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Abstract: In this paper we study and investigate the Lag synchronization (LS) of hyperchaotic complex nonlinear systems by using
passive control theory. LS of these hyperchaotic complex systems viapassive control has not received enough attentions, as far as we
know, in the literature. Based on the property of the passive system the passive controller is stated to achieve LS of two identical
hyperchaotic complex Lorenz systems. These complex systems appear in many important fields of physics and engineering. The
analytical results of the controllers, which have been calculated by using our scheme, are tested numerically and good agreement
is obtained.
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1 Introduction

There are several kinds of synchronization between two
chaotic or hyperchaotic systems have been identified as
complete (or full) synchronization [1,2], generalized
synchronization [3], phase synchronization [4] and lag
synchronization (LS) [5,6,7,8,9,10,11,12,13,14,15].
They represent the difference in the degree of correlation
between interacting systems [6]. Among these
synchronizations, complete synchronization is the
strongest in the degree of correlation and describes the
interaction of two identical systems, leading to their
trajectories remaining identical in the course of temporal
evolution, i.e.,xd(t) = xr(t), wherexd(t) andxr(t) are the
states of the drive and response systems, respectively.
Generalized synchronization, as introduced for
drive-response systems, is defined as the presence of a
functional relationship between the states of the response
and drive systems, i.e.,xd(t) = f (xr(t)). Phase
synchronization is the situation where two coupled
hyperchaotic systems keep their phases in step with each
other while their amplitudes remain uncorrelated.

In the typical synchronization regimes, lag
synchronization has been proposed as the coincidence of
the states of chaotic systems in which one of the systems
is delayed by a finite time. Many experimental
investigations and computer simulations of chaos

synchronization in unidirectional coupled external cavity
semiconductor lasers [16,17,18] have demonstrated the
presence of lag time between the drive and response
lasers intensities. The similar experiments for chaotic
circuits [19] have also demonstrated the complete
synchronization, i.e., the states of two chaotic systems
remain identical in the course of temporal evolution, is
practically impossible for the presence of the signal
transmission time and evolution time of response system
itself. Thus, knowledge of the lag synchronization is of
considerable practical importance. In LS the state of the
response system at timet is asymptotically synchronous
with the drive system at time t − τ, namely,
lim

t−→∞

∥

∥xr(t)− xd(t − τ)
∥

∥ = 0, wherexd(t) and xr(t) are

the states of the drive and response real systems,
respectively. Complete synchronization is special case of
LS whenτ = 0.
Recently, some control methods, such as observer-based
scheme, [20] impulsive control, [21] projective approach,
[22,23] and adaptive control, [24,25] have been applied
to the lag synchronization for chaotic and hyperchaotic
systems.

Passivity is part of a broader and general theory of
dissipativity, which can be found in Refs. [26,27] and
various others references therein. The main idea of
passivity theory is that the passive properties of system
can keep the system internally stable. So, to make the
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system stable, one can design a controller which renders
the closed loop system passive using passivity theory.
During the last decade the passivity theory has played an
important role in designing an asymptotically stabilizing
controller for nonlinear systems [28,29,30]. These
references show that the main feature of the passive
control approach lies in the fact that the controller design
includes, at a fundamental level, the system structural
properties that can be exploited to solve a given control
problem. It is also shown that the passive control has
many advantages: e.g. clear physical interpretation, less
control effort required or ease in implementation.
Therefore, passive control has been widely investigated
and applied [27,28,29,30].
LS via passivity is not detected yet in the literature. So,
the motivation of this paper is to investigate the LS of
n-dimensional hyperchaotic complex nonlinear systems
by using passive control theory and compare our results
with those in [31]. In [31] LS of n-dimensional
hyperchaotic complex nonlinear systems is investigated
by using nonlinear control scheme.

The organization of this paper is as follows. Section 2
presents the description ofn-dimensional hyperchaotic
complex nonlinear systems. Basic conceptions of
passivity theory are stated in Section 3. In Section 4 we
achieve LS between two identical hyperchaotic complex
Lorenz systems. The analytical forms of the controllers of
this example are derived based on passivity theory. In
Section 5, the numerical results are illustrated to
emphasize the validity of the theoretical investigations.
Finally, conclusions are drawn in Section 6.

2 Description of hyperchaotic complex
nonlinear systems

A complex dynamical system is called hyperchaotic if it
is deterministic, has long-term aperiodic behavior, and
exhibits sensitive dependence on the initial conditions. A
hyperchaotic complex attractor is defined as a complex
chaotic attractor with at least two positive Lyapunov
exponents. The sum of Lyapunov exponents must be
negative to ensure that system is dissipative. It is even
more complicated than chaotic complex systems and has
more unstable manifolds. Due to hyperchaotic complex
systems with characteristics of high capacity, high
security and high efficiency, it has a broadly applied
potential in nonlinear circuits, secure communications,
lasers, neural networks, biological systems and so on.
Therefore, research on hyperchaotic complex nonlinear
systems is extremely important nowadays [31,32,33,34,
35,36,37,38,39,40,41,42].

Consider then−dimensional hyperchaotic complex
nonlinear system as follows:

ż= ψψψ(z, z̄), (1)

where the state complex vectorz= (z1, z2, ..., zn)
T ∈ Cn,

z j = η j1 + iη j2 ( j = 1,2, ...,n), i =
√
−1,

ψψψ = (ψ1,ψ2, ...,ψn)
T is a smooth nonlinear vector field,

Dot represents derivative with respect to time and an
overbar denotes complex conjugate variables.
In this paper we study the phenomenon of the LS of
hyperchaotic complex nonlinear systems of the form (1)
via passive control theory which is not detected yet in the
literature.

Remark 1: Then−dimensional hyperchaotic complex
nonlinear system (1) can be rewritten in the real form as:

η̇ηη =ΨΨΨ(ηηη), (2)

whereηηη = (η11, η12, η21, η22, ...., ηn1, ηn2)
T ∈R

2n is a
state real vector, ( j = 1,2, ...,n), η j1, η j2 are real functions
andΨΨΨ is a smooth nonlinear vector field.

Remark 2: Most of hyperchaotic complex systems can
be described by (1), such as complex Lorenz, Chen and Lü
systems [31,32]. For example, the hyperchaotic complex
Lorenz system [33,34] is:

ż1 = α(z2− z1)+ iz4,
ż2 = γz1− z2− z1z3+ iz4,

ż3 = 1/2(z̄1z2+ z̄2z1)−β z3,
ż4 = 1/2(z̄1z2+ z̄2z1)−σz4,

(3)

where z = (z1, z2, z3, z4)
T , ψψψ = (ψ1, ψ2, ψ3,

ψ4)
T = (α(z2 − z1) + iz4, γz1 − z2 − z1z3 + +iz4,

1/2(z̄1z2+ z̄2z1)− β z3, 1/2(z̄1z2+ z̄2z1)− σz4)
T , α, γ

and β are positive parameters,z1 = η11 + iη12,
z2 = η21+ iη22 are complex functions andη jl ( j = 1,2,
l = 1,2), z3 = η31, z4 = η41 are real functions andσ is a
control parameter.
This hyperchaotic example has been introduced recently
in our work [33]. For the caseα = 20, β = 5, γ = 40 and
σ = 13 we calculated the Lyapunov exponents as:
ζ1 = 1.7745, ζ2 = 0.2043, ζ3 = 0, ζ4 = −18.7918,
ζ5 = −30.8533, ζ6 = −38.8889 and its Lyapunov
dimension isD ∼= 3.10530. Therefore system (3) has a
hyperchaotic behavior sinceζ1 and ζ2 are positive, see
Fig. 1, for more dynamical properties, see Ref. [33].

3 Basic conceptions of passivity theory in
hyperchaotic complex nonlinear systems

We consider the hyperchaotic complex nonlinear systems
with the controller in the general form as follows:

{

ż= ψψψ(z, z̄)+φφφ(z, z̄)ΞΞΞ ,
y = h(z, z̄), (4)

whereΞΞΞ = (v1,v2, ...,vm)
T is the input (or ”controller”),

vs = vs1+ ivs2 (s = 1,2, ...,m), n > m, y =(y1,y2, ...,ym)
T

is the output, ψψψ and them columns ofφφφ are smooth vector
fields andh is a smooth mapping.
The real form of system (4) can be written as:

{

η̇ηη =ΨΨΨ(ηηη)+ΦΦΦ(ηηη)v,
λλλ = H(ηηη), (5)

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 4, 1429-1436 (2013) /www.naturalspublishing.com/Journals.asp 1431

c

-20

0

202

-20

0

20
3

20

40

60

5

-20

0

202

-20

0

20
3

b

-20

-10

0

10

201

-20

0

20

4

0

10

20

30

40

6

-20

-10

0

10

201

-20

0

20

a

-20

-10

0

10

201

-20

0

20
3

20

40

60

5

-20

-10

0

10

1

-20

0

20
3 b

-20

-10

0

10

201

-20

0

20

3

0

10

20

30

40

6

-20

-10

0

10

201

-20

0

20

3

Fig. 1: Hyperhaotic attractors of system:
(a) In (η1, η3, η6) space. (b) In(η1, η3, η6) space. (c) In(η2, η3, η5) space. (d) In(η1, η4, η6) space.

where v === (v11, v12, v21, v22, ...., vm1, vm2)
T and λλλ ===

(λ1, λ2, λ3, λ4, ..., λ2m)
T . For every initial condition

ηηη(0) and every inputv(·), there is a maximally defined
solutionηηη(·) of the system (5), and corresponding output
λλλ (·) [26,27]. We suppose that the vector fieldψψψ has at
least one equilibrium point. Without loss of generality, we
can assume that the equilibrium point isηηη = 0. If the
equilibrium point is not atηηη = 0, we can shift the
equilibrium point toηηη = 0 by coordinate transform [43].

Definition 1 [43]: The system (5) is a minimum phase
system ifLΦΦΦH(0) = ∂H

∂ηηη ΦΦΦ(ηηη) is nonsingular andηηη = 0
is one of asymptotically stabilized equilibrium points of
ΨΨΨ(ηηη).

Definition 2 [44]: The system of the form (5) is said
to have relative degree [1, 1, ..., 1] atηηη = 0 if the matrix
LΦΦΦH(0) is nonsingular.

Definition 3 [45]: The system (5) is passive if the
following two conditions are satisfied:
(1) ΨΨΨ(ηηη) andΦΦΦ(ηηη) exist,ΨΨΨ and the 2m columns ofΦΦΦ
are smooth vector fields andH(ηηη) is a smooth mapping.
(2) ∀ t ≥ 0, there is a real valueν satisfying the
inequality:

∫ t

0
vT (ς)λλλ (ς)dς ≥ ν , (6)
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or, there exist a constantε > 0 and a real-valued constant
ν which satisfy the inequality:

∫ t

0
vT (ς)λλλ (ς)dς +ν ≥ ε

∫ t

0
λλλ T (ς)λλλ (ς)dς . (7)

Definition 4 [46]: The system (5) is said to be passive
if there is a nonnegative functionV : ηηη−→ R, called
storage function, which satisfiesV (0) = 0, such that:

V (ηηη)−V (ηηη(0))≤
∫ t

0
λλλ T (ς)v(ς)dς . (8)

The physical meaning of passive system is that the energy
of the nonlinear system can be increased only through the
supply from an external source. In other words, a passive
system cannot store more energy than that supplied
externally.

Remark 3: The parametric version of the normal form
for the system (5) which satisfying definition 1 is:

{

µ̇µµ = ϕϕϕ0 (µµµ)+ χχχ (µµµ ,λλλ )λλλ ,
λ̇λλ = ΩΩΩ (µµµ,λλλ )+κκκ (µµµ,λλλ )v,

(9)

where a new coordinate of the system (5) is (µµµ,λλλ ),
locally defined in the neighborhood of the
origin, µµµ ∈∈∈ R

2n−2m and κκκ (µµµ,λλλ ) is nonsingular for all
(µµµ,λλλ ) in the neighborhood of the origin. By designing a
suitable controllerv, the system (9) may be passive. Thus,
the equilibrium point of the system (9) can be
asymptotically stabilized by applying the nonlinear
controller v [47]. If the system (9) describes an error
dynamical system with time lag, then the synchronization
between the drive and response systems is achieved.

Remark 4: Settingλλλ = 0 in system (9), yields the zero
dynamic system:

µ̇µµ = ϕϕϕ0 (µµµ) . (10)

The system (9) is called minimum phase, if its zero
dynamics is asymptotically stable.

Theorem 1 [47]: If the system (5) has a relative
degree [1, 1, ..., 1] at ηηη = 0 and system (5) is a minimum
phase system, the system (9) will be equivalent to a
passive system and asymptotically stabilized at an
equilibrium point if we let the local feedback control as
follows:

v = κκκ−1(µµµ,λλλ )[−ΩΩΩ(µµµ,λλλ )−
(

∂W (µµµ)
∂ µµµ

χχχ (µµµ,λλλ )
)T

(11)

−ελλλ+ξξξ ]]],
where the Lyapunov function of ϕϕϕ0 (µµµ) is W (µµµ), ε is a
positive real value and ξξξ is an external signal vector that
is connected with the reference input.

4 LS via passive control

Let us now investigate the LS of system (3), which has
been introduced in [31], based on the passivity theory.

The drive and the response systems are thus defined,
respectively, as follows:

żd
1 = α(zd

2 − zd
1)+ izd

4,
żd
2 = γzd

1 − zd
2 − zd

1zd
3 + izd

4,
żd
3 = 1/2

(

z̄d
1zd

2 + zd
1z̄d

2

)

−β zd
3,

żd
4 = 1/2

(

z̄d
1zd

2 + zd
1z̄d

2

)

−σzd
4,

(12)

and
żr
1 = α (zr

2− zr
1)+ izr

4,
żr
2 = γzr

1− zr
2− zr

1zr
3+ izr

4+ v1,
żr
3 = 1/2(z̄r

1zr
2+ zr

1z̄r
2)−β zr

3+ v2,
żr
4 = 1/2(z̄r

1zr
2+ zr

1z̄r
2)−σzr

4+ v3,

(13)

wherezd
1 = ηd

11+ iηd
12, zd

2 = ηd
21+ iηd

22, zd
3 = ηd

31, zd
4 = ηd

41,
zr
1 = ηr

11+ iηr
12, zr

2 = ηr
21+ iηr

22, zr
3 = ηr

31, zr
4 = ηr

41, v1 =
v11+ iv12, v2 = v21, v3 = v31 are complex and real control
functions, respectively, which we need to determine.
In order to obtain the complex and real control signalsv1,
v2, v3, the complex error dynamical system takes the form:

∆̇1 = α(∆2−∆1)+ i∆4,
∆̇2 = γ∆1−∆2+ i∆4− zr

1(t)z
r
3(t)

+zd
1(t − τ)zd

3(t − τ)+ v1,
∆̇3 =−β∆3+1/2(z̄r

1(t)z
r
2(t)+ zr

1(t)z̄
r
2(t)

−z̄d
1(t − τ)zd

2(t − τ)− zd
1(t − τ)z̄d

2(t − τ))+ v2,
∆̇4 =−σ∆4+1/2(z̄r

1(t)z
r
2(t)+ zr

1(t)z̄
r
2(t)

−z̄d
1(t − τ)zd

2(t − τ)− zd
1(t − τ)z̄d

2(t − τ))+ v3,

(14)

where

∆1 = zr
1(t)− zd

1(t − τ), ∆2 = zr
2(t)− zd

2(t − τ),
∆3 = zr(t)− zd(t − τ), ∆4 = zr

4(t)− zd
4(t − τ), (15)

and∆1 = ∆11+ i∆12, ∆2 = ∆21+ i∆22 and∆3 = ∆31, ∆4 =
∆41 are complex and real errors functions, respectively.
System (14) in the real form:

∆̇11 = α (∆21−∆11) , ∆̇12 = α (∆22−∆12)+∆41,
∆̇21 = γ∆11−∆21−∆11ηd

31(t − τ)
−∆31ηr

11(t)+ v11,
∆̇22 = γ∆12−∆22+∆41−∆12ηd

31(t − τ)
−∆31ηr

12(t)+ v12,
∆̇31 =−β∆31+∆11ηd

21(t − τ)+∆12ηd
22(t − τ)

+∆21ηr
11(t)+∆22ηr

12(t)+ v21,
∆̇41 =−σ∆41+∆11ηd

21(t − τ)+∆12ηd
22(t − τ)

+∆21ηr
11(t)+∆22ηr

12(t)+ v31,

(16)

where∆ jl = ηr
jl(t)−ηd

jl(t − τ), j = 1, 2, 3, 4, l = 1, 2.
Theorem 2: The error dynamical system (16) is

minimum phase system.
Proof:
First we can compute the matrixLΦΦΦH(0) as [46,47]:

LΦΦΦH(0) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, (17)
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since the matrixLΦΦΦH(0) is nonsingular and according to
the definition 1 system (16) has relative degree [1, 1, ...,
1] at ∆∆∆= 0, we let µµµ=

[

µ1 µ2
]T

=
[

∆11 ∆12
]T

,

λλλ=
[

λ1 λ2 λ3 λ4
]T

=
[

∆21 ∆22 ∆31 ∆41
]T

, thus system
(16) has the form:

µ̇1 = α (λ1−µ1) ,
µ̇2 = α (λ2−µ2)+λ4,

λ̇1 = γµ1−λ1−µ1ηd
31(t − τ)−λ3ηr

11(t)+ v11,

λ̇2 = γµ2−λ2+λ4−µ2ηd
31(t − τ)

−λ3ηr
12(t)+ v12,

λ̇3 =−βλ3+µ1ηd
21(t − τ)+µ2ηd

22(t − τ)
+λ1ηr

11(t)+λ2ηr
12(t)+ v21,

λ̇4 =−σλ4+µ1ηd
21(t − τ)+µ2ηd

22(t − τ)
+λ1ηr

11(t)+λ2ηr
12(t)+ v31.

(18)

System (18) can be represented in the following form:
{

µ̇µµ = ϕϕϕ0 (µµµ)+ χχχ (µµµ,λλλ )λλλ ,
λ̇λλ = ΩΩΩ (µµµ,λλλ )+κκκ (µµµ,λλλ )v,

(19)

where

ϕϕϕ0 (µµµ) =
[

−αµ1
−αµ2

]

, χχχ (µµµ ,λλλ ) =







α 0
0 α
0 0
0 1







T

,

κκκ (µµµ,λλλ ) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,

ΩΩΩ (µµµ,λλλ ) =









γµ1−λ1−µ1ηd
31(t − τ)−λ3ηr

11(t)
γµ2−λ2+λ4−µ2ηd

31(t − τ)−λ3ηr
12(t)

−βλ3+µ1ηd
21(t − τ)+µ2ηd

22(t − τ)+ρ
−σλ4+µ1ηd

21(t − τ)+µ2ηd
22(t − τ)+ρ









,

whereρ = λ1ηr
11(t)+λ2ηr

12(t).
Choose a storage function as:

V (µ , λλλ ) = W (µ)+
1
2

λλλ Tλλλ ,

= W (µ)+
1
2

(

λ 2
1 +λ 2

2 +λ 2
3 +λ 2

4

)

, (20)

whereW (µµµ) = 1
2

(

µ2
1 +µ2

2

)

, W (0) = 0.
The zero dynamics of the system (19) describes the
internal dynamics and occur whenλλλ = 000, i.e.

µ̇µµ=ϕϕϕ0(µµµ) . (21)

DifferentiatingW (µµµ) respect tot, we get:

Ẇ (µµµ) =
∂W (µµµ)

∂ µµµ
µ̇µµ=

∂W (µµµ)
∂ µµµ

ϕϕϕ0 (µµµ) ,

=
[

µ1 µ2
][

−αµ1 −αµ2
]T

, (22)

= −(αµ2
1 +αµ2

2)≤ 0.

SinceW (µµµ) > 0 andẆ (µµµ) < 0, it can be concluded that
W (µµµ) is the Lyapunov function ofϕϕϕ0(µµµ) and ϕϕϕ0(µµµ) is

globally asymptotically stable which means that the error
system (16) is minimum phase system. So system (16)
can be equivalent to a passive system, and theorem 2 is
proved.
Because our system (16) is minimum phase system and
has vector relative degree [1, ..., 1]. So system (16) is
appropriate to apply theorem 1. We can derive the
controller as:

v11 =−αµ1− (γµ1−λ1−µ1ηd
31(t − τ)

−λ3ηr
11(t))− ελ1+ξ1,

v12 =−αµ2− (γµ2−λ2+λ4−µ2ηd
31(t − τ)

−λ3ηr
12(t))− ελ2+ξ2,

v21 =−(−βλ3+µ1ηd
21(t − τ)+µ2ηd

22(t − τ)
+λ1ηr

11(t)+λ2ηr
12(t))− ελ3+ξ3,

v31 =−µ2− (−σλ4+µ1ηd
21(t − τ)+µ2ηd

22(t − τ)
+λ1ηr

11(t)+λ2ηr
12(t))− ελ4+ξ4.

(23)
The controller in the final form is:

v11 =−α∆11− (γ∆11−∆21−∆11ηd
31(t − τ)

−∆31ηr
11(t))− ε∆21+ξ1,

v12 =−α∆12− (γ∆21−∆22+∆41−∆12ηd
31(t − τ)

−∆31ηr
12(t))− ε∆22+ξ2,

v21 =−(−β∆31+∆11ηd
21(t − τ)+∆12ηd

22(t − τ)
+∆21ηr

11(t)+∆22ηr
12(t))− ε∆31+ξ3,

v31 =−∆12− (−σ∆41+∆11ηd
21(t − τ)+∆12ηd

22(t − τ)
+∆21ηr

11(t)+∆22ηr
12(t))− ε∆41+ξ4.

(24)
The analytical formula of the controller (24), which has
been calculated by using our scheme, is used with system
(16) to achieve the LS of hyperchaotic attractors of our
example.

5 Numerical results

Numerical simulations are conducted in this section to
illustrate the effectiveness of the designed controller (24).
We solve systems (12) and (13) with (24) numerically for
α = 20, β = 5, γ = 40 and σ = 13 for which
hyperchaotic attractor exists [33] and with different initial
conditionst0 = 0, ηd

11(0) = 1, ηd
12(0) = 2, ηd

21(0) = 3,
ηd

22(0) = 4, ηd
31(0) = 5, ηd

41(0) = 6 and ηr
11(0) = 6,

ηr
12(0) = 8, ηr

21(0) = 3, ηr
22(0) = 4,

ηr
31(0) = 8,ηr

41(0) = 1. We chooseτ = 0.2, ε = 15 and
ξ1 = ξ2 = ξ3 = ξ4 = 0. The variables’ states during the
LS process between systems12 and 13 are shown in
Figure2. From it, one can see that eachηr

jl(t) converge to

ηd
jl(t), j = 1, 2, 3, 4, l = 1, 2 but with positive time

laggedτ = 0.2. Figure2 shows LS is achieved after small
time interval. The LS errors are plotted in Figure3, and as
expected from the above analytical considerations the LS
errors∆ jl converge to zero ast −→ ∞ after small value of
t. Comparing the numerical results in this research,
emerging from the Figures2 and3, with those in [31]. In
[31] LS was achieved after large time and this unlike our
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Fig. 2: LS of systems (12) and (13) with (24):
(a) ηd

11(t) andηr
11(t) versust, (b) ηd

12(t) andηr
12(t) versust, (c) ηd

21(t) andηr
21(t) versust, (d) ηd

22(t) andηr
22(t) versust, (e) ηd

31(t)
andηr

31(t) versust, (f) ηd
41(t) andηr

41(t) versust.

results. We solve systems (12) and (13) with the same
parameters and initial conditions in [31]. But the number
of control functions in our paper is less than those used in
[31]. This shows the effectiveness of controller (24)
which has been calculated by using theorem 1 in our
scheme.

6 Conclusion

In engineering applications, time lag always exists. For
example in the telephone communication system, the
voice one hears on the receiver side at timet is the voice

from the transmitter side at timet − τ. So, strictly
speaking, it is not reasonable to require the drive system
to synchronize the response system at exactly the same
time. Therefore, recently, much attention has been given
to the LS, in which the state of the response system at
time t is asymptotically synchronous with the drive
system at timet − τ .
Unique to this paper is to study LS of hyperchaotic
complex nonlinear systems by using passive control
theory. LS of two identical hyperchaotic complex Lorenz
systems is achieved by applying the passivity therory on
the error dynamical system with time lag. We have shown
that the error dynamical system is passive system and the
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Fig. 3: LS errors: (a) (∆11, t) diagram, (b) (∆12, t) diagram, (c) (∆21, t) diagram, (d) (∆22, t) diagram, (e) (∆31, t) diagram, (f) (∆41, t)
diagram.

controller is derived by applying theorem 1 [47]. All the
theoretical results are verified by numerical simulation of
our example. An excellent agreement is found as shown
in Figures2 and3. LS occurs after reasonable value oft
as shown in Figure2. Figure 3 displays the error
dynamical systems. These errors approach zero after
small values oft which shows the effectiveness of the
controller. Our results in this paper are better than those
published in the [31]. Although the number of control
functions in our paper is less than those used in [31].
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