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Abstract: As a key service model in cloud computing, SaaS applications are becoming increasingly popular. Multi-tenancy is a
key characteristics of SaaS applications. Business processes play a key role in SaaS applications because of the composability and
reusability of software services. This paper focuses on multi-tenants instance-intensive workflows system, in which workflows have a
large number of instances belonging to multiple tenants in a SaaS environment, and further proposes a scheduling algorithm for multi-
tenants workflow instances. This algorithm improves the quality of service (QoS) for tenants and saves the execution cost of workflows.
The simulation results demonstrate that the proposed algorithm guarantees the workflow execution conforming to the deadline set by
tenants, and reduces the mean execution time for tenants in high priority whilst saves the execution cost for service providers.
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1. Introduction

As the development of cloud computing [1,2] and
software technology, SaaS (Software as a Service) is
widely used for bringing benefits to both software service
providers and tenants. Multi-tenants [3] architecture is
deemed as an important technology for SaaS application
providers to achieve high profit margin. SaaS application
is delivered to multiple tenants through the Internet in a
single-instance multi-tenants architecture model.

The character of SaaS application can be simply
summarized as multi-tenancy, scalable and customizable.
Multi-tenancy allows multiple tenants to share a single
application instance securely, which can effectively
reduce service costs. Scalable means that the number of
servers and instances can be increased or decreased
according to the demand, so SaaS architecture is scalable
to an arbitrary number of tenants. Customizable allows
tenants to alter the user interface, change data fields
shown up in the program, and turn off or on several
business process functions [4].

Many SaaS applications require workflow processing
in which tasks are executed based on their control or data
dependencies. Workflow scheduling plays a key role of

determining the efficiency of workflow system, therefore,
it has a practical significance to the development of
workflow scheduling algorithm for multi-tenants SaaS
environment. However, there are no dedicated scheduling
algorithms for multi-tenants instance-intensive
workflows. This paper presents a novel scheduling
algorithm which considers the new features of
multi-tenants SaaS application.

In a multi-tenants environment, each tenant has a
certain number of workflow instances, and with the
increase of tenants, there will be a huge number of
workflow instances belonging to multiple tenants, we call
such workflows multi-tenants instance-intensive
workflows. The multi-tenants instance-intensive
workflows scheduling algorithm should consider
following criterions: 1)the quality of service experience
(QoSE) of tenants in different service level agreements
(SLA); 2) mean execution time of multiple workflow
instances; 3)save the execution cost for service providers.

To address these challenges, we propose a scheduling
algorithm to efficiently support multi-tenants
instance-intensive workflows. The objectives of our
scheduling strategy are: (1) Workflow instances execution
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meet the deadline imposed by tenants in different
priorities. (2) The workflow instances mean execution
time of high priority tenants is as short as possible, which
means high user QoSE. (3) Minimize the execution cost
for service providers.

The remainder of the paper is organized as follows: In
Section2, we present an overview of the related work. In
Section 3, we formulate the problem of scheduling
instance-intensive workflows in a multi-tenants
environment. Section 4 discusses the details of the
scheduling algorithm. Experimental details and
simulation results are presented in Section 5. Finally, we
conclude the paper and point out the future work in
Section 6.

2. Related Work

In SaaS model, service providers provide collaborative
process control application through workflow technology,
and meanwhile the workflow scheduling algorithm
determines the efficiency of the workflow system,
therefore, a new algorithm for multi-tenants
instance-intensive workflows is very important.

Scheduling workflow tasks onto a set of available
machines in distributed systems is a well-know
NP-complete problem, even in the simplest form [6,7].

Some workflow scheduling algorithms mainly target
on the minimization of execution, where typical grid
workflow scheduling algorithms can be classified to this
type, such as the HEFT heuristic[8] used by ASKALON
[9], Myopic heuristic [10] used by grid Condor DAGMan
[11], Min-Min Heuristic [12] and GRASP meta-heuristic
[13] used by Kepler [14], and so on. However, the
algorithms mentioned above do not consider other factors
such as monetary cost of accessing resources and various
users’ QoS. As a result it is not practical to apply such
algorithms to a multi-tenants environment.

In contrast, some workflow scheduling algorithms
attempt to consider the constraint of monetary cost as the
major factor. The existing representative algorithms
include Genetic meta-heuristic implemented in GridBus
[15], Dead line-MDP heuristic [16], Back-Tracking
heuristic [17], Loss and Gain [18], and so on. However
these algorithms are only designed for scheduling a single
workflow instance.

In [5], the CTC algorithm is designed to schedule
instance-intensive workflow on a cloud workflow system
SwinDew-C [19]. In [20], a throughput maximization
strategy is proposed for scheduling transaction intensive
workflows. However, such instance-intensive workflow
scheduling algorithms have not considered the
multi-tenants environment. In [22], the authors present
the parallel real-time scheduling algorithm on multi-core
platform. Dynamic programming and multi-objective
linear programming approaches [23], genetic ant
algorithm [24], a learning based evolutionary approach
[25] and localization algorithm [26] are also effective

optimization algorithms, but they are not suitable for the
workflow scheduling problem.

3. Problem Formulation

Before the description of the scheduling strategy, we first
give some definitions which will be used late.
Definition 1: (Multi-Tenants Workflows (MTW)) Multi-
tenants Workflows is defined as a triple MTW =(Ten,WF,
OD), where

(1) Ten = (ID, lev) is the tenant, where ID is tenant
ID, lev is the priority of tenant. Ten ∈ Tens,
Tens = {Ten1,Ten2, . . . ,Tenm}, where m is the number of
tenants.

(2) WF = (Ts,Es) is the workflow model of a tenant.
WF can be described as a directed acyclic graph, where Ts
is a finite set of workflow tasks Ti(1 ≤ i ≤ n) , Es is the
set of directed arcs ( Ti,Tj ). We further define that Ti is the
parent task of Tj and Tj is the child task of Ti. We assume
that a child task cannot be executed until all its parent tasks
are completed. In a workflow graph, we call a task which
has no parent task an entry task denoted as Tentry and a task
which has no child task an exit task denoted as Texit .

(3) OD is the time constrained (i.e. overall deadline)
by the tenant for workflow execution.

A workflow model of the ith tenant is described as
MTWi = (Teni,WF,ODi), where Teni is the ith tenant,
WF = (Ts,Es) is the workflow of the ith tenant, and ODi
is the deadline of the ith tenant.

From the above definitions, we know that different
tenants have the same workflow model, but different
deadlines.
Definition 2: (Tenant Workflow Instance)
I = {I1, I2, . . . , Im} is the set of workflow instances of all
tenants, where Ii is the set workflow instances of ith
tenant and m is the total number of tenants.
Ii = {Ii1, Ii2, . . . , Iio} , Ii j is the jth workflow instance of ith
tenant, 0 ≤ j ≤ oi , oi is the total number of instances of
ith tenant.
Definition 3: (Tenant Workflow task instance) Ti jk is the
kth task of jth instance of ith tenant, 1≤ i≤ m ,0≤ j ≤ oi
,0≤ k≤ n , where m is the total number of tenant, oi is the
total number of instances of ith tenant, and n is the number
of the tasks in the workflow model.
Definition 4: (Tenant Workflow Instance Time-Saving-
Degree (TSD)) T SD = 1 − Makespan+SWT

OD , where
Makespan (execution time) is the time spent from the
beginning of the first task to the end of the last task for a
workflow instance execution, SWT (scheduling waiting
time) is the time spent from the workflow instance
submission to the beginning of the first task, OD is the
time constrained by the tenant for workflow execution.
Definition 5: (Sub-Deadline (SD)) The latest completion
time allocated to a single task. SDTi jk is the sub-deadline
of task Ti jk.
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Definition 6: (Service Resource (R)) Software service
resources are used to execute workflow tasks.
SetR = {SetR1, SetR2, . . . ,SetRn} is the set of various
type resources. SetRk = {R1

k ,R
2
k , . . . ,R

pk
k } is the set of

resource, every resource in SetRk is capable of executing
the task Tk (1 ≤ k ≤ n), but only one resource can be
assigned for the execution of a task, n is the total number
of workflow task, pk is the total number of resources
which is capable for executing the task Tk ,Rh

k is the hth
resource which is capable for executing task Tk.

Resources have different processing capabilities
delivered at different prices. Every resource can execute
one task at the same time. The scheduling problem is to
select a suitable resource Rh

k from SetRk for task Tk.

Definition 7: (Execution Time (ET)) ET
Rh

k
Ti jk

is the

execution time for executing task Ti jk on resourceRh
k .

Definition 8: (Execution Cost (EC)) EC
Rh

k
Ti jk

is the

execution cost for executing task Ti jk on resource Rh
k .

Execution cost is the money spent of the service provider.

Definition 9: (Earliest Start Time (EST)) The earliest
start execution time of task Ti jk is denoted as ESTTi jk .
EST of a task is determined by the completion time of its
predecessors.

4. Multi-tenants Instance-intensive
Workflows Scheduling Algorithm

Service providers are increasingly concerned of users’
QoSE and how to save cost for executing multi-tenants
instance-intensive workflows. Considering the new
features of multi-tenants instance-intensive workflows,
we propose a Time-Saving-Degree and cost optimization
(TSD-Cost) scheduling algorithm which mainly focuses
on increasing users’ QoSE and minimizing execution cost
for service providers. In this paper, QoSE can be
described as the higher the tenant’s priority is, the bigger
the mean Time-Saving-Degree is.

Before we give the details of the schedule strategy, we
first give the overview of the algorithm and present the
algorithm details next. The algorithm can be divided into
6 steps:

Step1. Calculate the sub-deadline for tasks of all
instances.

Step2. Select ready tasks and group tasks according to
the resources required by every task, and sort the tasks by
the sub-deadline and the tenant level.

Step3. Sort the resources according to the execution
cost.

Step4. Allocate a suitable time-slot of resource to
every ready task.

Step5. For each task allocated on a resource, adjust the
task start execution time.

Step6. Go to step2 for the next round scheduling.

The details of each step are provided in the following
sub sections, and the pseudo-code of the schedule
algorithm is given below.

Input: I : Set of workflow instances sets of each tenant
Output: Schdule : A schedule

1.Schdule← φ;
//Step1:Calculate the sub-deadline for tasks of all instances

2.for each Ii ∈ I
3. Calculate the sub-deadline according to the principle

introduced below
//Step2: Group and sort ready tasks

4.TaskQueue[]← GroupTasks(I)
//Step3: Sort the resources.

5.ResourceQueue[]← SortResources(TaskQueue[])
//Step4: Assign a suitable time slot of resource to each ready
task.

6.partialSchdule←
AssingResources(TaskQueue[],ResourceQueue[])
//Step5:Adjust task start execution time

7.partialSchdule← ASET (partialSchdule)
8.Schdule← Schdule+ partialSchdule

//Step6: Go to step2 for the next schedule
9.Go to step2 for the next schedule.

Algorithm 1: Scheduling Algorithm

Step1: Calculate the sub-deadline
Similar to the overall deadline of the each workflow

instance, a sub-deadline is the latest completion time
allocated to each task instance, which the completion of
the task should not exceed

The Deadline-MDP heuristic [16] shows a practical
method to divide the overall deadline into sub-deadline,
which contains two major steps: in the first step it
categorized the tasks into simple tasks and
synchronization tasks.

In the second step, the overall deadline is distributed to
each task in proportion to their minimum processing time.
In this paper, we reference the Deadline-MDP to divide
the overall deadline. The time division complies with the
following principles:

1. The cumulative sub-deadline of any independent
path between two synchronization tasks must be same.

2. The cumulative deadline of any path from Tentry to
Texit is equal to the overall deadline.

3. Any assigned sub-deadline must be greater than or
equal to the minimum processing time of the
corresponding task.

4. The overall deadline is divided over tasks in
proportion to their mean execution time. The mean
execution time of a task is the mean task execution time
on every available resource

Step2: Group and sort ready tasks
The second step of the scheduling algorithm is to

group and sort ready tasks. Ready tasks are selected from
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the multiple instances of multiple tenants with the same
workflow model. A ready task is the start task of a
workflow instance or a task whose predecessors have all
been allocated. The ready tasks with the same resource
requirements are grouped and allocated together, while
different task groups can be scheduled in parallel. Every
task in the same task group has the same task type, e.g. all
task instances T1 will be grouped to T G1.

After ready tasks have been selected and grouped as
task groups, for each task group, sort tasks by the sub-
deadline in descending order and then sort the tasks by
the tenant level in ascending order.

The purpose of sorting is to first select the task with
the maximum sub-deadline and minimum tenant level for
scheduling. The pseudo-code of this period is given below:

Input: I : Set of workflow instances sets of each tenant
Output: TaskQueue[] : Array of sorted task queues
//Group and sort ready tasks
// sub-step1 Group ready tasks

1.TaskQueue[]← φ;
2.for each Ii ∈ I do
3. for each Ii j ∈ Ii do
4. while ∃Ti jk ∈ Ii j is ready
5. ReadyTasks← Ti jk
6.for each task Ti jk in ReadyTasks do
7.T Gk← Ti jk // Ti jk requires resource Rh

k
//sub-step2 Sort ready tasks

8.for each task group T Gk do
9. while ∃Ti jk ∈ T Gk do

10. insert task Ti jk into queue TaskQueue[k]
according to the strategy introduced above

11.return array of sorted task queues TaskQueue[]

Algorithm 2: Group Tasks (GroupTasks)

Step 3: Sort resources according to the execution
cost

There are many resources can be used to executing a
same type task. Different resources will have different
executing speed and cost. In general, higher executing
speed which can reduce the execution time normally
results in higher execution cost. In this step, every
resource in the same resource set will be sorted by their
executing cost from small to large. The purpose of sorting
is to first select the resource with the lowest execution
cost for a ready task. The pseudo-code of this period is
given below:

Step 4: Allocate resource time-slot for every ready
task

This step is to map ready tasks onto resources. We
take resource as a time shaft, for each resource R, we can
use a time-slot window to represent the time allocation
status of its execution unit. The window represents the
time used for task execution on the resource. Figure 1
shows the overview of the allocating strategy.

Input: TaskQueue[] : array of sorted task queues
Output: ResourceQueue[] : Array of sorted resource

queues

1.ResourceQueue[]← φ
2.for each TaskQueue[k] ∈ ResourceQueue[]
3. for each Rh

k ∈ SetRk do
4. insert Rh

k into queue ResourceQueue[k] by
cost in ascending order

5.return ResourceQueue[]

Algorithm 3: Sort Resources( SortResources )

... ...All instances 1
iR
2
iR

iSetR

ip
iR

......
jp

jR

1
jR

2
jR

jSetR

Figure 1 An Overview of Scheduling Strategy

The pseudo-code of this period is given below:
Step 5: adjust start execution time
According to our allocating strategy, the start

execution time of task on resource may be later than the
earliest start time of task, so after allocating tasks, we
should adjust start execution time of every task on each
resource.

The related terms defined are listed below:
StartR

T : It is the start execution time of task T on
resource R.

EndR
T : It is the completion time of task T on resource

R.
The pseudo-code of this period is given below:
Step6. Next round scheduling
After all ready tasks being allocated to specific

resources, the scheduler will go to step 2 for next
scheduling until all tasks are allocated.

5. Simulation and Comparison

In order to evaluate the performance of the schedule
algorithm, we have developed an experimental simulator.
We compare our proposed scheduling algorithm denoted
as TSD-Cost with Deadline-MDP algorithm which is
more effective than Deadline-Level and Greedy-Cost
algorithms which are derived from the cost optimization
algorithm in Nimrod-G [21]. The Deadline-MDP
approach is initially designed for scheduling a single
scientific workflow on Grids.

Workflow model simulation
As execution requirements for tasks in SaaS workflow

application are heterogeneous, service type is used to
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Input: TaskQueue[] ResourceQueue[]
Output: partialSchdule : A partial schedule of I

1.partialSchdule← φ
2.for each TaskQueue[k] is not empty
3. T ← first task in TaskQueue[k]
4. while ResourceQueue[k] is not empty
5. R← first Resource in TaskQueue[k]
6. if(ESTR =−1)
7. if((SDT −ET R

T )≥ ESTT )
8. partialSchdule←

partialSchdule+assign(R,T,SDT −ET R
T ,SDT )

9. ESTR = SDT −ET R
T

10. else
11. R← next Resource in

ResourceQueue[k]
12. else
13. if(SDT ≥ ESTR&&(ESTR−ET R

T )≥ ESTT )
14. partialSchdule←

partialSchdule+assign(R,T,ESTR−ET R
T ,ESTR)

15. ESTR = ESTR−ET R
T

16. elseif
(((SDT < ESTR)&&(SDT −ET R

T ))≥ ESTT )
17. partialSchdule←

partialSchdule+assign(R,T,SDT −ET R
T ,SDT )

18. ESTR = SDT −ET R
T

19. else
20. R← next Resource in TaskQueue[k]
21.return partialSchdule

Algorithm 4: AssignResources(AssingResources)

Input: partialSchdule : A partial shedule
Output: partialSchdule′ : A partial shedule with start

execution time adjusted

1.for each R in Schdule.assign(R,−,−,−)
2. for each task T allocated on R
3. insert task T into queue TaskQueueR accor-

ding to the StartR
T from small to large

4. end← ∞
5. while TaskQueueR is not empty
6. T ← first task in TaskQueueR
7. if (StartR

T > ESTT &&end == ∞)
8. StartR

T ← ESTT
9. EndR

T ← StartR
T +ET R

T
10. if (StartR

T > ESTT &&ESTT ≥ end)
11. StartR

T ← ESTT
12. EndR

T ← StartR
T +ET R

T
13. if (StartR

T > ESTT &&ESTT < end)
14. StartR

T ← end
15. EndR

T ← StartR
T +ET R

T
16. end← EndR

T
17.return partialSchdule′

Algorithm 5: Adjust Start Execution Time(ASET)

represent different type of resource. In our experiment
environment, each task requires a certain type of service.
We randomly generate various workflow graphs with only
3-9 tasks which represent multi-tenants instance-intensive
workflows and randomly select a workflow model for our
test.

Workflow instance simulation
In order to test the performance of different algorithm,

a workflow instance generator creates 10,000-18,000
instances are used to simulate the huge number of
workflow instances. These instances belong to 100
tenants whom can be belonged to 3 levels. Each tenant
has 100-180 instances. In this experiment, tenant level is
simply determined by the deadline (i.e., the greater the
deadline is, the lower tenant level is). For example, a
tenant with deadline in [100, 200] belong to level 1, a
tenant with deadline in [50, 100] belong to level 2.

Multi-tenant environment simulation
According to workflow model, our simulate cloud

environment has a certain number types of resources
which is equal to the number of task types. Each type of
resource has 3-8 resources with different execution time
and execution cost.

The Figure 2 compare the execution cost of using TSV-
Cost and Deadline-MDP for scheduling a same batch of
workflow instances with instances number 10000, 12000,
14000, 16000, and 18000 respectively.

 
Figure 2 Comparison on execution cost

Both algorithms meet the deadline, but the execution
cost of TSD-Cost algorithm is less than that of the
Deadline-MDP algorithm although slightly, which mean
TSD-Cost algorithm can save more money than
Deadline-MDP algorithm for service providers.

Figure 3(a) demonstrates the comparison results on
the mean tenant workflow instance time-saving-degree of
different levels on TSD-Cost algorithm. It can be seen
that the time-saving-degree of high level tenant is always
higher than that of low level tenant in all circumstances.
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(a) Time-Saving-Degree of TSD-Cost algorithm

 
(b) Time-Saving-Degree of Deadline-MDP algorithm

Figure 3 Comparison of Time-Saving-Degree

Figure 3(b) demonstrates the comparison results on
the mean tenant workflow instance time-saving-degree of
different levels on Deadline-MDP algorithm. It can be
seen that the time-saving-degree of high level tenant is
not always higher than that of low level tenant, which
means low user experience.

6. Conclusions and future work

As scheduling is always a key factor for workflow systems,
it is necessary to design workflow scheduling algorithm
suitable for SaaS multi-tenants environment. The primary
work of this research can be divided into the following five
aspects:

1. Analyze and conclude the new challenges of
scheduling multi-tenants instance-intensive workflows;

2. Give the formalization description of scheduling
issue.

3. Present a scheduling algorithm for multi-tenants in-
stance-intensive workflows.

4. Introduce a case study to show the details of the
scheduling process;

5. Plan the performance experiments to prove the
proposed algorithm is efficient and effective.

In the future work, we plan to develop a realistic
experiment environment and study how to add more QoS
constrained to workflows.
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