
Appl. Math. Inf. Sci. 7, No. 3, 983-989 (2013) 983

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

A new algorithm to determine minimally k-edge-
connected graphs with odd k

Yunming Ye1 and Yueping Li2,1,∗

1Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen Graduate School, Harbin Institute of Technology,
Shenzhen, 518055, China
2Shenzhen Polytechnic, Shenzhen, 518055, China

Received: 11 Sep. 2012, Revised: 27 Nov. 2012, Accepted: 7 Dec. 2012
Published online: 1 May 2013

Abstract: A necessary and sufficient condition for a graph to be minimally k-edge-connected where k is odd is presented. Based on
this result, a divide-and-conquer algorithm to determine minimally k-edge-connected graphs is developed. Experiments are performed
to check minimally 3-edge-connectivity. The results show that our algorithm is much more effective than the previously known best
algorithm.

Keywords: Edge connectivity, minimally edge-connected, divide-and-conquer, time complexity.

1. Introduction

Edge connectivity is a classical property of graph which
has been extensively studied since 1970s [1,2]. It has
well-known applications in various areas such as network
survivability and VLSI design. In addition,
3-edge-connectivity can be applied in physics, quantum
chemistry [3] and computational biology [4] . Recently,
there are many works related with k-edge connectivity
such as k-edge-connectivity augmentation [5,6],
k-edge-connected subgraph detection [7] and
approximation [8].

By far, there are few results on minimally
k-edge-con-nectivity [9,10]. Furthermore, there is no any
algorithm developed specially for detecting minimally
k-edge-con-nectivity. Several algorithms are proposed for
checking k-edge-con-nectivity [11–14]. However,
minimally k-edge-con-nectivity plays an important role in
construction of reliable network of least cost.

In this paper, we present a necessary and sufficient
condition for a graph to be minimally k-edge-connected
where k is odd. Based on this result, we develop a
divide-and-conquer algorithm to determine minimally
3-edge-connected graphs. The experimental results show
that our algorithm runs much faster than the best
algorithm known by far. This paper is organized as
follows: In Section 2, basic definitions are given. In

Section 3, we characterize the structure of minimally
k-edge-connected graphs. In Section 4, our algorithm is
proposed. The experimental results are shown in Section
5. Conclusions and future work are discussed in Section
6.

2. Basic definitions

All graphs under consideration are undirected, finite and
loopless. Multiple edges are allowed. Let G=(V ,E) be a
graph consists of a nonempty set V (G) of vertices and a
set E(G) of edges. An edge cutset is a set of edges whose
removal leaves a disconnected graph. If it consists of
exactly k edges, then we call it a k-edge cutset. A k-edge
cutset is trivial if the k edges of it are just the associate
edges of a vertex whose degree is k. The
edge-connectivity λ (G) of a graph G is defined to be the
minimum size of edge cutsets. A graph G is said to be
minimally k-edge-connected if λ (G) = k but
λ (G− e) = k − 1 for every edge e of G. Loops have no
effect on edge connectivity, so they cannot appear in
minimally k-edge-connected graphs. Denote the set of
edges between vertex sets A and B by Γ (A,B). For the
terminology and notation not defined in this paper, the
readers are referred to [15].

∗ Corresponding author e-mail: leeyueping@gmail.com
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

984 Y. Ye, Y. Li: A new algorithm to determine minimally...

kk

kk

Figure 1 Separating operation.

We introduce the “separating” operation on
minimally k-edge-connected graph through a non-trivial
k-edge cutset which is shown in Fig. 1.

Let G be a minimally k-edge-connected graph and k is
odd. If no special mention, k refers a positive odd integer
in the rest of this paper. Suppose EC is a non-trivial
k-edge cutset and C1,C2 are the two components separated
by EC. Suppose EC={u1v1, u2v2, . . . , ukvk} such that u1,
u2, . . . , uk ∈ V (C1) and v1, v2, . . . , vk ∈ V (C2). Note that
uivi might be the same as u jv j for i ̸= j; that is, parallel
edges are allowed in EC. The separating operation is as
following: Let w1 be a new vertex and G1 be a graph such
that V (G1) = V (C1)∪{w1} and E(G1) = E(C1)∪{u1w1,
u2w1, . . . , ukw1}. Let w2 be a new vertex and G2 be a
graph such that V (G2) = V (C2)∪{w2} and
E(G2) = E(C2)∪{v1w2, v2w2, . . . , vkw2}. If ui = u j for
i ̸= j, then uiw1 and u jw1 compose a multiple edge.
Similarly, if vi = v j for i ̸= j, then viw2 and v jw2 form a
multiple edge.

3. Main results

Theorem 1. Let G be a minimally k-edge-connected
graph for odd k and Cut1={e1, e2, . . . , ek} be a k-edge
cutset. Let C1 and C2 be the two components of G−Cut1.
For any other k-edge cutset Cut2 ={ f1, f2, . . . , fk}, if
f j ∈ E(Ci) for some j and i where 1 ≤ j ≤ k, 1 ≤ i ≤ 2,
then we have Cut2 ⊆ E(Ci)∪Cut1.

Proof. Suppose it does not hold. Let D1 and D2 be the
two components of G−Cut2. Based on the intersect part
of Cut1 and Cut2, there are two cases.

k

k

Figure 2 An example of Cut1 and Cut2.

Case 1: Cut1 ∩Cut2 = /0. By the assumption, we have
Cut2 ∩E(C1) ̸= /0 and Cut2 ∩E(C2) ̸= /0. Without loss of
generality, suppose |Cut2 ∩ E(C1)| ≤ |Cut2 ∩ E(C2)|.
Since |Cut2|= k and k is odd, |Cut2 ∩E(C1)| ≤ (k−1)/2.
Without loss of generality, assume that
|E(D1)∩Cut1| ≤ |E(D2)∩Cut1|. Since |Cut1| = k and k
is odd, |E(D1) ∩ Cut1| ≤ (k − 1)/2. We have
|Cut2 ∩ E(C1)| + |E(D1) ∩ Cut1| ≤ k − 1, then
(Cut2 ∩E(C1))∪ (E(D1)∩Cut1) composes an edge cutset
whose size is smaller than k. Contradict!

Case 2: Cut1 ∩Cut2 ̸= /0. We divide this case into the
following two sub-cases.

Case 2.1: |Cut1 ∩ D1| = |Cut1 ∩ D2|. Then, we
investigate the intersection part Cut1 ∩Cut2. It is clear that
Cut1 ∩Cut2 = Γ (C1 ∩D1,C2 ∩D2)∪Γ (C2 ∩D1,C1 ∩D2).
Therefore, we conclude
|Γ (C1 ∩D1,C2 ∩D2)| ̸= |Γ (C2 ∩D1,C1 ∩D2)|, since k is
odd and |Cut1 ∩ D1| = |Cut1 ∩ D2|. Without loss of
generality, we suppose
|Γ (C1 ∩ D1,C2 ∩ D2)| < |Γ (C2 ∩ D1,C1 ∩ D2)|. If
|Cut2 ∩ C1| ≤ |Cut2 ∩ C2|, then
(Cut2 ∩ C1) ∪ Γ (C1 ∩ D1,C2 ∩ D2) ∪ (Cut1 ∩ D1) is an
edge cutest whose size is smaller than k. A contradiction.
On the other hand, if |Cut2 ∩ C1| > |Cut2 ∩ C2|, then
(Cut2 ∩C2)∪Γ (C1 ∩D1,C2 ∩D2)∪ (Cut1 ∩D2) is also an
edge cutest whose size is smaller than k. It is also a
contradiction.

Case 2.2: |Cut1 ∩D1| ̸= |Cut1 ∩D2|. Without loss of
generality, we suppose |Cut1 ∩ D1| < |Cut1 ∩ D2|. If
|Cut2 ∩ C1| + |Γ (C1 ∩ D1,C2 ∩ D2)| ≤
|Cut2 ∩ C2| + |Γ (C1 ∩ D1,C2 ∩ D1)|, then
(Cut2 ∩ C1) ∪ Γ (C1 ∩ D1,C2 ∩ D2) ∪ (Cut1 ∩ D1) is an
edge cutest contains less than k edges. A contradiction. If
|Cut2 ∩ C1| + |Γ (C1 ∩ D1,C2 ∩ D2)| >
|Cut2 ∩ C2| + |Γ (C1 ∩ D1,C2 ∩ D1)|, then we have

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 3, 983-989 (2013) / www.naturalspublishing.com/Journals.asp 985

(Cut2 ∩ C2) ∪ Γ (C1 ∩ D1,C2 ∩ D2) ∪ (Cut1 ∩ D1) is an
edge cutest contains less than k edges. It also finds a
contradiction. Finally, we conclude that our theorem
holds.

Theorem 2. Let G be a minimally k-edge-connected
graph for odd k. Let EC be a non-trivial k-edge cutset and
G1,G2 be the two graphs obtained by separating G
through EC. Then G1 and G2 are minimally
k-edge-connected.

Proof. Suppose it does not hold and G1 is not minimally
k-edge-connected. Let C1,C2 be the two components of
G−EC, let EC = {u1v1,u2v2, ...,ukvk} such that u1, u2,
. . . , uk ∈ V (C1) and v1, v2, . . . , vk ∈ V (C2). Suppose
δ (w1)={u1w1, u2w1, . . . , ukw1}. Then, we have
V (G1) =V (C1)∪{w1} and E(G1) = E(C1)∪δ (w1).

Case 1: if G1 is not k-edge-connected, then there is an
edge cutset whose size is smaller than k, denoted by EC1,
in G1. If EC1∩δ (w1) = /0, EC1 is also an edge cutset in G.
Contradict!

If EC1 ∩ δ (w1) ̸= /0, suppose EC1 ∩ δ (w1) = {ui1 w1,
ui2w1, ..., uin w1},n < k. Let D1,D2 be the two components
of G − EC1. Without loss of generality, suppose D1
contains ui1 ,ui2 , ...,uin . D1 is separated from G by edge
cutset (EC1\δ (w1)) ∪ EC. Since u j,v j ̸∈ D1 for
j ̸∈ {i1, i2, ..., in}, the edge (u j,v j) can be removed in the
edgecut. Then, edge set (EC1\δ (w1))∪{ui1 vi1 , ui2 vi2 , ...,
uin vin} separates V (D1) and V (G)\V (D1) in G. So it is an
edge cutset whose size is smaller than k in G. Contradict!

Case 2: G1 is k-edge-connected. There is an edge
f ∈ E(G1) such that λ (G1) = λ (G1 − f). Since G is
minimally k-edge-connected, there is a k-edge cutset,
denoted by EC f , containg f in G. Theorem 1 guarantees
that EC f ⊂ E(C1)∪ EC. If EC f ∩ EC = /0, then EC f is
also a k-edge cutset in G1. Hence
λ (G1 − f) = k−1 < λ (G1). Contradict!

If EC f ∩EC ̸= /0, suppose EC f ∩EC = {ui1vi1 , ui2 vi2 ,
..., uimvim},m < k. Let C1,C2 be the two components of
G−EC f . Without loss of generality, suppose C1 contains
ui1 , ui2 , ..., uim . V (C1) is separated from V (G) by
(EC f \EC)∪ {ui1vi1 , ui2vi2 , ..., uimvim}. After the
separating operation through EC, the edges of EC are
deleted while the edges ui1 w1, ui2w1, ..., uim w1 and the
vertex w1 are added. So V (C1) is separated from V (G1)
by (EC f \EC) ∪ δ (w1). Since the edge (w1,u j) for
j ̸∈ {i1, i2, ..., im} is not incident with any vertex of C1, it
can be eliminated from the edge cutset. Then, edge set
(EC f \EC)∪{ui1 w1, ui2 w1, ..., uim w1} separates V (C1)
and V (G1)\V (C1). Hence there is a k-edge cutset
containing f in G1 contradicting with
λ (G1) = λ (G1 − f).

Theorem 3. Let G1, G2 be two minimally
k-edge-connected graphs for odd k such that
V (G1) ∩V (G2) = /0. Let w1 ∈ V (G1) and w2 ∈ V (G2)
such that degree(w1) = degree(w2) = k. Suppose the
edges adjacent with w1 are u1w1, u2w1, . . . , ukw1 and the
edges adjacent with w2 are v1w2,v2w2, . . . , vkw2 (parallel

kk

kk

Figure 3 An example of construction.

edges are allowed). Construct graph G = (V,E) be the
graph such that V (G) = V (G1)∪V (G2)−{w1,w2} and
E(G) = E(G1) ∪ E(G2) − {u1w1, u2w1, . . . ,
ukw1} − {v1w2, v2w2, . . . , vkw2} + {u1v1, u2v2, . . . ,
ukvk}. Then G is minimally k-edge-con-nected.

Proof. Suppose it does not hold and G is not minimally
k-edge-connected. Denote {u1v1,u2v2, ...,ukvk} by EC and
denote {u1w1, u2w1, . . . , ukw1} by δ (w1).

Case 1: if G is not k-edge-connected, then there is an
edge cutset whose size is smaller than k, denoted by EC′.
Without loss of generality, suppose
|EC′ ∩E(G1)| ≤ |EC′ ∩E(G2)|. Since |EC′| < k and k is
odd, we have |EC′∩E(G1)| ≤ (k−1)/2. Let C1,C2 be the
two components of G−EC′. Without loss of generality,
suppose |E(C1)∩EC| ≤|E(C2)∩EC|. Since |EC|= k and
k is odd, we have |E(C1) ∩ EC| ≤ (k − 1)/2. Thus,
(EC′ ∩ E(G1))∪ (E(C1) ∩ EC) is an edge cutset whose
size is smaller than k. Furthermore,
(EC′ ∩E(G1))∪ δ (w1) is an edge cutset in G1. Suppose
E(C1) ∩ EC ={ui1vi1 , ui2vi2 , ..., uin vin}, n ≤ (k − 1)/2.
The edge (u j,w1), for j ̸∈ {i1, i2, ..., in} is not incident
with any vertex of C1, so it can be removed from the edge
cutset. Hence, (EC′ ∩E(G1))∪ {ui1w1, ui2w1, ..., uin w1}
is an edge cutset in G1. Its size is smaller than k.
Contradict!

Case 2: G is k-edge-connected. There is an edge f ∈
E(G) could be deleted (i.e. λ (G) = λ (G− f)). We have
f ̸∈ EC; otherwise, EC − f is a (k− 1)-edge cutset in G.
Without loss of generality, suppose f ∈ E(G1). Since G1
is minimally k-edge-connected, there is a k-edge cutset,
denoted by EC f , containing f in G1. If EC f ∩ δ (w1) = /0,

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

986 Y. Ye, Y. Li: A new algorithm to determine minimally...

then EC f − f is also a (k−1)-edge cutset in G− f . Thus,
λ (G− f) = k−1 < λ (G− f). Contradict!

If EC f ∩ δ (w1) ̸= /0, suppose EC f ∩ δ (w1)={ui1 w1,
ui2w1, ..., uim w1}, m ≤ k − 1. Let D1,D2 be the two
components of G − EC f . Without loss of generality,
suppose D1 contains ui1 , ui2 , ..., uim . V (D1) is separated
from V (G1) by (EC f \δ (w1))∪ {ui1 w1, ui2w1, ..., uimw1}.
Thus, V (D1) is separated from V (G) by
(EC f \δ (w1)) ∪ EC. Since the edge (u j,v j) for
j ̸∈ {i1, i2, ..., im} is not incident with any vertex of D1, it
can be omitted from the edge cutset. (EC f \δ (w1))∪
{ui1 vi1 , ui2 vi2 , ..., uimwim} separates V (D1) and
V (G)\V (D1). Hence there is a k-edge cutset containing f
in G contradicting with λ (G) = λ (G− f).

By Theorem 2 and Theorem 3, we have the following
corollary.

Corollary 1. Let G be a simple graph and EC be a non-
trivial k-edge cutset of G where k is odd. Let G1,G2 be the
two graphs obtained by separating G through EC. Then,
G is minimally k-edge-connected if and only if G1 and G2
are minimally k-edge-connected.

4. Algorithm description

Designing efficient algorithms for determining the
connectivity of graphs has been a subject of great interest
during the last two decades. However few of them are
devised for testing the minimality to certain
edge-connected graphs. Current algorithms for this
purpose are developed basing on the definition of
“minimality”; that is, every edge is examined whether it
can be deleted. We denote this algorithm by “Edge
Enumeration Algorithm (EEA)”. It is clear that the time
complexity of EEA depends on the procedure to find
k-edge cutsets. Furthermore, there is no special technique
improved to the effectiveness of these algorithms by far.

Edge Enumeration Algorithm
1 Initialize all the edges to be “unchecked”
2 FOR (an unchecked edge e and e is not incident a vertex
whose degree is 3) DO
3 {
4 Delete e from G; //just need to disable it
5 Find a (k − 1)-edge cutset of G, denoted by
EdgeCutset;
6 IF EdgeCutset is empty
7 THEN G is not minimally, halt;
8 ELSE {
9 Mark e and the edges in EdgeCutset “checked”;
10 Add e from G; //enable it
11 }
12 } //FOR
13 G is minimally 3-edge-connected.

Based on Corollary 1, we can determine whether
graph G is minimally k-edge-connected by separating G

into two subgraphs through a k-edge cutset. Therefore, a
divide-and-conquer algorithm is developed as follows.

Our Algorithm
1 Initialize all the edges to be ”unchecked”
2 IF IS-M3EC(G) THEN graph G is minimally k-edge-
connected;
3 ELSE graph G is not minimally k-edge-connected.

FUCNTION IS-M3EC(G) :boolean
1 FOR (an unchecked edge e which is not incident a vertex
whose degree is 3) DO
2 { Delete e from G; //just need to disable it
3 Find a (k−1)-edge cutset of G, denoted by EdgeCutset;
4 IF EdgeCutset is empty
5 THEN G is not minimally, return FALSE;
6 ELSE { separate G into G1 and G2;

//Operate on adjacency lists
7 return IS-M3EC(G1) && IS-M3EC(G2); }
8} //FOR

5. Time complexity and experimental results

The separating operation just needs to alter six values in
adjacency lists and add six entries (edges) to them, which
is O(1) time. Furthermore, the sum of unchecked edges
without separating operation is the same as that using it.
Since the graph is separated iteratively in our
divide-and-conquer strategy, for each unchecked edge the
time to search k-edge cutsets is less than Edge
Enumeration Algorithm (EEA). In the worst case, the
time complexities of these two algorithms are almost the
same. However, in the best case, the time complexity of
our divide-and-conquer algorithm is a logarithmic of
EEA’s running time, in theory. That is, suppose the time
complexity of search k-edge cutsets is O(φ(m,n)), EEA
runs in O(m × φ(m,n)) time while our algorithm costs
O(logm × φ(m,n)) time in the best case. Thus, we
perform experiments to evaluate the running time of these
two algorithms in average case.

For comparison, we assign EEA and our algorithm to
employ the same algorithm of finding a k-edge cutset.
Since there are many studies on searching 2-edge cutset,
we choose k = 3. The best algorithm for searching 2-edge
cutset is proposed by Tsin [13]. Thus, we implement this
algorithm in our experiments.

All the experiments were conducted on a PC with an
AMD Athlon Processor 3600+ and a 1.5 GB memory.
The programs are written in C++. We generated the
graphs of which the numbers of vertices are in the range
of 250 ∼ 3000. For each vertex count, we generated 1000
graphs which are minimally 3-edge-connected graphs.
The average numbers of edges and the average running
time are shown in Table 1. The average numbers of edges
are round to integer. The time unit is millisecond.

The results show that our algorithm is much faster
than EEA. Our algorithm costs only 1 percent running

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 3, 983-989 (2013) / www.naturalspublishing.com/Journals.asp 987

Table 1 Running time on minimally 3-edge-connected graphs.

Nodes Edges Our algorithm EEA
250 456 31 1359
500 917 62 6031
750 1357 125 15516
1000 1828 187 25031
1250 2271 359 40063
1500 2731 516 61766
1750 3177 624 86391
2000 3640 672 112906
2250 4079 1047 141500
2500 4520 1197 173765
2750 5008 1172 220500
3000 5437 1218 259591

time of EEA in average. We next present some insight
statistical values to reveal the effectiveness of our
algorithm. As mentioned above, we delete one edge
temporarily at first. Secondly, we search a 2-edge cutset.
Then, we separate the graph into two subgraphs, and
check the minimally 3-edge connectivity in these two
subgraphs. In addition, we employ Tsin’s algorithm [13]
to find a 2-edge cutset which costs linear time of the input
graph’s size. Hence, the computing time of our algorithm
is determined by the sum of the size of all the processed
subgraphs. We take one graph with 250 vertices as an
example. In each separate step, we record the size of the
subgraphs, shown in Table 2. In this graph, the sum of the
size is 1939. In EEA, we perform Tsin’s algorithm 381
times. Thus, the sum of the size is 381× 250 = 95250. It
is clear that the proportion of the sum of the size
1939
95250 ≈ 0.020 coheres to the proportion of the running
time 31

1359 ≈ 0.023.

Table 2 Separate sequence of one graph with 250 nodes.

Separate Step 0 1 2 3 4 5 6
Subgraph1 250 55 38 4 30 15 10
Subgraph2 0 195 18 35 6 16 7
Separate Step 7 8 9 10 11 12 13
Subgraph1 7 192 46 24 21 136 111
Subgraph2 4 4 147 23 4 12 26
Separate Step 14 15 16 17 18 19 20
Subgraph1 69 24 43 38 30 12 6
Subgraph2 43 46 4 6 9 19 4
Separate Step 21 22 23 24 25 26
Subgraph1 16 8 4 22 22 19
Subgraph2 28 9 6 7 5 4

By the above analysis, we can obtain the improvement
of running time from the total size of the processed
subgraphs. This improvement is independent with the

algorithm which is employed to search the 2-edge cutset,
since our algorithm reduces the size of the subgraphs
which are the input of the algorithm searching 2-edge
cutset. For better evaluation, we compute these total size
for all test graphs. The average total size of our algorithm
and EEA are shown in Table 3. The numbers of
separating operation are round to integer.

Table 3 Total size comparison

Number of
Vertices

Total Size of
Our Algorithm

Total Size
of EEA

250 1941 95250
500 4082 313500
750 7179 768000
1000 10097 1286000
1250 14464 2041250
1500 17834 2629500
1750 22396 3494750
2000 27226 4406000
2250 33503 5618250
2500 41619 6767500
2750 39498 8544250
3000 42259 9918000

Table 4 Number of separating operations

Number of Vertices Number of Separating Operations
250 27
500 51
750 80
1000 105
1250 135
1500 169
1750 185
2000 222
2250 252
2500 279
2750 306
3000 330

In addition, we also present the average numbers of
separating operation performed in our algorithms by
Table 4. The values show that the number of separating
operations is about 10 percent of the number of vertices.
Since the worst case of separating operation is to divide
one subgraph of which the number of vertices is 2, the
number of separating operations equals one half of the
number of vertices of the original graph in this case. The
comparison of the average of our algorithm and the worst
case is illustrated by Fig. 5.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

988 Y. Ye, Y. Li: A new algorithm to determine minimally...

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

Number of vertices

N
um

be
r

of
 s

ep
ar

at
in

g
op

er
at

io
ns

Average of our algorithm
The worst case

Figure 4 Numbers of separating operations of our algorithm.

By the results, we conclude that our algorithm
significantly reduces the total size which is the input
scale. In addition, we also compute the growing
proportion of the total size of our algorithm over EEA.
We compare this total size proportion with the running
time proportion. Two plots are illustrated in Fig. 5. It
appears that the trends of these two plots are
approximately the same. Therefore, the improvement of
running time is mainly by the reduction of total size
which is achieved by separating operation.

6. Conclusions and future works

We present a necessary and sufficient condition of one
graph to be minimally k-edge-connected with odd k.
Based on this result, divide-and-conquer algorithms for
determining minimally k-edge-connected can be
developed. We propose a new algorithm for checking
minimality of 3-edge-connected graph. The experimental
results show that our algorithm is much more effective
than the current one developed by the definition of
minimality.

It is clear that a parallel algorithm can be developed
based on our result. The results of our experiments have
shown that separating operation significantly reduces the
total size of 2-edge cutset searching algorithm. In addition,
the subgraphs after separating have no common used data
structure. Thus, a parallel version of our algorithm can be
implemented. Therefore, the running time can be reduced
further.

0 500 1000 1500 2000 2500 3000
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Number of vertices
P

ro
po

rt
io

n

Sum of size proportion
Running time proportion

Figure 5 Running time proportion and total size proportion.

Corollary 1 characterizes the structure of minimally
k-edge-connected graphs for odd k. These graphs can be
separated recursively until the resulting graphs are
irreducible. A graph is irreducible if every edge lies in a
trivial k-edge cutset. Furthermore, if we remove the
k-degree vertices, the resulting graphs are singletons. So
some techniques applied in k regular graphs might be
used to the irreducible graphs.

Acknowledgement

This research was supported in part by NSFC under
Grants No.61100190 and No.61272538 , National Key
Technology R&D Program of MOST China under Grant
No. 2012-BAK17B08, Shenzhen Strategic Emerging
Industries Program under Grants No.
ZDSY20120613125016389 and
No.JCYJ20120613135329670, and Natural Scientific
Research Innovation Foundation in HIT under Grant No.
HIT. NSFIR.2010128.

References

[1] J.E. Hopcroft and R.E. Tarjan, Dividing a graph into
triconnected components. SIAM J. Comput. 2, 135-158
(1973).

[2] H. Nagamochi and T. Ibaraki, A linear time algorithm for
computing 3-edge connected components in a multigraph.
Japan J. Indust. Appl. Math. 8, 163-180 (1992).

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 3, 983-989 (2013) / www.naturalspublishing.com/Journals.asp 989

[3] J. Negele and H. Orland, Quantum Many-Particle Systems,
Addison Wesley (1988).

[4] N. Nakanishi, Graph Theory and Feynman Integrals,
Gordon and Bridge Science Publishers (1971).

[5] T. Watanabe and M. Yamakado, A linear time algorithm
for smallest augmentation to3-edge-connect a graph.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 76, 518-531
(1993).

[6] T.S. Hsu and V. Ramachandran, A linear time algorithm
for triconnectivity augmentation. Proceeding of the 32nd
Annual Symposium of Foundations of Computer Science
(FOCS), 548-559 (1991).

[7] S. Taoka, T. Watanabe and K. Onaga, A linear time
algorithm for computing all 3-edge-connected components
of a multigraph. IEICE Trans. Fundamentals E, 75, 410-424
(1992).

[8] H.N. Gabow, M. X. Goemans, E. Tardos and D. P.
Williamson, Approximating the smallest k-edge connected
spanning subgraph by LP-rounding, Networks 53, 345-357
(2009).

[9] M.C. Cai, The Number of Vertices of Degree k
in a Minimally k-Edge-Connected Graph. Journal of
Combinatorial Theory Series B, 58, 225-239 (1993).

[10] Q. Liu, Y. Hong and Z. Zhang, Minimally 3-restricted edge
connected graphs. Discrete Applied Mathematics 157, 685-
690 (2009).

[11] O. Goldreich and D. Ron, Property testing in bounded
degree graphs. Algorithmica, 32, 302-343 (2002).

[12] Y.H. Tsin, A simple 3-edge-connected component
algorithm. Theory Comput. Syst. 40, 125-142 (2007).

[13] Y.H. Tsin, Yet another optimal algorithm for 3-edge-
connectivity. Journal of Discrete Algorithms 7, 130-146
(2009).

[14] A.M. Saifullah and A. Ungor, A simple algorithm for
triconnectivity of a multigraph. Proceedings of the Fifteenth
Australasian Symposium on Computing: The Australasian
Theory, 53-62 (2009).

[15] J.A. Bondy and U.S.R. Murty, Graph Theory with
Application, Macmillan (1976).

Yunming Ye received
the Ph.D. degree in Computer
Science from Shanghai Jiao
Tong University. He is now
a professor in the Shenzhen
Graduate School, Harbin
Institute of Technology.
His research interests include
data mining, text mining, and
ensemble learning algorithms.

Yueping Li received his
PhD in Computer Science from
Sun Yat-sen University in 2008.
Currently, he is a post doctor
in Shenzhen Graduate School,
Harbin Institute of Technology.
His research interests involve
web mining, graph algorithm
and optimization.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

