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Abstract: In this paper, the problem of stability analysis of nonlinear stochastic Hopfield neural networks(FHNNs) with time-varying
delays is investigated by using the Takagi-Sugeno(T-S) approach. Combined with both the fuzzy relaxed technique and an improved
free-weighting matrix approach with weighting-dependent Lagrange multipliers, less conservative stability criteria is proposed via the
Lyapunov-Krasovskii functional approach. Furthermore, related algebraic properties of the fuzzy membership functions in the unit
simplex are considered in the process of stability analysis and the obtained stability criteria is in terms of Linear matrix inequalities.
Finally, an illustrative example shows less conservatism of the proposed approaches.
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1. Introduction

Over the past decades, the Hopfield neural networks
(HNNs) [1] have been extensively studied because of
their important applications in various fields such as
combinatorial optimization, signal processing, image
processing and pattern recognition problems, see for
examples [2-3]. These applications are built upon the
stability of the equilibrium of neural networks. Thus, the
stability analysis is a necessary step of the design and
applications of neural networks. On the other hand, both
in biological and artificial neural networks, the
interactions between neurons are generally asynchronous
which inevitably result in time delays [4]. Hence, there
exist amounts of stability results for various neural
network with several kinds of time delays [5-12].
Recently, fuzzy logic theory has shown to be an appealing
and efficient approach to dealing with the analysis and
synthesis problems for complex nonlinear systems. In
[13], Takagi and Sugeno proposed an effective way to
transform a nonlinear dynamic system to a set of linear
sub-models via some fuzzy models by defining a linear
input-output relationship as its consequence of individual
plant rule. More importantly, the authors in [14] have

proved that the T-S fuzzy systems can be approximate to
any continuous functions in a compact set of Rn at any
preciseness. This allows the designers to take advantage
of conventional linear systems to analyze the nonlinear
systems [15-19]. Moreover, when performing the
computation, there are many stochastic perturbations that
affect the stability of neural networks. A neural network
could be destabilized by certain stochastic inputs. It
implies that the stability analysis of nonlinear stochastic
neural networks also has primary significance in the
research of neural networks.

Recently, the standard T-S fuzzy model has been used
to analyze the stability analysis for various kinds of
nonlinear neural networks with time delays and some
stability conditions were presented in terms of linear
matrix inequalities(LMIs). The problem of exponential
stability for T-S fuzzy model, in which the consequent
parts are composed of a set of stochastic HNNs with
time-varying delays, has been addressed in [20], and the
global asymptotic stability problem of fuzzy BAM neural
networks with time-varying delays and parameter
uncertainties has been investigated by means of T-S fuzzy
modeling approach in [21]. New global stability criterion
for T-S fuzzy Hopfield neural networks with time delays
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has also been provided in [22] by using a generalized
Lyapunov functional and introducing a parameterized
model transformation with free weighting matrices.
Moreover, robust stability for uncertain delayed fuzzy
Hopfield neural networks with markovian jumping
parameters has also been investigated in [23] by
considering both the lower and the upper value of the
interval time delay. More recently, delay-dependent
stability analysis for stochastic fuzzy neural networks has
been investigated in [24-27]. To the best of our
knowledge, the common Lyapunov-Krasovskii functional
(one common Lyapunov matrix P for the overall fuzzy
space) and conventional relaxed techniques were applied
in the proof of [20-24] which tends to produce much
conservatism.

In this paper, less conservative stability criteria for
nonlinear stochastic Hopfield neural networks with time
varying delays is proposed via the T-S fuzzy approach. To
reduce the conservatism of previous results, we construct
a parameter dependent Lyapunov-Krasovskii functional
and derive less conservative stability criteria through
using an improved free-weighting matrix approach with
weighting-dependent Lagrange multipliers. Furthermore,
new fuzzy relaxed techniques are also developed to
further reduce the conservatism and algebraic properties
of the fuzzy membership functions in the unit simplex are
considered in the process of stability analysis. Finally, a
numerical example is also given to demonstrate the
effectiveness of the method proposed in this paper.

2. System description and preliminaries
The model of Hopfield neural networks with time-varying
delay can be expressed as follows:
u̇i(t) =−ciui(t)+∑n

j=1 ai jg j(u j(t − τ(t)))+ Ji, (1)

where i = 1,2, ...,n, ui(t) is the state variable of the ith
neuron at time t; ci > 0 represents the passive decay rate;
ai j is the synaptic connection weight; g j(·) is the
activation function of the neuron; Ji denotes the external
input; τ(t) represents the time-varying delay of neural
networks satisfying 0 < τ(t)≤ h and τ̇(t)< σ .

Throughout this paper, we make the following
assumption about g j(u j(t)).

Assumption 2.1:

0 ≤ gi(x)−gi(y)
x− y

≤ Lq,q = 1,2, ...,n,

for all x,y ∈ R,x ̸= y and denotes L = {L1,L2, ...,Ln}.
It is reasonable to assume that the neural network (1)

has only one equilibrium point[1], denoted by

u∗ = (u∗1,u
∗
2, . . . ,u

∗
n).

We shift the equilibrium to the origin by transformation
x(t) = u(t)−u∗, which yields the following system:

dx(t)
dt

=−Cx(t)+A f (x(t − τ(t))), (2)

where
x(t) = [x1(t),x2(t), · · · ,xn(t)]T ∈ Rn, C = (c1,c2, · · · ,cn),
A = (ai j)n×n,

f (x) = [ f1(x1), f2(x2), ..., fn(xn)] ∈ Rn

with fi(xi) = gi(xi +u∗i −gi(u∗i ))(i = 1,2, ...,n). Under the
above assumption, it is easy to get | fi(xi(t))| ≤ li|xi(t)|(i =
1,2, ...,n).

As mentioned previously, stochastic perturbations in
neural networks are always unavailable in practice.
Therefore, the kth rule of the T-S fuzzy neural network
with stochastic perturbations is of the following form:
Plant Rule k:
IF θ1(t) is ηk

1 , and ..., and θp(t) is ηk
p, THEN

dx(t) =[−Ckx(t)+Ak f (x(t − τ(t)))]dt
+[Mkx(t)+Nkx(t − τ(t))]dϖ(t),

(3)

where k = 1,2, ...,r, ηk
i (i = 1,2, ..., p) is the fuzzy set,

θ(t) = [θ1(t), ...,θp(t)]T is the premise variable vector, r is
the number of IF-THEN rules. ϖ(t) is a one-dimensional
Brownian motion defined on

(Ω ,F ,{Ft}t≥0,P).

ϕ ∈ L2
F0

([−τ,0];Rn) is the initial value of (3). Ck,Ak,Mk
and Nk are constant known real matrices.

The defuzzified output of the stochastic T-S fuzzy
system (3) is represented as follows:

dx(t) =
r

∑
k=1

µk(θ(t)){[−Ckx(t)+Ak f (x(t − τ(t)))]dt

+[Mkx(t)+Nkx(t − τ(t))]dϖ(t)}, (4)

where

µk(θ(t)) =
νk(θ(t))

∑r
j=1 ν j(θ(t))

, νk(θ(t)) =
p

∏
j=1

ηk
j (θ j(t))

in which ηk
j (θ j(t)) is the grade of membership of θ k

j in ηk
j .

According to the theory of fuzzy sets, we have:

µk(θ(t))≥ 0,
r

∑
k=1

µk(θ(t)) = 1,
r

∑
k=1

µ̇k(θ(t)) = 0. (5)

In the existing work, the following assumption is
usually given for facilitating the stability analysis:

Assumption 2.2 [17]: The time derivatives of the
membership functions satisfy
|µ̇k(θ(t))| ≤ ϕk (k = 1,2, ...,r), where ϕk is a given
positive scalar.

For stochastic systems, Itô formula plays an important
role in the stability analysis of stochastic systems.
Consider a general stochastic system
dx(t) = f (x(t), t)dt +g(x(t), t)dϖ(t) on t ≥ t0 with initial
value x(t0) = x0 ∈ Rn, where f :∈ Rn ×R+ → Rn×m and
g :∈ Rn ×R+ → Rn×m. Let C 2,1(Rn ×R+;R+) denote
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the family of all nonnegative functions V (x, t) on
Rn ×R+ which are continuously twice differentiable in x
and once differentiable in t, an stochastic operator
LV (x, t) is defined from Rn ×R+ to R by

LV (x, t) =Vt(x, t)+Vx(x, t) f (x, t)

+
1
2
trace[gT (x, t)Vxx(x, t)g(x, t)],

where

Vt(x, t) =
∂V (x, t)

∂ t
, Vx(x, t)

=

(
∂V (x, t)

∂x1
, · · · , ∂V (x, t)

∂xn

)
,

Vxx(x, t) =
(

∂ 2V (x, t)
∂xi∂x j

)
n×n

.

We end this section with an useful lemma.

Lemma 2.1: [30] For any positive definite symmetric
constant matrix M ∈ Rn×n, the scalars r1 < r2 and vector
function w : [r1,r2] → Rn such that the concerned
integrations are well defined, then the following
inequality holds:(∫ r2

r1
w(s)ds

)T
M
∫ r2

r1
w(s)ds ≤ r12

∫ r2
r1

wT (s)Mw(s)ds

where r12 = r2 − r1.

3. Main results

In this section, based on the Lyapunov stability theorem
and the stochastic analysis approach, less conservative
stability criteria for the stochastic fuzzy HNNs (3) in the
mean square sense will be proposed by applying both a
parameter-dependent Lyapunov-Krasovskii functional
and some fuzzy relaxed techniques. For simplicity, we use
x,µk instead of x(t),µk(θ(t)) respectively in the
following sections. For convenience, we set

C̄ =
r

∑
k=1

µkCk, Ā =
r

∑
k=1

µkAk, M̄ =
r

∑
k=1

µkMk,

N̄ =
r

∑
k=1

µkNk, xτ = x(t − τ(t)), τ = τ(t),

then the system (4) can be rewritten as:

dx = [−C̄x+ Ā f (xτ)]dt +[M̄x+ N̄xτ ]dϖ(t). (6)

Theorem 3.1. For system (6), suppose Assumption 2
holds. Given scalar h,σ and ϕi(i = 1,2, ...,r), the
stochastic T-S fuzzy system (6) is globally asymptotically
stable in the mean square sense, if there exist two positive
diagonal matrix X and Y , real matrices
Pi > 0(i = 1, ...,r),Q > 0,R > 0,S > 0,Wik,Vik(i =

1,2, ...,6;k = 1,2, ...,r), ,Uiii = UT
iii(i = 1,2, ...,r),

Uii j = UT
jii and

Ui ji = UT
i ji(i = 1,2, ...,r, i ̸= j, j = 1,2, ...,r), Ui jl = Ul jiT ,

U jil = UT
li j and Uil j = UT

jli(i = 1,2, ...,r − 2, j =

i + 1, ...,r − 1, l = j + 1, ...,r), such that the following
LMIs hold:

Πiii <Uiii, i = 1,2, ...,r;
Πii j +Πi ji +Π jii <Uii j +Ui ji +UT

ii j,

where i = 1,2, ...,r, i ̸= j, j = 1,2, ...,r;
Πi jl +Πl ji +Πil j +Π jli +Π jil +Πli j

<Ui jl +UT
i jl +Uil j +UT

il j +U jil +UT
jil ,

where i = 1,2, ...,r−2, j = i+1, ..., r−1,
l = j+1, ...,r;

U1i1 U1i2 · · · U1ir
U2i1 U2i2 · · · U2ir

...
...

. . .
...

Uri1 Uri2 · · · Urir

< 0, i = 1,2, ...,r;

where Πi jl =



Π 11
i jl Π 12

i jl Π 13
i jl Π 14

i jl Π 15
i jl Π 16

i jl V1i

∗ Π 22
i jl Π 23

i jl Π 24
i jl Π 25

i jl Π 26
i jl V2i

∗ ∗ Π 33
i jl Π 34

i jl 0 Π 36
i jl V3i

∗ ∗ ∗ Π 44
i jl Π 45

i jl Π 46
i jl V4i

∗ ∗ ∗ ∗ Π 55
i jl Π 56

i jl V5i

∗ ∗ ∗ ∗ ∗ Π 66
i jl V6i

∗ ∗ ∗ ∗ ∗ ∗ −S


, and

Π 11
i jl = ∑r

k=1 ϕk(Pk + Ei jl) +W1iCl +CT
i W T

1l +V1i +V T
1i +

hMT
i SMl +MT

i PjMl ,
Π 12

i jl =W2i +CT
i W T

2l +V T
2i −V1i +hMiSNl +MT

i PjNl ,
Π 13

i jl = XL+W3i +CT
i W T

3l +V T
3i ,

Π 14
i jl =W4i +CT

i W T
4l −W1iAl +V T

4i ,
Π 15

i jl = Pi +W1i +C− iTW T
5l +V T

5i ,
Π 16

i jl =CT
i W T

6l +V T
6i −V1i,

Π 22
i jl =−V2i −V T

2i +hNT
i SNi +NT

i PjNl ,
Π 23

i jl =−V T
3i ,

Π 24
i jl = Y L−W2iAl −V T

4i ,
Π 25

i jl =−V T
5i ,

Π 26
i jl =−V T

6i −V2i, Π 33
i jl = Q−2X ,

Π 34
i jl =−W3iAl , Π 36

i jl =−V3i,
Π 44

i jl =−(1−σ)Q−2Y −W4iAl −AT
i W T

4l ,
Π 45

i jl =−AT
i W T

5l ,

Π 46
i jl =−AT

i W T
6l −V4i,

Π 55
i jl = hR+W5i +W T

5i ,

Π 56
i jl =W T

6i −V5i,

Π 66
i jl =− 1−σ

h R−V6i −V T
6i .

Proof. For simplicity, let us denote

g(t) =−C̄x+ Ā f (xτ), y(t) = M̄x+ N̄xτ . (7)
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Choosing a parameter-dependent
Lyapunov-Krasovskii functional as follows:

V (x, t) =V1(x, t)+V2(x, t)+V3(x, t)+V4(x, t), (8)

where

V1(x, t) = xT

(
r

∑
i=1

µiPi

)
x,

V2(x, t) =
∫ t

t−τ
f T (x(s))Q f (x(s))ds,

V3(t) =
∫ 0

−τ

∫ t

t+θ
gT (s)Rg(s)dsdθ ,

V4(t) =
∫ 0

−τ

∫ t

t+θ
yT (s)Sy(s)dsdθ .

By the Itô formula, we can calculate LV (x, t) along
(6), then we have

LV (x, t) = 2xT

(
r

∑
i=1

µiPi

)
g(t)+ xT

(
r

∑
k=1

µ̇kPk

)
x

+yT (t)

(
r

∑
i=1

µiPi

)
y(t)+ f T (t)Q f (t)

−(1− τ̇) f T (t − τ)Q f (t − τ)+ τgT (t)Rg(t)

−(1− τ̇)
∫ t

t−τ
gT (s)Rg(s)ds+ τyT (t)Sy(t)

−(1− τ̇)
∫ t

t−τ
yT (s)Sy(s)ds. (9)

By using Lemma 1, we obtain

−
∫ t

t−τ
gT (s)Rg(s)ds

≤−1
τ

(∫ t

t−τ
g(s)ds

)T

R
(∫ t

t−τ
g(s)ds

)
. (10)

Noting two diagonal positive definite matrices X and
Y and using Assumption (A), we can have that

2 f T (x(t))XLx(t)−2 f T (x(t))X f (x(t))≥ 0, (11)

2 f T (x(t − τ))Y Lx(t − τ)
−2 f T (x(t − τ))Y f (x(t − τ))≥ 0. (12)

Recalling (6) and (7), it is easy to see that the following
equalities hold

0 = 2ξ T (t)W · (g(t)+C̄x− Ā f (xτ)), (13)

0 = 2ξ T (t)V ·(
x− xτ −

∫ t

t−τ
g(s)ds−

∫ t

t−τ
y(s)dϖ(s)

)
, (14)

where

ξ (t) =
[
xT ,xT

τ , f T (x(t)), f T (x(t − τ)),gT (s),υT ]T

and υ =
(∫ t

t−τ g(s)ds
)

W =
[

W T
1 (t) W T

2 (t) W T
3 (t) W T

4 (t) W T
5 (t) W T

6 (t)
]T

,

V =
[

V T
1 (t) V T

2 (t) V T
3 (t) V T

4 (t) V T
5 (t) V T

6 (t)
]T

,

with Wi(t)=∑r
k=1 µkWik,Vi(t)=∑r

k=1 µkVik(i= 1,2, ...,6).
Based on (5), it follows that

r

∑
i=1

r

∑
j=1

r

∑
l=1

r

∑
k=1

µiµ jµl µ̇kEi jl = Ē = 0,

where Ei jl any symmetric matrices of proper dimensions.
Recalling the assumption that |µ̇i| ≤ ϕi, thus the following
inequality holds:

xT

(
r

∑
k=1

µ̇kPk

)
x

= xT

(
r

∑
i=1

r

∑
j=1

r

∑
l=1

r

∑
k=1

µiµ jµl µ̇k(Pk +Ei jl)

)
x

≤ xT

(
r

∑
i=1

r

∑
j=1

r

∑
l=1

r

∑
k=1

ϕk(Pk +Ei jl)

)
x.

On the other hand, we have

−2ξ T (t)V
∫ t

t−τ
y(s)dϖ(s)

≤ 1
1−σ

ξ T (t)V S−1V T ξ (t) (15)

+(1−σ)

(∫ t

t−τ
y(s)dϖ(s)

)T

S
(∫ t

t−τ
y(s)dϖ(s)

)
.

From (13-15), we can obtain

LV (x, t)≤ ξ T (t)
(
Ξ +V S−1V T )ξ (t)

− (1−σ)
∫ t

t−τ
yT (s)Sy(s)ds

+(1−σ)

(∫ t

t−τ
y(s)dϖ(s)

)T

S
(∫ t

t−τ
y(s)dϖ(s)

)
,

(16)

where Ξ =


Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16
∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26
∗ ∗ Ξ33 Ξ34 0 Ξ36
∗ ∗ ∗ Ξ44 Ξ45 Ξ46
∗ ∗ ∗ ∗ Ξ55 Ξ56
∗ ∗ ∗ ∗ ∗ Ξ66

, here

Ξ11 =
r

∑
i=1

r

∑
j=1

r

∑
l=1

r

∑
k=1

ϕk(Pk +Ei jl)

+W1(t)C̄+C̄TW T
1 (t)+V1(t)+V T

1 (t)

+hM̄T SM̄+ M̄T (
r

∑
i=1

µiPi)M̄,

Ξ12 =W2(t)+C̄TW T
2 (t)+V T

2 (t)−V1(t)

+hM̄SN̄ + M̄T (
r

∑
i=1

µiPi)N̄,
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Ξ13 = XL+W3(t)+C̄TW T
3 (t)+V T

3 (t),
Ξ14 =W4(t)+C̄TW T

4 (t)−W1(t)Ā+V T
4 (t),

Ξ15 = ∑r
i=1 µiPi +W1(t)+C̄TW T

5 (t)+V T
5 (t),

Ξ16 = C̄TW T
6 (t)+V T

6 (t)−V1(t),

Ξ22 =−V2(t)−V T
2 (t)+hN̄T SN̄ + N̄T (

r

∑
i=1

µiPi)N̄,

Ξ23 =−V T
3 (t), Ξ24 = Y L−W2(t)Ā−V T

4 (t),
Ξ25 =−V T

5 (t), Ξ26 =−V T
6 (t)−V2(t),

Ξ33 = Q−2X , Ξ34 =−W3(t)Ā, Ξ36 =−V3(t),
Ξ44 =−(1−σ)Q−2Y −W4(t)Ā− ĀTW T

4 (t),
Ξ45 =−ĀTW T

5 (t), Ξ46 =−ĀTW T
6 (t)−V4(t),

Ξ55 = hR+W5(t)+W T
5 (t), Ξ56 =W T

6 (t)−V5(t),
Ξ66 =− 1−σ

h R−V6(t)−V T
6 (t).

Using the well-known Schur complement lemma, it is
easy to see that Ξ +V S−1V T < 0 is equivalent to:

Π =

[
Ξ V
∗ −S

]
< 0, (17)

On the other hand, reordering the expression of Π , we
can obtain:

Π =
r

∑
i=1

µ3
i Πiii +

r

∑
i=1

r

∑
j=1, j ̸=i

µ2
i µ j(Πii j +Πi ji +Π jii)

+
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l= j+1

µiµ jµlΠ , (18)

where Π =Πi jl +Πl ji+Πil j+Π jli+Π jil +Πli j, Πi jl have
been defined in Theorem 1.

Recalling (7-10), we have

Π <
r

∑
i=1

µ3
i Uiii +

r

∑
i=1

r

∑
j=1, j ̸=i

µ2
i µ j(Uii j +Ui ji +UT

ii j)

+
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l= j+1

µiµ jµl(U)

= [µ ⊗ I]T

 r

∑
i=1

µi


U1i1 U1i2 · · · U1ir
U2i1 U2i2 · · · U2ir

...
...

. . .
...

Uri1 Uri2 · · · Urir


 [µ ⊗ I]< 0,

(19)

where U =Ui jl +UT
i jl +Uil j +UT

il j +U jil +UT
jil ,

µ = [µ1,µ2, · · · ,µr]
T .

Using the property of Itô isometry, we have

E

{(∫ t

t−τ
y(s)dϖ(s)

)T

S
(∫ t

t−τ
y(s)dϖ(s)

)}

= E
{∫ t

t−τ
yT (s)Sy(s)ds

}
. (20)
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Figure 1 Six path trajectories of x1(t).

Taking the mathematical expectation of both sides of
(21) and considering (24) and (25), there exists

E[LV (x, t)]≤−γE|x(t)|2. (21)

Thus, it follows the stochastic stability theory that the
stochastic T-S fuzzy system (6) is globally asymptotically
stable in the mean square sense.

This completes the proof.

4. Numerical examples

Example 1. Consider the stochastic fuzzy HNNs (3) with
r = 2. The fuzzy T-S fuzzy model of fuzzy Hopfield
neural network is of the following form:
Plant Rules:
Rule 1: IF θ1(t) are Mk1, THEN
dx(t) = (−C1x(t) + A1 f (x(t − τ(t))))dt + [M1x(t) +
N1x(t − τ(t))]dϖ(t),
Rule 2: IF θ2(t) are Mk2, THEN
dx(t) = (−C2x(t) + A2 f (x(t − τ(t))))dt + [M2x(t) +
N2x(t − τ(t))]dϖ(t),
with f (x) = tanh(x). The membership functions for rules
1 and 2 are Mk1 = 1

e−2θ1(t)
,Mk2 = 1 − Mk1, and

C1 =

[
1 0
0 1

]
,

A1 =

[
0.1 0
0 0.3

]
,C2 =

[
1 0
0 1

]
,A2 =

[
0.88 0.30
0.26 −0.25

]
,

M1 =

[
2.7 0
0 2.6

]
,N1 =

[
1.8 0
0 2.5

]
.

Combining with the above membership functions, we
set the Assumption 2 as |µ̇1| < 10 and |µ̇ |2 < 10. Using
Theorem 1, the allowable value of h with τ̇(t) = 0.5 is
calculated as h = 2.6s which is larger than those existing
approaches’ results. This fact illustrates that less
conservative stability criteria is provided by using the
method proposed in this paper. Next, choosing system
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Figure 2 Six path trajectories of x2(t).

initial condition as x(0) = (1,−0.5)T and h = 2.6s, Fig. 1
and Fig. 2 show six path trajectories of x1(t) and x2(t)
respectively. From these two figures, one can conclude
that the above stochastic fuzzy Hopfield neural networks
with time-varying delays is globally asymptotically stable
in the mean square sense.

5. Conclusion

Less conservative stability criteria for nonlinear stochastic
Hopfield neural networks with time-varying delays has
been derived by using a parameter-dependent Lyapunov
functional. The proposed condition is given in terms of
LMIs and thus can be readily solved via standard
numerical software. With the purpose of reducing the
conservatism, new fuzzy relaxed techniques are also
developed. Finally, numerical example has been provided
to demonstrate the effectiveness of the proposed criterion.
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