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Abstract: In this paper, the generalized Jacobi Galerkin (GJG) method is analyzed for the numerical solution of nonlinear multi-

order fractional differential equations(FDEs). We consider the generalized Jacobi functions(GJFs) with indexes corresponding to the

number of homogeneous initial conditions as natural basis functions for the GJG approximation. The unique solvability of the resulting

nonlinear algebraic system, as well as convergence properties of the proposed approach, are discussed. The validity of the method is

demonstrated with some illustrative examples.
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1 Introduction

Fractional calculus is the theory of non-integer differential and integral operators, and particularly to differential equations
containing such operators. Nowadays, engineers and scientists have developed models involving fractional differential
and integral equations. These models have been applied successfully, e.g., in mechanics (theory of viscoelasticity and
viscoplasticity), bio-chemistry (modeling of polymers and proteins), electrical engineering (transmission of ultrasound
waves), medicine (modeling of human tissue under mechanical loads), etc. Some early examples are given in the book of
Oldham and Spanier [1], and the classical papers of Bagley and Torvik [2], Caputo [3], and Caputo and Mainardi [4].

It should be mentioned that, from the viewpoint of applications in sciences, the book written by Oldham and Spanier
[1], played a notable role in the development of the applied fractional calculus. Later there appeared some fundamental
works by Podlubny [5], Kilbas, Srivastava, Trujillo [6], and Diethelm [7] on various aspects of the fractional calculus. So
far, several numerical and analytical methods for solving differential equations of fractional order have been developed.
These include the Variational Iteration method [8], the Adomian Decomposition method [9], Generalized Differential
Transform method [10], etc.

Spectral Galerkin method is one of the weighted residual methods (WRM), in which approximations are defined in
terms of truncated series expansions [11,12], such that residual which should be exactly equal to zero, is forced to be zero
only in an approximate sense. In this method, the expansion functions satisfy the supplementary conditions. The two main
characteristics behind the approach are that firstly this method reduces the given problems to those of solving a system
of algebraic equations, thus greatly simplify the problems, and secondly, in general converges exponentially and almost
always supplies the tersest representation of a smooth solution [13,14].

In recent years, spectral methods have been studied by many authors to approximate the solutions of FDEs. In [15,
16], spectral Tau method for the numerical solution of such equations is developed. A quadrature Tau method for the
numerical solution of FDEs with variable coefficients is investigated in [17]. Moreover, Pedas and Tamme [18] introduced
a new efficient spline collocation method for solving such equations.
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As a matter of interest, it is remarked that the basis functions’ choice is essential for the superior approximation
properties of spectral methods. In this context, Chen et al., in [19] introduced a new family of basis functions called
generalized Jacobi functions (GJFs) that are proper choice as basis functions of the Galerkin approximation of initial value
problems. These functions are mutually orthogonal concerning the corresponding weight function. They are defined by
eliminating the constraint α,β > −1 in the classical Jacobi polynomials and inherit some important properties. It proved
that GJFs with indexes corresponding o the number of homogeneous initial conditions in a given differential equation
is the natural basis functions for its Galerkin approximation. Representation of solution as a linear combination of these
functions reduces the complexity of the resulting algebraic system due to eliminating the constraint of substituting the
approximate solution in the supplementary conditions. These advantages have attracted the attention of many researchers
to use these functions in the Galerkin approximation of various functional equations. For example, in [20,21] authors
applied GJFs to develop spectral solutions for linear and nonlinear fourth and fifth-order boundary value problems. In [22],
the spectral-Petrov-Galerkin methods for the integrated forms of the third- and fifth-order elliptic differential equations
are introduced using general parameters GJFs. In [23], authors used GJFs in producing Galerkin solution of nonlinear
fractional differential-algebraic equations.

In this article, numerical analysis of nonlinear FDEs

LD(u(x)) = f (x), x ∈ Λ = [0,1], (1)

with initial conditions
u(i)(0) = 0, i = 0,1, ...,ν − 1, (2)

based ongeneralized Jacobi functions(GJFs) is studied. The unique numerical solvability and convergence analysis of the
proposed method are also discussed. This discussion is mainly based on Krasnosel’skii [24] and Vainikko [25]. Here, we
have

LD(u(x)) =
Nd

∑
r=0

pr(x)
(

D
θr
C u(x)

)γr

, θr ∈Q+∪{0}, γr,Nd ∈ N, (3)

where θNd
> θNd−1 > ... > θ0 ≥ 0, with ν = ⌈θNd

⌉, and Q+,N are the collections of all the positive rational and natural
numbers respectively. We suppose pr(x), f (x) are given continuous functions and u(x) is the unknown that is sufficiently
smooth.

Here, the fractional derivative is considered in the Caputo sense

D
q
Cu(x) = I⌈q⌉−qu(⌈q⌉), (4)

where q ∈Q+, the symbol ⌈q⌉ is the smallest integer greater than or equal to q and Iµ is the Fractional integral operator,
defined by the formula

Iµu(x) =
1

Γ (µ)

x
∫

0

(x− τ)µ−1
u(τ)dτ. (5)

Γ (.) is the Gamma function, and the properties of operator D
q
C can be found in [7]. We recall one of them as

D
q
C xk =

{

k!
Γ (k−q+1) xk−q, k ∈ N and k ≥ ⌈q⌉ or k /∈N and k > ⌈q⌉,
0, k ∈ N and k < ⌈q⌉. (6)

This article is organized as follows: In Section 2, we introduce some properties of GJFs required for our subsequent
development. Section 3, presents the Galerkin approximation using GJFs to solve (1 - 2). In Section 4, the numerical
solvability of the resulting nonlinear algebraic system, as well as error analysis of the proposed approach, are discussed.
In Section 5, the proposed method is applied to several numerical examples to clarify the efficiency of the method.

2 Basic Properties of Generalized Jacobi Functions

In this section, firstly we give some definitions related to the L2 space, and afterward, we recall the GJFs from [19], and
investigate their basic properties, which will be needed in the sequel.

Let w(α ,β )(x) = (2− 2x)α(2x)β , with parameters α,β , be the shifted Jacobi weight function on Λ . The weighted
L2-norm of a function u over Λ is given by

‖u‖L2
α,β

(Λ) =
(

∫

Λ
|u(x)|2w(α ,β )(x)dx

)
1
2
,
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and the space of all continuous functions on Λ is denoted by C(Λ). In addition, the inner product formula is defined by

(

u,v
)

α ,β
=

∫

Λ
u(x)v(x)w(α ,β )(x)dx.

The shifted GJFs is defined as follows

J
(α ,−β )
n (x) = (2x)β J

(α ,β )
n (x), x ∈ Λ , α, β >−1, n ≥ 0, (7)

where J
(α ,β )
n (x) is the classical shifted Jacobi polynomials on Λ [13].

From the relation (3.13) in [19], it can be obtained

D
q
CJ

(α ,−β )
n (x) =

2qΓ (n+β + 1)

Γ (n+β − q+ 1)
J
(α+q,−β+q)
n (x), β > q− 1. (8)

An important property of the shifted GJFs on Λ is that

∂ i
xJ

(0,−ν)
n (0) = 0, i = 0,1, ...,ν − 1. (9)

Hence we can consider {J
(0,−ν)
n , n ≥ 0} as suitable basis functions in Galerkin solution of differential equations with

ν homogeneous initial conditions on Λ .

An important fact is that the shifted GJFs {J
(0,−ν)
n ;n ≥ 0} form a complete orthogonal system in L2

0,−ν(Λ) [19]. So
we define

P
0,−ν
N = Span{J

(0,−ν)
0 ,J

(0,−ν)
1 , ...,J

(0,−ν)
N−ν },

and consider the orthogonal projection Π 0,−ν
N : L2

0,−ν(Λ)→ P
0,−ν
N defined by

(

u−Π 0,−ν
N u,vN

)

0,−ν
= 0, ∀vN ∈ P

0,−ν
N .

3 The Generalized Jacobi Galerkin Method

In this section, we are concerned with the formulation of GJG method for solving the nonlinear FDEs (1 - 2). In the
Galerkin method we seek a polynomial solution uN(x) of the form

uN(x) =
N−ν

∑
i=0

aiJ
(0,−ν)
i (x), (10)

where we have u
(i)
N (0) = 0 for i = 0,1, ...,ν − 1.

The N −ν + 1 equations for the unknown expansion coefficients {ai}N−ν
i=0 , are determined from (1− 3), by requiring

that, the residual

RN(x) = LD(uN(x))− f (x), (11)

to be orthogonal toP
0,−ν
N . In other words, the Galerkin formulation of (1-3) is finding uN(x) ∈ P

0,−ν
N , such that

(

RN(x),J
(0,−ν)
s (x)

)

0,−ν
= 0, 0 ≤ s ≤ N −ν,

or
∫

Λ

(

LD(uN(x))− f (x)
)

J
(0,−ν)
s (x)w(0,−ν)(x)dx = 0, 0 ≤ s ≤ N −ν. (12)

Since J
(0,−ν)
s (x)w(0,−ν)(x) = J

(0,ν)
s (x), the relations (3) and (12), concludes

∫

Λ

( Nd

∑
r=0

pr(x)
(

Dθr
C uN(x)

)γr − f (x)
)

J
(0,ν)
s (x)dx = 0, 0 ≤ s ≤ N −ν.
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From (10) we have

∫

Λ

( Nd

∑
r=0

pr(x)
(N−ν

∑
i=0

aiD
θr
C J

(0,−ν)
i (x)

)γr
)

J
(0,ν)
s (x)dx =

∫

Λ
f (x)J

(0,ν)
s (x)dx, 0 ≤ s ≤ N −ν. (13)

The relations (8), and (7) yield

D
θr
C J

(0,−ν)
i (x) =

2νΓ (i+ν + 1)

Γ (i+ν −θr + 1)
xν−θr J

(θr ,ν−θr)
i (x) =: Θi,ν,r(x). (14)

Inserting (14) into (13) gives

∫

Λ

( Nd

∑
r=0

pr(x)
(N−ν

∑
i=0

aiΘi,ν,r(x)
)γr
)

J
(0,ν)
s (x)dx =

∫

Λ
f (x)J

(0,ν)
s (x)dx, 0 ≤ s ≤ N −ν. (15)

Using a (N +1)-point Gauss-Lobatto Legendre quadrature formula, the integration terms in (15) can be approximated
as

N

∑
j=0

(

F(x j)− f (x j)
)

J
(0,ν)
s (x j)w j = 0, 0 ≤ s ≤ N −ν, (16)

where

F(x) =
Nd

∑
r=0

pr(x)
(N−ν

∑
i=0

aiΘi,ν,r(x)
)γr

,

and the set {xi,wi}N
i=0 coincides with the Gauss-Lobatto Legendre collocation points and corresponding weights on Λ ,

respectively. In this position, we have a nonlinear algebraic system, which when solved gives us unknown coefficients
{ai}N−ν

i=0 in (10).

4 Existence, Uniqueness and Convergence Results

In this section, the unique numerical solvability, and convergence properties of GJG approach for a special case of (1-2)
with θNd

= ν,γNd
= 1 and pNd

(x) = 1, as

{

u(ν)(x)+∑
Nd−1
r=0 pr(x)

(

D
θr
C u(x)

)γr

= f (x)

u(i)(0) = 0, i = 0,1, ...,ν − 1,
(17)

are investigated.
We recall some fundamental definitions and theorems which are used later. Let E and F be two normed spaces. The

operator T : (E,‖.‖E) → (F,‖.‖F) is called continuous if it transforms every sequence of elements which is convergent
with respect to the norm ‖.‖E into a sequence of elements which is convergent concerning the norm ‖.‖F . The operator T
is called bounded if it transforms every bounded set of elements in E into a bounded set in F . The operator T , is called
compact if it transforms every bounded set into a compact set and it is completely continuous if it is continuous and
compact. This operator is differentiable in the Fréchet sense at the point v ∈ E , if there exists a bounded linear operator
T ′ : (E,‖.‖E)→ (F,‖.‖F) such that

Tw−Tv = T ′(v)(w− v)+ω(w,v),

where
‖ω(w,v)‖F

‖w− v‖E

→ 0 as w → v,

and the operator T ′(v) ∈ L (E,F) is called the Fréchet derivative of the operator T , at v. Here, L (E,F) is the Banach
space of bounded linear operators from E to F . It can be shown that, the Fréchet derivative of a completely continuous
operator is a completely continuous linear operator [24,25].

We shall say that the operator T is continuously differentiable at v0, if it is differentiable at each point of some
neighborhoods of the point v0, and

‖T ′(v)−T ′(v0)‖F → 0, as ‖v− v0‖E → 0.
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Now we assume that T and TN are presented in the form T = PT, TN = PNT , where T is a nonlinear completely
continuous operator, and P,PN : F → E are linear continuous operators. The sequence of operators PN is assumed to
converge strongly to the operator P, i.e., for any w ∈ F we have

PNw → Pw, as N → ∞.

The following Theorem is valid([24,25]):

Theorem 1 1. Let equation

v = T v, (18)

has a unique solution v0 with non-zero index in the ball ‖v− v0‖E ≤ δ . Then the equation

v = TNv, (19)

has a solution vN(‖vN − v0‖E ≤ δ ), for sufficiently large values of N, and vN → v0 as N → ∞.

2. Let the operator T is differentiable at v0, and the homogeneous equation v−PT ′(v0)v = 0 has only a trivial solution

v = 0, then following inequality holds

‖vN − v0‖E ≤ M‖(PN −P)Tv0‖E .

3. Assume the operator T be differentiable at v0 continuously, then the solution vN is unique in the ball ‖vN −v0‖E ≤ δ ,

for sufficiently large N.

Note that if v0 is a solution of (18), and the operator T is differentiable at this point, where the homogeneous equation
v−PT ′(v0)v = 0 has only a trivial solution v = 0, then v0 is an isolated solution of equation (18) with non-zero index [24,
25]. Thus we can accumulate the conditions 1 and 2 in Theorem 1, and give the following simpler form.

Theorem 2 Assume the equation (18) has a solution v0, the operator T is differentiable at v0, and the homogeneous

equation v−PT ′(v0)v = 0 has only a trivial solution v = 0. Then the equation (19) has a solution vN (‖vN − v0‖E ≤ δ ),

for sufficiently large N, and vN → v0 as N → ∞.

Also the speed of convergence can be evaluated by the inequality

‖vN − v0‖E ≤ M‖(PN −P)Tv0‖E .

In addition, if the operator T be differentiable at v0 continuously, then the solution vN is unique in the ball ‖vN −
v0‖E ≤ δ , for sufficiently large N.

In the sequel, the existence, uniqueness, and convergence results of GJG approach for solving (17) is justified. Our
strategy is based on Theorem 2. To this end, we first show that the equation (17) can be written as (18) with a completely
continuous operator T , and also its GJG method can be represented as (19) with a suitable projection operator PN . Next,
we apply Theorem 2 to ensure the desired results.

As we know, the integral operators with weakly singular kernels are compact operators on
(

L2(Λ),‖.‖L2(Λ)

)

[26].

Since we have
(

C(Λ),‖.‖L2(Λ)

)

⊆
(

L2(Λ),‖.‖L2(Λ)

)

, so these operators can be considered as compact operators from
(

L2(Λ),‖.‖L2(Λ)

)

to
(

C(Λ),‖.‖L2(Λ)

)

. Consequently, the fractional integral operator Iµ is a compact operator from
(

L2(Λ),‖.‖L2(Λ)

)

to
(

C(Λ),‖.‖L2(Λ)

)

.

In this position, we first represent the equation (17) as (18). For this purpose, let u0(x) be solution of (17), and

v0(x) = u
(ν)
0 (x) ∈ L2(Λ). Thus we have D

θi
C u0(x) = Iν−θiv0, i = 0,1, ...,Nd − 1, and (17) can be written as follows

v0(x) = f (x)−
Nd−1

∑
r=0

pr(x)
(

Iν−θr v0(x)
)γr

. (20)

We define T :
(

L2(Λ),‖.‖L2(Λ)

)

→
(

C(Λ),‖.‖L2(Λ)

)

by

(

T v
)

(x) = f (x)−
Nd−1

∑
r=0

pr(x)
(

Iν−θr v(x)
)γr

, ‖v− v0‖L2(Λ) ≤ δ . (21)

Due to compactness of Iν−θi , i = 0,1, ...,Nd − 1, the above operator is completely continuous on the ball ‖v−
v0‖L2(Λ) ≤ δ .
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The operator I is considered for embedding the space C(Λ) in the space L2(Λ). Clearly, I is a linear continuous
operator, and (17) is equivalent with the following equation

v = I T v, (22)

which is in form (18) with T = I T , such that theirs solutions are equivalent with v0(x) = u
(ν)
0 (x).

Now, we rewrite the GJG approach for (17) as the operational form (19). For this purpose, we define

RN(x) = u
(ν)
N (x)+

Nd−1

∑
r=0

pr(x)
(

D
θr
C uN(x)

)γr

− f (x), (23)

where uN(x) is given by (10). Following the relation

J
(0,−ν)
s (x)w(0,−ν)(x) = J

(0,ν)
s (x), 0 ≤ s ≤ N −ν,

and according to the proposed method (11)-(16), we have

N

∑
i=0

RN(xi)J
(0,ν)
s (xi)wi = 0, 0 ≤ s ≤ N −ν, i = 0,1, ...,N, (24)

where {xi,wi}N
i=0 are the Gauss-Lobatto Legendre points and the corresponding weights respectively [27]. Since RN(xi) =

IN(RN(x))|x=xi
, where INu be the Lagrange interpolation polynomial approximation of u associated with the shifted Gauss-

Lobatto Legendre points, we may write

N

∑
i=0

IN(RN(x))|x=xi
J
(0,ν)
s (xi)wi = 0, 0 ≤ s ≤ N −ν.

According to the Gauss-Lobatto integration formula we obtain

N

∑
i=0

IN(RN(x))|x=xi
J
(0,ν)
s (xi)wi =

∫

Λ
IN(RN(x))J

(0,ν)
s (x)dx = 0, 0 ≤ s ≤ N −ν. (25)

Since IN(RN(x)) is a polynomial, it can be represented by a linear orthogonal polynomial expansion as

IN(RN(x)) =
N−ν

∑
s=0

(

IN(RN(x)),J
0,−ν
s (x)

)

0,−ν

‖J
0,−ν
s ‖2

L2
0,−ν(Λ)

J0,−ν
s (x).

Using the relation (25) we have IN(RN(x)) = 0, and thereby the relation (23) yields

u
(ν)
N (x) = IN

(

f (x)−
Nd−1

∑
r=0

pr(x)
(

Dθr
C uN(x)

)γr
)

. (26)

Assuming vN(x) = u
(ν)
N (x), we obtain D

θi
C uN(x) = Iν−θivN , i = 0,1, ...,Nd − 1, and then the equation (26) can be

written as
vN = INT vN , (27)

which is an operational equation on L2(Λ), if we consider IN as an operator from C(Λ) into L2(Λ). Consequently, the

above equation is in form (19) with TN = INT , and the solutions of (26), and (27) are equivalent by vN(x) = u
(ν)
N (x).

To ensure existence, uniqueness, and convergence results for (26) we apply Theorem 2. To this end, we need to prove
the following statements:

– The sequence of operators IN converge strongly to the operator I ,
– The operator T defined by (21) is differentiable and the homogeneous equation v−I T ′(v0)v = 0 has only a trivial
solution v = 0,

– The operator T is differentiable at the point v0 continuously.
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The first condition is deduced by Edros-Turan Theorem [28], which indicates that the interpolation polynomial of any
continuous function associated with the Gauss-Lobatto Legendre points approached in mean square, to the given function,
i.e.,

‖INv− v‖L2(Λ) → 0, v ∈C(Λ). (28)

The remaining conditions are proved in the next theorem.

Theorem 3 Assume that

1.Initial value problem (17) has a unique smooth solution u0(x).
2.The linear homogeneous initial value problem



















u(ν)(x) = ∑
Nd−1
r=0

(

γr pr(x)

(

D
θi
C u0(x)

)γr−1

D
θr
C u(x)

)

, x ∈ Λ ,

u(i)(0) = 0, i = 0,1, ...,ν − 1,

(29)

has only the trivial solution u(x)≡ 0.

Then there exists a number δ > 0, such that the equation (26) has a unique GJG solution uN(x) defined by (10) in the

ball ‖u(ν)− u
(ν)
0 ‖L2(Λ) ≤ δ , for sufficiently large N.

The rate of convergence is given by

‖u
(ν)
N − u

(ν)
0 ‖L2(Λ) ≤C max

x∈Λ
|v0 − pN|,

where C is a constant and pN is any polynomial of degree not exceeding from N.

Proof.Consider E = (L2(Λ),‖.‖L2(Λ)), and F = (C(Λ),‖.‖L2(Λ)). First, we show that the operator T is differentiable. To

this end, we define

F

(

x, Iν−θ0 v(x), Iν−θ1v(x), ..., Iν−θNd−1v(x)

)

= f (x)−
Nd−1

∑
r=0

pr(x)
(

Iν−θr v(x)
)γr

. (30)

From Taylor formula we can write

(

T v
)

(x)−
(

Tw
)

(x) =
Nd−1

∑
i=0

∂F

(

x,zw
0 ,z

w
1 , ...,z

w
Nd−1

)

∂ zv
i

zv−w
i +

1

2!

Nd−1

∑
i=0

Nd−1

∑
j=0

∂ 2F

(

x,zw
0 ,z

w
1 , ...,z

w
Nd−1

)

∂ zv
i ∂ zv

j

zv−w
i zv−w

j + ...,

where v and w are included in the ball ‖v− v0‖L2(Λ) ≤ δ , and zw
i = Iν−θiw(x). Following the relation (30), and definition

of Fréchet derivative, the above relation can be rewrite as follows

(

T v
)

(x)−
(

Tw
)

(x) =
Nd−1

∑
i=0

γr pr(x)
(

zw
i

)γr−1
zv−w

i +
1

2!

Nd−1

∑
i=0

Nd−1

∑
j=0

∂ 2F

(

x,zw
0 ,z

w
1 , ...,z

w
Nd−1

)

∂ zv
i ∂ zv

j

zv−w
i zv−w

j + ...

= (T ′(w))(v−w)+ω(v,w),

where

(T ′(w))(v) =
Nd−1

∑
i=0

γr pr(x)
(

Iν−θiw
)γr−1

Iν−θiv, (31)

and

ω(v,w) =
1

2!

Nd−1

∑
i=0

Nd−1

∑
j=0

∂ 2F

(

x,zw
0 ,z

w
1 , ...,z

w
Nd−1

)

∂ zv
i ∂ zv

j

zv−w
i zv−w

j + ...,
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such that
‖ω(v,w)‖L2(Λ)

‖v−w‖L2(Λ)

→ 0, as v → w.

Then the operator (T ′(w))(v) defined in (31) is the Fréchet derivative of the completely continuous operator (21).
Since the linear operator (T ′(w))(v) is continuous, then the nonlinear operator T in (21) is continuously differentiable at
v0. Thus, regarding the assumption 2, all requirements of Theorem 2 are satisfied. Based on the Theorem 2, the equation

(27) has a unique solution vN in the ball ‖vN−v0‖L2(Λ) ≤ δ , for sufficiently large N. Since vN(x) = u
(ν)
N (x),v0(x) = u

(ν)
0 (x),

then the equation (26) has a unique solution uN(x) in the ball ‖u
(ν)
N − u

(ν)
0 ‖L2(Λ) ≤ δ .

Also, we have
‖vN − v0‖L2(Λ) ≤ M‖(IN −I )T v0‖L2(Λ) = M‖INI

−1v0 − v0‖L2(Λ),

which Edros-Turan Theorem [28](boundedness of operator IN) yields

‖vN − v0‖L2(Λ) ≤ M

(

‖v0 − pN‖L2(Λ)+ ‖INI
−1
(

v0 − pN

)

‖L2(Λ)

)

≤ (M+C)max
x∈Λ

|v0 − pN |,

where pN is any polynomial of degree not exceeding from N and INI −1 pN = pN .

5 Numerical Results

The main purpose of this section is to describe some numerical experiments performed with the GJG method. The reported
GJG approximation errors are computed in L2-norm and the CPU time of Non-Linear Solver are reported.All of the
calculations were performed using Mathematica software v 12.1, running in an Intel (R) Core (TM) i7-7700 CPU@ 3.60
GHz. As we develop in Section 3, the approximate solution (10) can be characterized by solving the nonlinear algebraic
system (16) for the unknowns {ai}N−ν

i=0 . Clearly, if we use the classical Newton’s methods for solving (16), the function
and its Jacobian evaluations are needed which can be a computationally expensive process. This can be influenced the
accuracy of the obtained approximations. Due to the high complexity of (16), we apply a suitable root finding approach
which controls the computational costs by reducing the Jacobian evaluations. To this end, we solve all of the computed
nonlinear algebraic systems by Affine-Covariant Newton’s method [29]. This algorithm, is an implementation of the error
oriented exact global Newton approach, which significantly reduces the number of Jacobian calculations. This property
decrease evaluation costs, and increase computational speed in the root finding process. The Affine-Covariant Newton’s
method is available as a method option to ”FindRoot” in Mathematica 12.1.

Example 1([30]) Consider the Riccati nonlinear FDE

LD(u(x)) = u(3)(x)+D
(2.5)
C (u(x))+ u2(x) = x4, x ∈ Λ ,

with initial conditions u(0) = u
′
(0) = 0,u

′′
(0) = 2, and the exact solution u(x) = x2.

As we pointed out in the previous sections, GJG scheme is easily constructed when considering homogeneous initial
conditions. If the given initial conditions are not homogeneous, they can always be made with the adding an appropriate
function to the unknown solution with modification of the associated equation. So by applying a function transformation
method we have







L̄D(U(x)) = f ,

U (i)(0) = 0, i = 0,1,2,

where

U(x) = u(x)−
2

∑
i=0

di
i!

xi = u(x)− d2
2!

x2 = u(x)− x2,

L̄D(U(x)) = LD(U(x))+ 2U(x)x2, f (x) = 0.

We define approximate solution UN(x) =
4

∑
i=3

aiJ
(0,−3)
i (x). Using GJG method we have

4

∑
i=3

aiMki = f̄k, k = 3,4,
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where f̄ = [0,0]T and

M =

(

28.8131+ 4.24811a3 192.858a4+ 3.5341a3+ 1.87434a4

−19.5698+ 1.66705a3 −13.0513+ 3.74868a3+ 0.908717a4

)

,

which when solved, gives us a3 = a4 = 0. Then UN(x) = 0 and so uN(x) =UN(x)+ x2 = x2, which is the exact solution.

Example 2Consider the FDE

x2D
3
2
C u(x)+

√

x+ x2u2(x) = f (x), x ∈ Λ ,

with the initial conditions u(0) = 0,u
′
(0) = 1, where

f (x) =
√

x+ x2
(

(Ln(1+ x))2 − x2

√
π(1+ x)

3
2

)

− x2Arcsinh(
√

x)
√

π(1+ x)
3
2

.

The exact solution is u(x) = Ln(1+ x).

The numerical results are presented in Table 1, and Figure 1, for various values of N. Clearly, the approximate solutions
are in a good agreement with the exact ones.

Table 1: The GJG approximation errors of example 2.

N GJG Errors CPU Time(s)

3 2.88× 10−3 0.00

5 1.04× 10−4 0.01

7 3.92× 10−6 0.07

9 1.45× 10−7 0.12

11 5.25× 10−9 0.23

13 1.87× 10−10 0.50

15 6.54× 10−12 0.84

17 2.26× 10−13 0.87

19 7.13× 10−15 1.32

21 1.39× 10−15 1.87

Example 3Consider the following nonlinear FDE

(

D
3
2 u(x)

)3

+ x
m
2 u(x) = f (x), m > 1,

with u(0) = u′(0) = 0,

f (x) = x4+m
2 (1− 3x

m
2 )− 1

64
x

15
2

(

− 256

5
√

π
+

12x
m
2 Γ (5+ m

2
)

Γ ( 7+m
2

)

)3

,

and the exact solution u(x) = x4
(

1− 3x
m
2

)

.

This example has considered with m = 1.3,1.5,1.7, 1.9. Since for m = 2 we have smooth solution, so we can expect an
exponential rate of convergence. In Table 2− 3, and Figure 2, numerical errors are reported for several values of N. As
expected, the rate of convergence is increased when m tends to 2. Numerical results for m = 2 has not presented since the
numerical solution is very close to the exact solution.
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Fig. 1: The GJG approximation errors of example 2 with various values of N.

Table 2: The GJG approximation errors of example 3 with m = 1.3.

N GJG Errors CPU Time(s)

3 6.58× 10−1 0.01

5 5.48× 10−3 0.07

7 1.63× 10−4 0.26

9 7.86× 10−6 0.96

11 2.57× 10−7 2.15

13 1.54× 10−7 4.18

15 1.83× 10−8 7.28

17 8.54× 10−9 11.73

19 2.11× 10−9 20.04

21 1.88× 10−9 37.53

Table 3: The GJG approximation errors of example 3 with N = 10.
m x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1

1.3 1.83×10−6 2.2×10−6 1.65×10−6 3.39×10−6 1.51×10−6

1.5 9.71×10−7 5.53×10−7 5.52×10−7 5.64×10−7 3.09×10−7

1.7 3.25×10−7 2.83×10−7 5.05×10−7 8.02×10−7 3.09×10−7

1.9 4.91×10−8 2.37×10−7 5.25×10−7 4.49×10−7 2.26×10−7

Example 4Consider the following nonlinear FDE

{

D
1
2 u(x) = u2(x)

x
+ f (x), x ∈ Λ ,

u(0) = 0,

where f (x) = e−
1
x x

−3
2

(

1− e−
1
x x

−1
2

)

, and the exact solution of the problem is u(x) = 1√
x
e−

1
x .

The numerical results are presented in Table 4 and Figure 3. Indeed, due to continuity and non-smooth behavior of
solution we have a linear error variations, which can be approved by the reported results.
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Fig. 2: The GJG approximation errors of example 3 with various values of N.
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Fig. 3: The GJG approximation errors of example 3 with various values of m.
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Table 4: The GJG approximation errors of example 4.

N GJG Errors CPU Time(s)

3 1.03× 10−2 0.01

5 2.71× 10−3 0.02

7 4.41× 10−4 0.05

9 1.92× 10−4 0.12

11 5.05× 10−5 0.12

13 3.05× 10−5 0.34

15 1.39× 10−5 0.50

17 6.05× 10−6 0.67

19 1.47× 10−6 0.97

21 1.05× 10−6 0.98

23 7.98× 10−7 1.01

5 10 15 20

-6
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-4

-3

-2

N

L
o
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10
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-
u
N
|
L
2
(Λ

))

Fig. 4: The GJG approximation errors of example 4 with various values of N.

Example 5([31]) In this example, we analyze Micro-electro-mechanical(MEMS) instrument that has been designed to

measure the viscosity of fluids which are encountered ”downhole” during the process of oil well logging showing that, in

one mode of operation, its motion is governed by following non-linear FDE

u′′(x)+

√
π

5
Dα

C u(x)+ u(x)+ u3(x) = 0, x ∈ [0,10] (32)

with initial conditions u(0) = 1,u′(0) = 0.

Here, we do not access to any closed-form solution. To illustrate the efficiency of the proposed method, we solve (32)
with α = 1.5,1.7,1.9,2, and report the obtained results for N = 16 in Table 5 and Figure 4. As we can see, when α tends
2, the numerical solutions converge to the corresponding solution with α = 2.
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Table 5: The GJG solutions for example 5 with various α .

x α = 1.5 α = 1.7 α = 1.9 α = 2

2 −0.54354 −0.56576 −0.59635 −0.61599

4 −0.20500 −0.22078 −0.20179 −0.17404

6 0.57891 0.70879 0.83008 0.87154

8 −0.24021 −0.39530 −0.70678 −0.92195

10 −0.26390 −0.27135 −0.01539 0.30925

α=1.5

α=1��

α=1.9

α=2��

0 2 4 6 8 �0

-��0

-0��

0�0

0��

��0

x

u
N
(x

)

Fig. 5: The GJG solutions of example 5 with various values of N and α .

6 Conclusion

This work has been concerned with the GJG analysis of the nonlinear multi order FDEs. The unique solvability of the
obtained nonlinear algebraic system discussed. We proved the convergence of the proposed method and obtained the error
estimate in the weighted L2-norm of the solution. This result confirmed by some numerical examples.
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