
Appl. Math. Inf. Sci. 7, No. 1L, 85-90 (2013) 85

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Software Design and Implementation for MapReduce
across Distributed Data Centers
Lizhe Wang1,5,∗, Jie Tao2, Yan Ma1, Samee U. Khan3, Joanna Kołodziej4, Dan Chen5,∗

1 Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, P. R. China
2 Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany
3 Department of Electrical and Computer Engineering, North Dakota State University, USA
4 Institute of Computer Science, Cracow University of Technology, Poland
5 School of Computer Science, China University of Geosciences, P. R. China

Received: 29 Aug. 2012, Revised: 24 Nov. 2012, Accepted: 4 Dec. 2012
Published online: 1 Feb. 2013

Abstract: Recently, the computational requirements for large-scale data-intensive analysis of scientific data have grown significantly.
In High Energy Physics (HEP) for example, the Large Hadron Collider (LHC) produced 13 petabytes of data in 2010. This huge amount
of data are processed on more than 140 computing centers distributed across 34 countries. The MapReduce paradigm has emerged
as a highly successful programming model for large-scale data-intensive computing applications. However, current MapReduce
implementations are developed to operate on single cluster environments and cannot be leveraged for large-scale distributed data
processing across multiple clusters. On the other hand, workflow systems are used for distributed data processing across data centers. It
has been reported that the workflow paradigm has some limitations for distributed data processing, such as reliability and efficiency. In
this paper, we present the design and implementation of G-Hadoop, a MapReduce framework that aims to enable large-scale distributed
computing across multiple clusters. G-Hadoop uses the Gfarm file system as an underlying file system and executes MapReduce tasks
across distributed clusters.
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1. Introduction

The rapid growth of Internet and WWW has led to vast
amounts of information available online. In addition,
social, scientific and engineering applications have
created large amounts of both structured and unstructured
information which needs to be processed, analyzed, and
linked [1,2]. Nowadays data-intensive computing
typically uses modern data center architectures and
massive data processing paradigms. This research is
devoted to a study on the massive data processing model
across multiple data centers.

The requirements for data-intensive analysis of
scientific data across distributed clusters or data centers
have grown significantly in the recent years. A good
example for data-intensive analysis is the field of High
Energy Physics (HEP). The four main detectors including
ALICE, ATLAS, CMS and LHCb at the Large Hadron
Collider (LHC) produced about 13 petabyes of data in
2010 [3,4]. This huge amount of data are stored on the

Worldwide LHC Computing Grid that consists of more
than 140 computing centers distributed across 34
countries. The central node of the Grid for data storage
and first pass reconstruction, referred to as Tier 0, is
housed at CERN. Starting from this Tier, a second copy of
the data is distributed to 11 Tier 1 sites for storage, further
reconstruction and scheduled analysis. Simulations and
USER ANALYSIS are performed at about 140 Tier 2
sites. In order to run the latter, researchers are often
forced to copy data from multiple sites to the computing
centre where the DATA ANALYSIS is supposed to be
run. Since the globally distributed computing centers are
interconnected through wide-area networks the copy
process is tedious and inefficient. We believe that moving
the computation instead of moving the data is the key to
tackle this problem. By using data parallel processing
paradigms on multiple clusters, simulations can be run on
multiple computing centers concurrently without the need
of copying the data.
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Currently data-intensive workflow systems, such as
DAGMan [5], Pegasus [6], Swift [7], Kepler [8], Virtual
Workflow [9,10], Virtual Data System [11] and Taverna
[12], are used for distributed data processing across
multiple data centers. There are some limitations for
using workflow paradigms across multiple data centers:
1) Workflow system provides a coarse-grained parallelism
and cannot fulfill the requirement of high throughput data
processing, which typically demands a massively parallel
processing. 2) Workflow systems for data intensive
computing typically requires large data transfer for
between tasks, sometime it brings unnecessary data
blocks or data sets movement. 3) Workflow systems have
to take care of fault tolerance for task execution and data
transfer, which is not a trivial implementation for data
intensive computing. Given the wide acceptance of the
MapReduce paradigm, it would be natural to use
MapReduce for data processing across distributed data
centers, which can overcome the aforementioned
limitations of workflow systems.

In this paper, we present the design and
implementation of G-Hadoop, a MapReduce framework
that aims to enable large-scale distributed computing
across multiple clusters. In order to share data sets across
multiple administrative domains, G-Hadoop replaces the
Hadoop’s native distributed file system with the Gfarm
file system. Users can submit their MapReduce
applications to G-Hadoop, which executes map and
reduce tasks across multiple clusters.

G-Hadoop provides a parallel processing environment
for massive data sets across distributed clusters with the
widely-accepted MapReduce paradigm. Compared with
data-intensive workflow systems, it implements a
fine-grained data processing parallelism and achieves
high throughput data processing performance.
Furthermore, by duplicating map and reduce tasks
G-Hadoop can provide fault tolerance for large-scale
massive data processing.

The rest of this paper is organized as follows: Section
2 discusses background and related work of our research;
Section 3 and Section 4 present the design and
implementation of G-Hadoop. Finally Section 5
concludes the paper and points out the future work.

2. Background and related work

A computing Cloud is a set of network enabled services,
providing scalable, QoS guaranteed, normally
personalized, inexpensive computing infrastructures on
demand, which can be accessed in a simple and pervasive
way [13]. Conceptually, users acquire computing
platforms, or IT infrastructures from computing Clouds
and execute their applications. Therefore, computing
Clouds render users with services to access hardware,
software and data resources, thereafter an integrated
computing platform as a service.

The MapReduce [14] programming model is based on
two main procedures in functional programming: Map
and Reduce. The Map function processes key/value pairs
to generate a set of intermediate key/value pairs and the
Reduce function merges all the same intermediate values.
Many real-world applications are expressed using this
model.

The Apache Hadoop project [15], the mostly used
MapReduce implementation, develops open-source
software for reliable, scalable massive data processing
with the MapReduce model. It contains 1) Hadoop
Distributed File System (HDFS), a distributed file system
that provides high-throughput access to application data,
and 2) Hadoop MapReduce, a software framework for
distributed processing of large data sets on compute
clusters.

The Gfarm file system [16] is a distributed file system
designed to share vast amounts of data between globally
distributed clusters connected via a wide-area network.
Similar to HDFS the Gfarm file system leverages the local
storage capacity available on compute nodes. A dedicated
storage cluster (SAN) is not required to run the Gfarm file
system.

The main task of a Distributed Resource Management
System (DRMS) for a cluster is to provide the
functionality to start, monitor and manage jobs. In our
initial implementation, we use the Torque Resource
Manager [17] as a cluster DRMS. Distributed Resource
Management Application API (DRMAA) [18] is a
high-level API specification for the submission and
control of jobs to one or more DRMSs within a
distributed Grid architecture. In this research, we use
DRMAA as an interface for submitting tasks from
G-Hadoop to the Torque Resource Manager.

3. System Design of G-Hadoop

3.1. Target environment and development goals

Our target environments for G-Hadoop are multiple
distributed High End Computing (HEC) clusters. These
clusters typically consist of specialized hardware
interconnected with high performance networks such as
Infiniband. The storage layer is often backed by a parallel
distributed file system connected to a Storage Area
Network (SAN). HEC clusters also typically employ
cluster scheduler, such as Torque, in order to schedule
distributed computations among hundreds of compute
nodes. Users in HEC clusters generally submit their jobs
to a queue managed by the cluster scheduler. When the
requested number of machines becomes available, jobs
are dequeued and launched on the available compute
nodes.

We keep the following goals when developing
G-Hadoop:
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–Minimal intrusion: When leveraging established HEC
clusters with G-Hadoop, we try to keep the autonomy
of the clusters, for example, insert software modules in
the cluster head node and only execute tasks by talking
with a cluster scheduler.

–Compatibility: The system should keep the Hadoop
API and be able to run existing Hadoop MapReduce
programs without or only with minor modifications of
the programs.

3.2. Architecture overview

The proposed architecture of G-Hadoop represents a
master/slave communication model. Figure 1 shows an
overview of the G-Hadoop’s high-level architecture and
its basic components: the G-Hadoop Master node and the
G-Hadoop Slave nodes.

For simplicity of illustration assume that the
G-Hadoop Master node consolidates all software
components that are required to be installed at a central
organization that provides access to the G-Hadoop
framework. A G-Hadoop Slave node, on the other hand,
consolidates all software components that are supposed to
be deployed on each participating cluster. However, there
is no such requirement in our design, each software
component can be installed on individual nodes for
reasons of performance or availability.
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TORQUE TORQUE
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G-Hadoop
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Compute Node
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Figure 1 Architecture Overview of G-Hadoop

3.3. Gfarm as a global distributed file system

The MapReduce framework for data-intensive
applications heavily relies on the underlying distributed

file system. In traditional Hadoop clusters with HDFS,
map tasks are preferably assigned to nodes where the
required input data is locally present. By replicating the
data of popular files to multiple nodes, HDFS is able to
boost the performance of MapReduce applications.

In G-Hadoop we aim to schedule MapReduce
applications across multiple data centers interconnected
through wide-area networks. Hence, applications running
concurrently on different clusters must be able to access
the required input files independent of the cluster they are
executed on. Furthermore, files must be managed in a
site-aware manner in order to provide the required
location information for the data-aware scheduling policy
on the JobTracker.

G-Hadoop uses the Gfarm file system as its
underlying distributed file system. The Gfarm file system
was specifically designed to meet the requirements of
providing a global virtual file system across multiple
administrative domains. It is optimized for wide-area
operation and offers the required location awareness to
allow data-aware scheduling among clusters.

3.4. G-Hadoop Master Node

The master node is the central entity in the G-Hadoop
architecture. It is responsible for accepting jobs submitted
by the user, splitting the jobs into smaller tasks and
distributing these tasks among its slave nodes. The master
is also responsible for managing the metadata of all files
available in the system. The G-Hadoop master node
depicted in Figure 2 is composed of the following
software components:

–Metadata Server: This server is an unmodified
instance of the Metadata server of the Gfarm file
system. The metadata server manages files that are
distributed among multiple clusters. It resolves files to
their actual location, manages their replication and is
responsible for taking track of opened file handles in
order to coordinate access of multiple clients to files.
The Gfarm metadata server is also responsible for
managing users access control information.

–JobTracker: This server is a modified version of
Hadoop’s original JobTracker. The JobTracker is
responsible for splitting jobs into smaller tasks and
scheduling these tasks among the participating
clusters for execution. The JobTracker uses a
data-aware scheduler and tries to distribute the
computation among the clusters by taking the data’s
locality into account. The Gfarm file system is
configured as the default file system for the
MapReduce framework. The Gfarm Hadoop plug-in
acts as glue between Hadoop’s MapReduce
framework and the Gfarm file system.
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Figure 2 Software components of the G-Hadoop master node

3.5. G-Hadoop Slave Node

A G-Hadoop slave node is installed on each participating
cluster and enables it to run tasks scheduled by the
JobTracker on the G-Hadoop master node. The
G-Hadoop slave node (see Figure 3) consists of the
following software components:

–TaskTracker: This server is an adopted version of
Hadoop TaskTracker and includes G-Hadoop related
modifications. The TaskTracker is responsible for
accepting and executing tasks sent by the DRMAA
Gfarm Plugin.

–JobTracker. Tasks are submitted to the queue of the
cluster scheduler (e.g. Torque) using a standard
DRMAA interface. A DRMAA java library is used by
the TaskTracker for task submission. Depending on
the distributed resource manager used in the
corresponding cluster, an adopted library is required.
In order to access the files stored on the Gfarm file
system, the Gfarm Hadoop plug-in is used.

–I/O Server: A Gfarm I/O server that manages the data
stored on the G-Hadoop slave node. The I/O server is
paired with the Metadata server on the G-Hadoop
master node and is configured to store its data on a the
high performance file system on the cluster. In order
to address performance bottlenecks, additional nodes
with I/O servers can be deployed on the individual
clusters.

–Network Share: The MapReduce applications and
their configuration are localized by the TaskTracker to
a shared location on the network. All compute nodes
of the cluster are required to be able to access this
shared location with the localized job in order to be
able to perform the jobs execution. In addition, the
network share is used by the running map tasks on the
compute nodes to store their intermediate output data.
Since this data is served by the TaskTracker to a
reduce task the performance of the network share is
crucial and depends highly on the performance of the
underlying network.
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Figure 3 Software components of G-Hadoop’s slave node

4. Implementation of G-Hadoop

4.1. TaskController of Hadoop

Before describing the implementation of G-Hadoop, it is
useful to rapidly recall some basic concepts of tasks and
their execution in Hadoop.

In Hadoop, the JobTracker is responsible for splitting
scheduled MapReduce jobs into smaller entities called
tasks. The tasks are then distributed among multiple
TaskTrackers for execution. Each TaskTracker is
configured to concurrently execute a certain amount of
tasks, referred to as slots. TaskTrackers periodically
report the current status of each slot to the JobTracker. If
a TaskTracker reports an idle slot, the JobTracker usually
responds with a new task enclosed in the heartbeat
response. When the TaskTracker receives a new task for
execution, it spawns a new JVM that is configured to run
the task. Hadoop provides a new abstract class
TaskController for managing the execution of tasks. Each
TaskTracker employs a single instance of the
TaskConroller. The concrete implementation used can be
configured for each TaskTracker individually by setting
the parameter mapreduce.tasktracker.taskcontroller in the
mapred-site.xml configuration file. If no explicit
configuration is provided, an instance of the class
TaskController is used.

4.2. DRMAA bindings for Torque

The G-Hadoop’s architecture uses the standard DRMAA
interface for submitting tasks to the cluster scheduler.
Libraries for Java can be obtained from GridWay and
include the abstract interfaces that can be freely used by
application programmers. There are three main Java
interfaces provided by GridWay. However, the GridWay
library requires custom implementations in order to be
able to communicate with the desired cluster scheduler.
Using the configuration option –enable-drmaa Torque
can be configured to compile a native DRMAA 1.0
library that can be employed by application programmers
for submitting jobs to Torque. In order to provide
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implementations of the GridWay interfaces for Torque in
Java, bindings to the native DRMAA library are required.
Inspired by bindings for the Sun Grid Engine we
implement custom bindings to the Torque using the Java
Native Interface (JNI). In G-Hadoop each TaskTracker
can be configured to use its own implementation of the
GridWay DRMAA interfaces by setting the parameter
org.ggf.drmaa.SessionFactory in the mapred-site.xml
configuration file. This allows G-Hadoop to use any
DRMAA compatible cluster scheduler without the
requirement to change the source code base of G-Hadoop.

4.3. DRMAA task controller

Our prototype uses a custom implementation of the
TaskController interface in order to submit tasks to a
cluster scheduler using the DRMAA library described in
the previous section. This section presents a detailed
description of the class TaskController and some of the
most relevant implementation details of the DRMAA
TaskController. The TaskController is used by the
TaskTracker in order to setup, start and stop tasks that are
scheduled for execution on the TaskTracker.

4.4. Adoptions on JobTracker

When the JobTracker receives a heartbeat message from
an idle TaskTracker, it looks for queued map and reduce
tasks and assigns them to the TaskTracker for execution.
It is essential to the G-Hadoop architecture that multiple
tasks are assigned in one heartbeat response. In G-Hadoop
a single TaskTracker is supposed to execute hundreds of
tasks in parallel. Assignment of a single task per heartbeat
would dramatically impair the performance of the system.

Hadoop’s current implementation of the JobTracker is
able to assign multiple map tasks to a single TaskTracker
in one heartbeat response. However, it limits the number
of reduce tasks per TaskTracker to one. We implemented
a new configuration option that allows the TaskTracker to
be configured not to limit the number of concurrent reduce
tasks per TaskTracker.

5. Conclusion

The goal of this research is to advance the MapReduce
framework for large-scale distributed computing across
multiple data centers with multiple clusters. The
framework supports distributed data-intensive
computation among multiple administrative domains
using existing unmodified MapReduce applications. In
this work, we have presented the design and
implementation of G-Hadoop, a MapReduce framework
based on Hadoop that aims to enable large-scale
distributed computing across multiple clusters. The

architecture of G-Hadoop is based on a master/slave
communication model. In order to support globally
distributed data-intensive computation among multiple
administrative domains, we use the traditional HDFS file
system with the Gfarm file system, which can manage
huge data sets across distributed clusters.

We have managed to keep the required changes on
existing clusters at a minimum in order to foster the
adoption of the G-Hadoop framework. Existing clusters
can be added to the G-Hadoop framework with only
minor modifications by deploying a G-Hadoop slave node
on the new cluster. The operation of the existing cluster
scheduler is not affected in our implementation. Our work
is fully compatible with the Hadoop API and does not
require modification of existing MapReduce applications.

Finally we validated our design by implementing a
prototype based on the G-Hadoop architecture. It executes
MapReduce tasks on the Torque cluster scheduler.
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