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Abstract: There are different structure of the network and the variables, and the process of learning Bayesian networks has a lot of
different forms. The structure of the network can be unknown or known, and the variables can be observable or hidden in some or all of
the data points. Consequently, there are four cases of learning Bayesian networks from data: known structure and observable variables,
unknown structure and observable variables, known structure and unobservable variables and unknown structure and unobservable
variables. In this paper, we focus on known structure and observable variables, unknown structure and observable variables.
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1 Introduction

A Bayesian network, Bayes network, belief network or
directed acyclic graphical model is a probabilistic
graphical model that represents a set of random variables
and their conditional dependencies via a directed acyclic
graph (DAG). [1,2] For example, a Bayesian network
could represent the probabilistic relationships between
diseases and symptoms. Given symptoms, the network
can be used to compute the probabilities of the presence
of various diseases.

Formally, Bayesian networks are directed acyclic
graphs whose nodes represent random variables in the
Bayesian sense: they may be observable quantities, latent
variables, unknown parameters or hypotheses. Edges
represent conditional dependencies; nodes which are not
connected represent variables which are conditionally
independent of each other. Each node is associated with a
probability function that takes as input a particular set of
values for the node’s parent variables and gives the
probability of the variable represented by the node. For
example, if the parents are m Boolean variables then the
probability function could be represented by a table of 2m
entries, one entry for each of the 2m possible
combinations of its parents being true or false.

Efficient algorithms exist that perform inference and
learning in Bayesian networks. Bayesian networks that
model sequences of variables (e.g. speech signals or

protein sequences) are called dynamic Bayesian
networks. Generalizations of Bayesian networks that can
represent and solve decision problems under uncertainty
are called influence diagrams.

Because a Bayesian network is a complete model for
the variables and their relationships, it can be used to
answer probabilistic queries about them. For example, the
network can be used to find out updated knowledge of the
state of a subset of variables when other variables (the
evidence variables) are observed. This process of
computing the posterior distribution of variables given
evidence is called probabilistic inference. The posterior
gives a universal sufficient statistic for detection
applications, when one wants to choose values for the
variable subset which minimize some expected loss
function, for instance the probability of decision error. A
Bayesian network can thus be considered a mechanism
for automatically applying Bayes’ theorem to complex
problems.[3]

How can Bayesian networks be learned from data?
The process of learning Bayesian networks takes different
forms in terms of whether the structure of the network is
known and whether the variables are all observable. The
structure of the network can be known or unknown, and
the variables can be observable or hidden in all or some of
the data points. The latter distinction can also be
expressed as complete and incomplete data.
Consequently, there are four cases of learning Bayesian
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networks from complete data: known structure and
observable variables, unknown structure and observable
variables, known structure and unobservable variables,
and unknown structure and unobservable variables. In this
paper we discussed two of them.

2 Known Network Structure and Observable
Variables

This is the easiest and the most studied case of learning
Bayesian networks in the literature [1, 2]. The network
structure is specified, and the inducer only needs to
estimate the parameters. The problem is well understood
and the algorithms are computationally efficient. Despite
its simplicity, this problem is still extremely useful,
because numbers are very hard to elicit from people.
Additionally, it forms the basis for everything else in
Bayesian learning.

Because every variable is observable, each data case
can be pigeonholed into the CPT entries corresponding to
the values of the parent variables at each node. The
pigeonhole principle essentially states that if a set
consisting of more than k · n objects is partitioned into n
classes, then some classes receive more than k objects.
[4,5]Therefore, estimations will be highly accurate since
every variable is observable.

Learning is achieved simply by calculating
conditional probability table (CPT) entries using
estimation techniques such as Maximum Likelihood
Estimation (MLE) and Bayesian Estimation. For
simplicity, MLE and Bayesian estimators will be
explained by employing parameter learning for a single
parameter.

Assume that an experiment was conducted by flipping
a thumbtack in the air. The thumbtack comes to land as
either heads or tails. As usual, the different tosses are
assumed to be independent, and the probability of the
thumbtack landing heads is some real number
θ .Therefore, the goal is to estimate θ . Assume that we
have a set of instances d[1], · · · ,d[2] such that each
instance is sampled from the same distribution and
independently from the rest. The goal is to find a good
value for the parameter θ . A parameter is good if it
predicts the data well. In other words, if data are very
likely given the parameter, the parameter is a good
predictor. The likelihood function is defined as

L(D|θ) = P(D|θ) =
M

∏
m=1

P(d[m]θ) (1)

Thus, the likelihood for a sequence H,T,T,H,H is

L(D|θ) = θ(1−θ)(1−θ)θθ (2)

To calculate the likelihood we need to know number
of heads Nh and the number of tails Nt .These are the
sufficient statistics for this learning problem. A sufficient

statistic is a function of the data that summarize the
relevant information for computing the likelihood.

The Maximum Likelihood Estimation (MLE) principle
tells us to choose θ that maximizes the likelihood function.
The MLE is one of the most commonly used estimators
in statistics. For the above problem, the estimation of the
parameter is as expected.

θ̂ =
Nh

Nh +Nt
(3)

The MLE estimate seems plausible, but is overly
simplistic in many cases. Assume that the experiment
with the thumbtack is done and 3 heads out of 10 are
recorded. It may be quite reasonable to conclude that the
parameter θ is 0.3. On the other hand, what if the same
experiment is done with a dime and also 3 heads are
recorded. We would be much less likely to jump the
conclusion that the parameter of the dime is 0.3 because
we have a lot more experience with tossing dimes. Thus,
we have a lot more prior knowledge about their behavior.

Using MLE, we cannot make the following
distinctions: between a thumbtack and a dime, and
between 10 tosses and 1,000,000 tosses of a dime. On the
other hand, there is another method recommended by
Bayesian statistics. The MLE is a frequentist approach
since it relies on the frequency in the data. Another
approach is the Bayesian approach that assumes that there
is unknown but fixed parameter θ .It estimates the
parameter with some confidence, i.e., it calculates a range
such that, if the parameter is out of this range, the
probability of the data is very low.

The Bayesian approach deals with uncertainty over
anything that is unknown by putting a distribution over it.
In other words, the parameter θ is treated as a random
variable and a distribution P(θ) is defined over it.
Therefore, we can tell how likely the parameter is to take
on one value versus another. In other words, we now have
a joint probability space that contains both the tosses and
the parameter. This joint probability is easy to find given
our prior distribution over θ . Let X [1], · · · ,X [M] be our
coin tosses. The conditional probabilities P(X [M]θ)are
according to θ , i.e., p(X [M] = H|θ) = θ . Now, the value
of the next toss X [M+1]can be predicted by

P(X [M+1]|X [1], · · · ,X [M])=
∫

P(X [M+1]|θ)P(θ |D)dθ
(4)

where

P(θ |D) =
P(D|θ)p(θ)

P(D)
(5)

The first term in the numerator is the likelihood, the
second is the prior over parameters, and the third is a
normalizing factor, which is the marginal probability of
the data. If we reconsider the thumbtack problem again
with a uniform prior over θ in the interval [0,1]then
P(D|θ) = θ Nk(1−θ)Nt is proportional to the likelihood .
After plugging this into the integral and doing all the
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math and normalizing, it can be shown that the following
equation holds.

P(X [M+1]|D) =
Nh +1

Nh +Nt +2
(6)

Clearly, as the number of samples grows, the
Bayesian estimator and the MLE estimator converge to
each other. This result depends on the use of uniform
prior. In the Bayesian networks literature, the most
commonly used class of priors are the Dirichlet priors
because it turns out that most of the interesting
calculations can be done in closed form. The conjugacy of
the Dirichlet priors allows us to have the posterior
probabilities in the same form as prior probabilities.
Therefore, we can do sequential updating within the same
representations and the closed form solution can found
both for the update and the prediction problem in many
cases.

Recall that a multinomial is parameterized via a set of
parameters θ1 · · · ,θk such that ∑i θi = 1; θi corresponds
to the probability of ith outcome. A Dirichlet distribution
over this set of parameters α1, · · · ,αk is defined via a set of
hyper parameters .Then, the generalization can be written
as

Dir(θ |α1, · · · ,αk) =
Γ (α)

∏i Γ (αi)
∏

i
θ αi−1

i (7)

All of the results regarding prediction and computing
the posterior extend in the obvious way. That is, if θ is
distributed as in (7), then

P(xi) =
αi

∑ j α j
(8)

To generalize these results for a Bayesian network, we
need to define the sufficient statistic as N(x,u) for the
event X = x and the parents U = u. In the MLE case, the
estimation of the parameters can be calculated as

θ̂x|u =
N(x,u)
N(u)

(9)

Similarly, in the Bayesian case, the parameter
estimation is calculated as

θ̂x|u = Dir(α1 +N(x1,u), · · · ,αk +N(xk,u)) (10)

If the data were actually generated from the given
network structure, then both methods converge
asymptotically to the correct parameter setting. If not,
then they converge to the distribution with the given
structure that is closest to the distribution from which the
data were generated. Both estimations can be
implemented online by accumulating sufficient statistics.

The process above is the method by which Bayesian
network parameters are learned when the network
topology is known and all variables are fully observable.
The next section provides an overview of some proposed
methods in the literature if the structure of the network is
not known in advance.

3 Unknown Network Structure and
Observable Variables

In this case, the inducer is given the set of variables in the
model, and needs to select the arcs between them and
estimate the parameters. This problem is very useful for a
variety of applications; in general, when we are given a
new domain with no available domain expert, and want to
get all of the benefits of a BN model. It is also useful for
data-mining style applications, where there are masses of
data available and we would like to interpret them. In
addition to providing a model that will allow us to predict
behavior of cases that we have not seen, the structure also
gives the expert some indication of what attributes are
correlated. The algorithms for this problem are
combinatorially expensive. They basically reduce to a
heuristic search over the space of BN structures.

There has been some attention given to the problem of
unknown network structure in the literature. The key
aspect of the problem is to reconstruct the topology of the
network from fully observable variables. In the literature,
this is considered as a discrete optimization problem
solved by a greedy search algorithm in the space of
structures. Some examples of the greedy search algorithm
can be found in [5, 6].

A MAP (Maximum a Posterior) analysis of the most
likely network structure has been studied in [5] and [6]
when the data are fully observable. The resulting
algorithms are capable of recovering fairly large networks
from large data sets with a high degree of accuracy. On
the other hand, they usually adopt a greedy approach to
choosing the set of parents for a given node because the
problem of finding the best topology is intractable.

There are two main approaches to structure learning in
BNs:

Constraint based: Perform tests of conditional
independence on the data, and search for a network that is
consistent with the observed dependencies and
independencies.

Score based: Define a score that evaluates how well the
(in) dependencies in a structure match the data, and search
for a structure that maximizes the score.

Constraint-based methods are more intuitive. They
follow the definition of a BN more closely. They also
separate the notion of the independence from the structure
construction. The advantage of score-based methods is
that they less sensitive to errors in individual tests.
Compromises can be made between the extent to which
variables are dependent in the data and the cost of adding
the edge.

The score-based methods operate on the same
principle: a scoring function is defined for each network
structure, representing how well it fits the data. The goal
is to find the highest-scoring network structure. The space
of Bayesian networks is a combinatorial space, consisting
of a super exponential number of structures. Thus, it is not
clear how one can find the highest-scoring network even
with a scoring function. In general, the problem of finding
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the highest-scoring network structure is NP-hard. On the
other hand, the problem of searching a combinatorial
space with the goal of optimizing a function is very well
studied in AI literature. Consequently, the answer is to
define a search space, and then do heuristic search.

In light of the above statements, a BN structure
learning algorithm requires the following components be
determined:

i) Scoring function for different candidate network
structures.

ii) The definition of the search space: operators that
take one structure and modify it to produce another.

iii) A search algorithm that does the optimization
search.

Each component will be discussed separately. The
three main scoring functions commonly used to learn
Bayesian networks are the log-likelihood [13], the one
based on the principle of minimal description length
(MDL) [11]which is equivalent to Schwarz’ Bayesian
information criterion (BIC), and Bayesian score [3,13].

The log-likelihood function is simply the log of the
likelihood function. That is,

l(D|B,θB) = logL(D|B,θB) (11)

The log-likelihood is easier to analyze than the
likelihood, because the logarithm turns all the products
into sums. Therefore,

L(D|B,θB) = ∏
m

P(d[m]|B,θB) (12)

and, the following equation can be written:

L(D|B,θB) = ∑
m

logP(d[m]|B,θB) (13)

There are a couple of important things to note about
the log-likelihood. The log-likelihood increases linearly
with the length of data, M. The higher scoring networks
are those where the node and the parents are highly
correlated. Adding a node to the networks always
increases the log-likelihood. As a result, the network
structure that maximizes the likelihood is often the fully
connected network. This is the deficiency of the
log-likelihood score and is not desired. Thus, a score that
makes it harder to add edges is necessary. In other words,
we would like to penalize structures with too many edges.

One possible formulation of this idea is called the
MDL score. It is defined as:

ScoreMDL(B : D) = l(D|B, θ̂B)−
logM

2
Dim(B)−DL(B)

(14)
Where Dim(B) is the number of independent

parameters in B and DL(B) is the number of bits (the
description length) required to represent the structure of
.The abbreviation MDL stands for minimum description
length. The MDL score is a compromise between fit to

data and model complexity. Adding a variable as a parent
causes the log-likelihood term to increase, but so does the
penalty term.[6] There will be an edge addition if its
increase to the likelihood is worth it.

Another commonly used score is called Bayesian
score. In this case, the network score is evaluated as the
probability of the structure given the data. The Bayesian
score has the following form:

ScoreBDE(B : D) = P(B|D) =
P(D|B)P(B)

P(D)
(15)

As usual P(D) is constant, so it can be ignored when
different structures are compared. Therefore, the model
maximizes P(D|S)P(S), where S represents a structure.
The ability to ascribe a prior over structures gives us a
way of preferring some structures to others. Here, the
probability P(D|B) can be calculated as

P(B|D) =
∫

P(D|θB,B)P(θB|B)dθB (16)

From Equation (16), one can see that the more
parameters we have the more variables we are integrating
over. As a result, each dimension causes the value of the
integral go down because the ”hill” of the likelihood
function is a smaller fraction of the space. Therefore, this
idea gives preference to networks with fewer parameters.
It can be shown that the Bayesian score is a general form
of MDL score. The MDL score can be viewed as an
approximation of the Bayesian score. Therefore, the
Bayesian score is also a compromise between the model
complexity and fit to the data.

Several ways of scoring different Bayesian network
structures have been explained. Different scores have
been explored in terms of the network complexity and
how the network fits to the correlation in the data. Now,
the goal is to find the network that has the highest score.
In other words, training data D, the scoring function, and
a set of possible structures are the inputs of the search
algorithm while the desired output is a network that
maximizes the score. It can be shown that finding
maximal scoring network structures where nodes are
restricted to having at most k parents is NP-hard for any
k > 1. Therefore, a heuristic search is resorted to for this
optimization problem. A search space is defined, where
the states in the space are possible structures and the
operators denote the adjacency of structures. This space is
traversed looking for high-scoring functions to complete
the optimization. The obvious operators in the search
spaces are add an edge, delete an edge, and reverse an
edge. The search starts with some candidate network,
which may be the empty one, or one that some expert has
provided as a starting point. [7,8]Then, applying the
operators, the high-scoring network is searched in the
space. The parameters of the network are calculated by
using training data D.

The most commonly used algorithm for optimization
search is simple greedy hill climbing. Even though the
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hill-climbing method is commonly used, it has several
key problems such as local maxima where all one-edge
changes reduce the score and plateaus where a large set of
neighboring networks that have the same score. There are
some clever tricks that avoid some of these problems such
as TABU-search, random restart, and simulated
annealing. In general, greedy hill climbing with random
start works quite well in practice. In a world, we
examined methods for learning a Bayesian network from
fully observable data in this section.

Beside this, unknown structure and unobservable
variables is the most difficult case to resolve because the
structure of the networks is unknown and the variables are
not fully observable. There is no significant amount of
research for this case. When some variables are
sometimes or always unobserved. There are two recently
developed methods that recover the Bayesian network
structure with unobserved variables.

The first algorithm was proposed by Russell and is
called structural EM(SEM) algorithm. The algorithm
combines the standard EM algorithm, which optimizes
the network parameters, with structure search for model
selection. The main idea of this method is that it attempts
to maximize the expected score of models instead of their
actual scores at each iteration. Russell proves a theorem
that the SEM algorithm makes 56 progress in each
iteration on finding the better scoring network. Then, he
states that if one chooses a model that maximizes the
expected score at each iteration, then a better choice is
provably made in terms of the marginal score of the
network. The SEM algorithm is exciting since it attempts
to directly optimize the true Bayesian score within EM
iteration rather than an asymptotic approximation.

The most problematic aspect of SEM is that it might
converge to a sub-optimal model. This could happen if the
model generates a distribution that causes other models to
appear worse when the expected score is examined. This
difficulty becomes more obvious when the ratio of
missing information is higher. Russell suggests that, in
practice, the algorithm needs to be run from several
starting points to get a better estimate of the MAP model.
Another restriction of the SEM is that it focuses on
learning a single model. In practice, several high scoring
models is necessary for better prediction.

Additional to this deficiency, the algorithm requires
large number of computations during learning.[9,10,11]
This is the main problem in applying this technique to
large-scale domains. The following paragraphs provide a
computationally cheaper method.

The second algorithm was proposed by Sebastiani and
Marino. They were able to show that BC algorithm could
also learn the structure of the network with small changes
in the algorithm. [12,13]The algorithm has the following
form:

Pick a random network structure B as starting point
Pick parameters for the network structure B
Compute score for B Repeat
Add an edge to the network, the network B′ is created

Estimate the posterior expectations of parameters of B′

using BC method
Estimate the posterior values of the network

parameters
Compute score for the network with B′

If score(B)> score(B)
Then let B := B′ Else return(B)
This method is very similar to the search method

described where we had fully observed data. The only
difference is that, in this case, we have partially observed
data or incomplete data. Therefore, the estimation of the
parameters of the network is also necessary. The BC
method is employed to estimate the parameters of the
network. The estimation process is performed in each
step, i.e., after adding each edge to the network.
Consequently, the method involves both parameter
learning and structure learning. However, the main
attention was given to the parameter estimation part since
it is newly discovered method. The structure learning part
can be modified as a greedy search algorithm. In that
case, ”delete an edge” operator and ”reverse an edge”
operator have to be incorporated to the algorithm.

There is a slight difference between SEM and BC
methods and the problem of self-organizing agents in
terms of required data structure. The SEM and BC
algorithms require a certain minimum length database.
Unfortunately, there will not be a prior database to work
with at the beginning of the agents’ exploration of the
environment. Thus our learning method has to be online:
estimation of the network structure and parameters will
be performed simultaneously with the gathering of new
entries in the database. So, our method has to learn the
network while the agents are exploring the environment
and organizing themselves to manage a common task.
Using the current methods this problem cannot be solved
because they do not contain an online learning algorithm.
In the next chapter we propose a method that allows the
agents learn the environment while they are exploring the
environment and organizing a common task.

4 Conclusions

The process of learning Bayesian networks takes different
forms in terms of whether the structure of the network is
known and whether the variables are all observable. The
structure of the network can be known or unknown, and
the variables can be observable or hidden in all or some of
the data points. Learning Bayesian networks can also be
examined as the combination of parameter learning and
structure learning. Parameter learning is estimation of the
conditional probabilities (dependencies) in the network.
Structural learning is the estimation of the topology
(links) of the network. Known network structure and
observable variables(complete data) is the easiest and the
most studied case of learning Bayesian networksin the
unknown network structure and observable variables the
inducer is given the set of variables in the model, and
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needs to select the arcs between them and estimate the
parameters.
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