [43]: The system&) is a minimum phase

system ifLpH(0) = g—gtb(n) is nonsingular and) = 0

is one of asymptotically stabilized equilibrium points of t o
w(n). /OV (©)A(g)d¢ > v, (6)
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or, there exist a constaat> 0 and a real-valued constant The drive and the response systems are thus defined,
v which satisfy the inequality: respectively, as follows:

t t
VI(QOA(Qdc+v>e [ AT(OA(Qde. (7
JRAGLG L AT @A @ @) Aoyd#oagiin W)
Definition 4 [46]: The system&) is said to be passive 3=1/2 (az(zj Z(112(21) - Bng
if there is a nonnegative functioW : n— R, called zﬁ{ = 1/2(2‘{2‘2‘+z‘{22d) —ozﬁ{,
storage function, which satisfi®#g0) = 0, such that: and
t 4 =0a(z-7)+iz,
Vi -vn©) < [ ATovode. @ 5= yh 2~ 42 14, 4w a3)

Z3=1/2(22+22)) — B2+ V2,
The physical meaning of passive system is that the energy 2,=1/2(Z,2,+2,Z)) — 0Z,+Va,
of the nonlinear system can be increased only through the
supply from an external source. In other words, a passw

system cannot store more energy than that suppliedl —

herez‘i‘ n$h+ing, 4= ’721“‘”72272c3j ’731vZd g,
’lllJF”7127Zr2*’721+”722’2r N30 2y = Nag, V1=

externally.

Remark 3: The parametric version of the normal form

for the system&) which satisfying definition 1 is:

H=9¢0(H)+X(KA)A, ©)
A=Q(HA)+K(HA)YV,
where a new coordinate of the syste®) (s (H,A),
locally defined in the neighborhood of
origin, 4 € R?~2M and k (K, A) is nonsingular for all

(H,A) in the neighborhood of the origin. By designing a
suitable controllew, the system9q) may be passive. Thus,

the equilibrium point of the system9) can be

the

V11 +iVig, Vo = Vo1, V3 = V31 are complex and real control
functions, respectively, which we need to determine.

In order to obtain the complex and real control signals
V2, V3, the complex error dynamical system takes the form:

A =a(fy—Ay) +ily,
Ny = VA17A2+iA4er1(t)Z'é(t)
+At -1t — 1)+,

asymptotically stabilized by applying the nonlinear where

controller v [47]. If the system @) describes an error

dynamical system with time lag, then the synchronization

between the drive and response systems is achieved.
Remark 4: SettingA = 0in system 9), yields the zero
dynamic system:
H=¢o(H). (10)

The system g) is called minimum phase, if its zero

dynamics is asymptotically stable.

Theorem 1 [47]: If the system (5) has a relative
degree[1, 1, ..., 1] at n = 0 and system (5) is a minimum
phase system, the system (9) will be equivalent to a
passive system and asymptotically stabilized at an
equilibrium point if we let the local feedback control as
follows:

V=it a)- A (Z5H

—eA+€],

where the Lyapunov function of ¢q(u) isW(H), € isa
positive real value and & is an external signal vector that
is connected with the reference input.

i
x(um) (1)

4 LS via passive control

Let us now investigate the LS of systeid),(which has
been introduced in31], based on the passivity theory.

do= Bl 12Z0A0+AOBN  (14)
~At-1)B(t-1) - 1<t—r>a(t—r>>+vz,
Dy= _aA4+1/2zr<t Z(t) +Z,(1)Z(t)
~At-A(t-1) z](l](t—r) t—r ) +Va,
A =Zt)—B(t—1), bp=2Zt)-At—T1),
A;:zrl(t)—za( Aifz zét—r (15)

andA; = A11+ i1, Ay = Az1 + iz andAz = Azy, Ag =
A4 are complex and real errors functions, respectively.
System 14) in the real form:

A1y =a(A1—A11), Dr2= (422 — A1) + Aay,
A21 = yA11— A1 — Duangy (t—1)
—A31n14(t) +vaa,

Aoz = yA12— Do+ Dag — DianS (t—T)
—A31’712( )+ V12,

A3 = —Bhs1+A1nG,(t — 1)+ Angy(t — 1)
+A21N14 (1) +A22’712( )+ Va1,

Ay = —00a1+ Dangy (t — 1) + Apany(t — 1)
+A21N11(t) + A22ny,(t) + Vau,

(16)

whereA = nli(t) —nj(t—1),j=1,234,1=12
Theorem 2: The error dynamical system (16) is
minimum phase system.
Proof:
First we can compute the matiixpH (0) as 46,47

100
0100
0010/
0001

LoH(0) = a7)
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since the matrixt H(0) is nonsingular and according to
the definition 1 systeml@) has relative degree [1, 1, ...,
1] at A=0, we let u= [[.11 Uz]T = [An A:LZ]T,
A= [/\1 A2 A3 )\4]T = [A21 Npp Azq A41]T , thus system
(16) has the form:

Hy=a(Ar—pa),
_ [z = a (A2 — [2) + Mg,
AL = yp1 — A1 — NSy (t— 1) — Azniy(t) +vag,
A2 = YHp — Ao+ A — [N, (t—T)
. —Aango(t) +vaz,
Az = —PBAz+ N3yt — T) + pongy(t — 1)
. +A1N14 (1) +A2no(t) + Vau,
Ag=—0Mg+ ang;(t — 1) + NSyt — 1)
FA1n14(t) +A2n,(t) + Vvar.

(18)

System {8) can be represented in the following form:

H=0o(1)+X(KH,A)A, (19)
A=Q(UA)+K(HA)Y,
where
i a0’
—a Oa
bo() = | gl XM =50
- 01
100
0100
K(“aA): o010/
0001
vul——Al——ulnglg——r)——Asn£1Q)
Q(uA) = YHz — A2+ Ag — plangy (t — T) — Aznpo(t) ’
A= Zpng pans(t— 1)+ pony(t— 1) 4+ p
| —OAa+ NS (t—1) + Nyt — 1) +p

wherep = A1, (t) + Aani(t).
Choose a storage function as:

1
V(. A) =W()+5ATA,
1
:wxuy+§uf+A§+A§+Aﬁ, (20)
whereW (p) = 3 (12 + pz), W(0) = 0.

The zero dynamics of the systenl9 describes the
internal dynamics and occur whén= 0, i.e.

H=¢o(H). (21)
DifferentiatingW () respect td, we get:
Lo OW(p) - OW(p)
W) = =5 =5, $o(H),
= (b o] [~ap —ape]", (22)

= —(apf +aps) <o0.

SinceW(u) > 0 andW(p) < 0, it can be concluded that
W(u) is the Lyapunov function ofpy(p) and ¢y(H) is

globally asymptotically stable which means that the error
system 16) is minimum phase system. So systeml)

can be equivalent to a passive system, and theorem 2 is
proved.

Because our systeni) is minimum phase system and
has vector relative degree [1, ..., 1]. So systel) (is
appropriate to apply theorem 1. We can derive the
controller as:

Vit = —0p — (Vi — A — NSy (t—1)
—A3niy(t)) — €A1+ &y,
Viz = —0z— (VM2 — A2+ As— ang, (t— T)
—A3Niy(t)) — €Az + &,
Vo1 = —(—BAs+ Ny (t — ) + pany(t — 1)
+A1n14(t) +A2n1,(t)) — Az + &3,
Va1 = —Hp — (—OAs+ ngy(t — 1) + endy(t — 1)
+A1n11(t) +A2n15(1)) — €A+ &a.
(23)
The controller in the final form is:

Vi1 = —aA1 — (YA — Ao1 — B1ang (t— 1)
—Az1n14(t)) —€h21+ &1,
Vig= — 012 — (YD1 — Do+ Dag — DionG (t — T)
—A31N1,(t)) — €422+ &2,
Vo1 = —(—BAs1+ A11ng) (t — T) + Apan,(t — T)
+821N11(t) + Do2Ngp(t)) — €431+ &3,
Va1 = —A1p— (—0ha1 + B1ang (t — T) + A1anSH(t — 1)
+421014(t) +B22n15(t)) — €Aar + &a. ”
4
The analytical formula of the controlleR4), which has
been calculated by using our scheme, is used with system
(16) to achieve the LS of hyperchaotic attractors of our
example.

5 Numerical results

Numerical simulations are conducted in this section to
illustrate the effectiveness of the designed controlbd).(
We solve systemsl@) and (L3) with (24) numerically for

a =20 B =5 y=40 and o = 13 for which
hyperchaotic attractor exist83] and with different initial
conditionsty = 0, n; (0) = 1, n%,(0) = 2, ng,(0) = 3,
n%(0) = 4, n$,(0) = 5, ngy(0) = 6 and nj,(0) = 6,
’7{2 (O) = 87 '751 (0) 37 052 (O) = 47

N3, (0) = 8,n4,(0) = 1. We chooser = 0.2, ¢ = 15 and

& =& = & = & = 0. The variables’ states during the
LS process between systeri® and 13 are shown in
Figure2. From it, one can see that ealqh (t) converge to
nﬂ(t), j=1,2 3 4,1 =1, 2 but with positive time
laggedr = 0.2. Figure2 shows LS is achieved after small
time interval. The LS errors are plotted in Fig®eand as
expected from the above analytical considerations the LS
errorsAj; converge to zero ads— o after small value of

t. Comparing the numerical results in this research,
emerging from the Figurez and3, with those in B1]. In

[31] LS was achieved after large time and this unlike our
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Fig. 2: LS of systems12) and (3) with (24):

12 18

12 18

(@) nd,(t) andn,(t) versug, (b) nY,(t) andn’,(t) versus, (c) nd,(t) andnb,(t) versug, (d) n9,(t) andnb,(t) versus, (€) nd;(t)

andn’, (t) versug, (f) n9,(t) andny,(t) versug.

results. We solve system43) and (L3) with the same
parameters and initial conditions i87]. But the number

from the transmitter side at timé — 1. So, strictly
speaking, it is not reasonable to require the drive system

of control functions in our paper is less than those used irto synchronize the response system at exactly the same

[31]. This shows the effectiveness of controlle24)

time. Therefore, recently, much attention has been given

which has been calculated by using theorem 1 in ourto the LS, in which the state of the response system at

scheme.

6 Conclusion

In engineering applications, time lag always exists. For
example in the telephone communication system, th
voice one hears on the receiver side at tinie the voice

d

time t is asymptotically synchronous with the drive
system at time — 1.

Unique to this paper is to study LS of hyperchaotic
complex nonlinear systems by using passive control
theory. LS of two identical hyperchaotic complex Lorenz
systems is achieved by applying the passivity therory on
he error dynamical system with time lag. We have shown
that the error dynamical system is passive system and the
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Fig. 3: LS errors: (a) {11,t) diagram, (b) 412,t) diagram, (c) f,1,t) diagram, (d) {22,t) diagram, (e) A31,t) diagram, (f) Q41,t)
diagram.
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