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1 Introduction and preliminaries

The ultra-hyperbolic diffusion-wave equation was introduced in [1] replacing the first and second-order derivative in the
temporal variable by a fractional derivative in the Hilfer sense in the equations introduced and studied in [3] and [4]. The
name ultra-hyperbolic is due to the Laplacian operator is replaced by the ultra-hyperbolic operator. The ultra-hyperbolic
diffusion-wave equation turns out to be an interesting generalization of the equations mentioned. Furthermore, by means
of a suitable choice of parameters, it also generalizes the fractional wave-diffusion equation studied by many authors (cf.
[5]-[15] and the references cited therein).

In this paper, we study a new generalization of this important equation. In this case, we replace the Hilfer fractional
derivative by another so-called k-Prabhakar fractional derivative introduced in [2]. This derivative generalizes the
Prabhakar derivative (cf. [16]) as well as the classical Riemann-Liouville fractional derivative. The k-Prabhakar
fractional derivative has been generalized in [17], where a new Hilfer type derivative was defined. In the space variable,
we replace the Laplacian operator by a power of the ultra-hyperbolic operator following the definition suggested by
Samko in [18]. The work ends with the exposition of interesting particular cases.

For the reader’s convenience, we begin the work by making a brief review of the definitions and properties to use.

Definition 1.Let f ∈ L1(Rn), the Fourier transform of f is defined by

F{ f (x)}(ξ ) = f̂ (ξ ) =
1

(2π)n/2

∫

Rn
e−i(ξ ,x) f (x)dx, (1)

where ξ = (ξ1,ξ2, ...,ξn), x = (x1,x2, ...xn) ∈Rn, (ξ ,x) = ξ1x1 + ...+ξnxn and dx = dx1dx2...dxn. The inverse Fourier

transform is given by

F−1{ f̂ (ξ )}(ξ ) =
1

(2π)n/2

∫

Rn
ei(ξ ,x) f̂ (ξ )dξ . (2)

It is known (see for example [18]) that the Fourier transform of the ultra-hyperbolic operator defined by

�=

(
∂ 2

∂x2
1

+ ...+
∂ 2

∂x2
p

−
∂ 2

∂x2
p+1

− ...−
∂ 2

∂x2
p+q

)
, p+ q = n. (3)

∗ Corresponding author e-mail: gusad82@gmail.com

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/080402


476 G. Dorrego: k-generalized space-time fractional ultra-hyperbolic...

it is given by

F{−� f (x)}(ξ ) = Q(ξ )F{ f (x)}(ξ ), (4)

where Q(ξ )

Q(ξ ) = ξ 2
1 + ...+ ξ 2

p − ξ 2
p+1 − ...− ξ 2

p+q.

To define the fractional power of the ultrahyperbolic operator (3), the Fourier transform of certain generalized
functions introduced by Gelfand in [19] is used. Although here we use the following particular case (see for example in
[20]):

(P± i0)λ = lim
ε→0+

(P± iε‖x‖2)λ =





|P(x)|λ , si P(x)> 0;

e±λ π i |P(x)|λ , si P(x)≤ 0,

(5)

where P = P(x)

P(x) = x2
1 + ...+ x2

p− x2
p+1 − ...− x2

p+q, (6)

and λ is a complex variable.

Introducing the functions

Pλ
+(x) =





|P(x)|λ , si P(x)> 0;

0, si P(x)≤ 0.

(7)

Pλ
−(x) =





|P(x)|λ , si P(x)< 0;

0, si P(x)≥ 0.

(8)

(5) can be expressed as

(P± i0)λ = Pλ
+ + e±λ π iPλ

− . (9)

From the above equation it follows that (P± i0)λ and Pλ coincide for λ ∈ N. Here we only consider λ ∈ R
+.

Remark.Note that for q = 0, that is n = p, from (5), it turns out that for x ∈ R
n

P(x) = x2
1 + ...+ x2

p = ‖x‖2. (10)

The fractional power of the ultra-hyperbolic operator (3) that will be used here is defined by (cf.[18]):

(−�)β ϕ(x) = F
−1{(Q∓ i0)β ϕ̂(ξ )} (11)

taking into account

F

{
(P± i0)λ

}
=

e∓i
q
2 ππ

n
2 22λ+nΓ (λ + n/2)

Γ (−λ )
(Q∓ i0)−λ−n/2, (12)

result due to Gelfand [19].

1.1 Fractional calculus operators

Definition 2.Let f ∈ L1
loc[a,b] where −∞ ≤ a < t < b ≤ ∞. The Riemann-Liouville integral of order α is defined as

Iα f (t) :=
1

Γ (α)

∫ t

a
(t − τ)α−1 f (τ)dτ α > 0. (13)
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Definition 3.Let f ∈ L1[a,b], −∞ ≤ a < t < b ≤ ∞ and In−α f (t) ∈W n,1[a,b], n = [α]+ 1, α > 0
The Riemann-Liouville derivative of order ν , is given by

Dα f (t) :=

(
d

dt

)n

In−α f (t), (14)

where W n,1[a,b] = { f ∈ L1[a,b] : f (n) ∈ L1[a,b]}.

Definition 4.[21] Let α ∈ R+ and n ∈ N such that n− 1 < α < n, f ∈ L1([0,∞)). The k-Riemann-Liouville fractional

integral of f is

Iα
k f (t) =

1

kΓk(α)

∫ t

0
(t − τ)

α
k
−1 f (τ)dτ t > 0, (15)

where

Γk(α) =

∫ ∞

0
tα−1e−

tk

k dt, k > 0 (16)

is the k-Gamma function introduced in [22] and whose relationship with the classical Gamma function is

Γk(α) = k
α
k
−1Γ

(α

k

)
. (17)

The k-Riemann-Liouville fractional integral (15) also satisfies the semigroup property

Proposition 1.[21] Let α,β ∈ R+, f ∈ L1([0,∞)) and k > 0, then

Iα
k I

β
k f (t) = I

α+β
k f (t) = I

β
k Iα

k f (t). (18)

Definition 5. [23] Let k,α ∈ R+ and n ∈ N such that n = [α
k
] + 1, f ∈ L1([0,∞)) and Ink−α

k f (t) ∈ W n,1[0,∞); the k-

Riemann-Liouville fractional derivative is given by

kD
α
RL f (t) =

(
d

dt

)n

knInk−α
k f (t). (19)

Remark. If k = 1, (19) coincides with the classical Riemann-Liouville fractional derivative.

The results presented below can be seen in [2]

Definition 6.(k-Prabhakar integral) Let α,β ,ω ,γ,∈ C, k ∈ R+; ℜ(α) > 0; ℜ(β ) > 0 and ϕ ∈ L1([0,b]), (0 < x <
b ≤ ∞). The k-Prabhakar integral operator is given by

(kP
γ
α ,β ,ωϕ)(x) =

∫ x

0

(x− t)
β
k
−1

k
E

γ
k,α ,β [ω(x− t)

α
k ]ϕ(t)dt, (x > 0) (20)

=
(

kE
γ
α ,β ,ω ∗ f

)
(x),

where

kE
γ
α ,β ,ω(t) =

{
t

β
k
−1

k
E

γ
k,α ,β (ωt

α
k ), t > 0;

0, t ≤ 0
(21)

and ∗ mean the usual convolution product for causal functions.

Remark. If γ = 0 we have

(kP0
α ,β ,ωϕ)(t) = (I

β
k ϕ)(t). (22)

Remark.If we put k = 1 (γ 6= 0), the operator coincides with the Prabhakar operator (cf.[24],[25])

(1P
γ
α ,β ,ωϕ)(t) = (E

γ
α ,β ,ω;0+

ϕ)(t). (23)
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Definition 7.(k-Prabhakar fractional derivative) Given k ∈ R+, ρ ,β ,γ,ω ∈ C, ℜ(ρ) > 0,ℜ(β ) > 0, m =
[

β
k

]
+ 1

and f ∈ L1([0,b]). We define the k-Prabhakar fractional derivative

kD
γ
ρ ,β ,ω

f (x) =

(
d

dx

)m

km
kP

−γ
ρ ,mk−β ,ω

f (x). (24)

Remark.If k = 1 the k-Prabhakar fractional derivative coincide with the Prabhakar fractional derivative defined in [26].

Remark.If γ = 0 in (24) the k-Prabhakar fractional derivate coincide with the k-Riemann-Liouville fractional derivative
given by [23].

Remark.If k = 1 and γ = 0, the k-Prabhakar fractional derivative coincide with the classical Riemann-Liouville fractional
derivative.

Lemma 1([17]). The Laplace transform of the Prabhakar fractional derivative for m =
[

β
k

]
+ 1, is given by

L

{
kD

γ
ρ ,β ,ω

y(x)
}
= (ks)

β
k

(
1−ωk(ks)−

ρ
k

) γ
k
L {y(x)}(s)

−
m−1

∑
j=0

kmsm− j−1

(
d j

dx j kP
−γ
ρ ,mk−β ,ωy

)
(0) (25)

provided that

∣∣∣ωk(ks)−
ρ
k

∣∣∣< 1.

2 Generalized space-time fractional ultra-hyperbolic diffusion-wave equation

Here, we generalize the ultra-hyperbolic diffusion-wave equation studied in [1] by replacing the Hilfer derivative of order
α and type r by the k-Prabhakar fractional derivative (24) of order β in the time variable and considering the fractional
power of the ultra-hyperbolic operator (3) defined in [18] in the space variable. That is, we study the following problem:





kD
γ
ρ ,β ,ω

u(x, t)+ c2(−�)λ u(x, t) = 0, t > 0; x ∈ Rn

kP
−γ
ρ ,2k−β ,ω

u(x, t)|t=0 = f (x);
∂
∂ t kP

−γ
ρ ,2k−β ,ω

u(x, t)|t=0 = g(x),

(26)

where f (x) and g(x) are functions belonging to the space S , the Schwartz space on functions that is invariant by Fourier
Transform.

To solve it, first, we apply Fourier transform with respect to the space variable and then we apply Laplace transform
with respect to the time variable. Finally, using the initial conditions

(ks)β/k
(

1−wk(ks)−ρ/k
)γ/k

˜̂u(ξ ,s)− k(ks) f̂ (ξ )− k2ĝ(ξ )+ c2(Q∓ i0)λ ˜̂u(ξ ,s) = 0, (27)

˜̂u(ξ ,s)

[
(ks)β/k

(
1−wk(ks)−ρ/k

)γ/k

+ c2(Q∓ i0)λ

]
= k2ĝ(ξ )+ k(ks) f̂ (ξ ), (28)

˜̂u(ξ ,s) =
k2

(ks)β/k
(
1−wk(ks)−ρ/k

)γ/k
+ c2(Q∓ i0)λ

ĝ(ξ )

+
k(ks)

(ks)β/k
(
1−wk(ks)−ρ/k

)γ/k
+ c2(Q∓ i0)λ

f̂ (ξ ). (29)

In each term of the sum, we have
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1

(ks)β/k
(
1−wk(ks)−ρ/k

)γ/k
+ c2(Q∓ i0)λ

=
1

(ks)β/k
(
1−wk(ks)−ρ/k

)γ/k

×
1

1−
−c2(Q∓i0)λ

(ks)β/k(1−wk(ks)−ρ/k)
γ/k

=
∞

∑
j=0

(−1) jc2 j(Q∓ i0)λ j

(ks)( j+1)β/k
(
1−wk(ks)−ρ/k

)( j+1)γ/k

(30)

provided that

∣∣∣∣∣
−c2(Q∓ i0)λ

(ks)β/k
(
1−wk(ks)−ρ/k

)γ/k

∣∣∣∣∣< 1. (31)

Therefore,

˜̂u(ξ ,s) = ĝ(ξ )
∞

∑
j=0

k2(−1) jc2 j(Q∓ i0)λ j

(ks)( j+1)β/k
(
1−wk(ks)−ρ/k

)( j+1)γ/k
(32)

+ f̂ (ξ )
∞

∑
j=0

k(ks)(−1) jc2 j(Q∓ i0)λ j

(ks)( j+1)β/k
(
1−wk(ks)−ρ/k

)( j+1)γ/k
. (33)

Now, applying the inverse Laplace transform and using the Laplace transform of the function k-Mittag-Leffler
(cf.[27]), we get

û(ξ , t) = k
∞

∑
j=0

(−1) jc2 j(Q∓ i0)λ jĝ(ξ )t
β
k
( j+1)−1E

γ( j+1)
k,ρ ,β ( j+1)

(
wt

ρ
k

)

+
∞

∑
j=0

(−1) jc2 j(Q∓ i0)λ j f̂ (ξ )t
β( j+1)−k

k
−1E

γ( j+1)
k,ρ ,β ( j+1)−k

(
wt

ρ
k

)
. (34)

Note here that in both terms of the sum (34), there is an iterated series whose convergence we will study for the case
of the first term (since in the other case the procedure is similar).

∞

∑
j=0

(−1) jc2 j(Q∓ i0)λ jĝ(ξ )t
β
k
( j+1)−1E

γ( j+1)
k,ρ ,β ( j+1)

(
wt

ρ
k

)

= ĝ(ξ )t
β
k
−1

∞

∑
j=0

(−c2(Q∓ i0)λ) jt
β
k

j

Γk (γ( j+ 1))

∞

∑
r=0

Γk (γ( j+ 1)+ rk)(wt
ρ
k )r

Γk (ρr+β ( j+ 1))r!
. (35)

To show that the (35) series converges uniformly, we follow a similar procedure used in [28] (Appendix C). We must
demonstrate that both the series with respect to the columns (keeping j fixed and adding in m) and the series with respect
to the rows (adding in j and keeping m fixed) are uniformly convergent series. In that case, the resulting function is
continuous within the radius of convergence and can be integrated within the convergence interval (cf.[29]). Since the
k-Mittag-Leffler function is entire (cf. [30] for the case p = 1), to prove the absolute convergence of (35) it is sufficient to
show that for each r ∈ N0 the series

∞

∑
j=0

(−c2(Q∓ i0)λ t
β
k ) jΓk (γ( j+ 1)+ rk)

Γk (γ( j+ 1))Γk (ρr+β ( j+ 1))
(36)

is absolutely convergent.
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We study the radius of convergence, for this we consider

c j =
Γk(γ( j+ 1)+ rk)

Γk(γ( j+ 1))Γk(ρr+β ( j+ 1))
,

and taking into account

Γk(z) = k
z
k
−1Γ

( z

k

)
; (37)

result

c j =
kr+1−

ρr+β( j+1)
k Γ

( γ
k
( j+ 1)+ r

)

Γ
( γ

k
( j+ 1)

)
Γ
(

ρr+β ( j+1)
k

) . (38)

Therefore,
∣∣∣∣

c j

c j+1

∣∣∣∣= |k−
β
k |

∣∣∣∣∣
Γ
( γ

k
j+ γ

k
+ r
)

Γ
( γ

k
j+ γ

k

)
∣∣∣∣∣

∣∣∣∣∣∣

Γ
(

γ
k

j+ 2γ
k

)

Γ
(

γ
k

j+ 2γ
k
+ r
)

∣∣∣∣∣∣

∣∣∣∣∣∣

Γ
(

ρr+β j+2β
k

)

Γ
(

ρr+β j+β
k

)

∣∣∣∣∣∣
. (39)

In each product we apply the formula

Γ (z+ a)

Γ (z+ b)
= za−b

[
1+O

(
1

z

)]
, (|arg(z+ a)|< π , |z| −→ ∞). (40)

For the cases:

1.z = γ
k

j, a = γ
k
+ r y b = γ

k
,

2.z = γ
k

j, a = 2
γ k y b = 2γ

k
+ r,

3.z = β
k

j, a = ρr+2β
k

+ r y b = ρr+β
k

,

then it turns out
∣∣∣∣

c j

c j+1

∣∣∣∣≈ |k−
β
k |

∣∣∣∣∣∣

(
β

k
j

) β
k

∣∣∣∣∣∣
= |k−

β
k |

∣∣∣∣∣∣

(
β

k

) β
k

∣∣∣∣∣∣
jℜ(β ) −→ ∞,cuando j −→ ∞. (41)

Therefore, the series is absolutely convergent.

Now, returning to (34) and applying inverse Fourier transform, we finally obtain that the solution to the problem (26)
is given by

u(x, t) =
t

β
k −1

(2π)n

∫

Rn
k

∞

∑
j=0

(−1) jc2 jt
β
k jE

γ( j+1)
k,ρ ,β ( j+1)

(
wt

ρ
k

)
(Q∓ i0)λ jĝ(ξ )e−iξ xdx

+
t

β
k
−2

(2π)n

∫

Rn

∞

∑
j=0

(−1) jc2 jt
β
k

jE
γ( j+1)
k,ρ ,β ( j+1)−k

(
wt

ρ
k

)
(Q∓ i0)λ j f̂ (ξ )e−iξ xdx.

(42)

An equivalent and usual way of expressing the solution is as follows:

u(x, t) =

∫

Rn
γ G

ρ ,β
n,k,1(x− τ, t)g(τ)dτ +

∫

Rn
γ G

ρ ,β
n,k,2(x− τ) f (τ)dτ, (43)

where

γ G
ρ ,β
n,k,1(x, t) = kt

β
k −1

∞

∑
j=0

(−c2) jt
β
k jE

γ( j+1)
k,ρ ,β ( j+1)

(
wt

ρ
k

) 1

(2π)n

∫

Rn
(Q∓ i0)λ je−iξ xdx (44)

and

γG
ρ ,β
n,k,2(x, t) = t

β
k
−2

∞

∑
j=0

(−c2) jt
β
k

jE
γ( j+1)
k,ρ ,β ( j+1)−k

(
wt

ρ
k

) 1

(2π)n

∫

Rn
(Q∓ i0)λ je−iξ xdx. (45)
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Remark. ; Note that we can also express the solution in a different way taking into account (11):

u(x, t) = kt
β
k −1

∞

∑
j=0

(−c2) jt
β
k jE

γ( j+1)
k,ρ ,β ( j+1)

(
wt

ρ
k

)
(−�)λ j f (x)

+ t
β
k
−2

∞

∑
j=0

(−c2) jt
β
k

jE
γ( j+1)
k,ρ ,β ( j+1)−k

(
wt

ρ
k

)
(−�)λ jg(x). (46)

2.0.1 Particulars cases.

1.Note here that if we take γ = 0 we obtain the solution of the equation in terms of the k-Riemann-Liouville fractional
derivative (19). 




kD
β
RLu(x, t)+ c2(−�)λ u(x, t) = 0, t > 0; x ∈ Rn

I
2k−β
k u(x, t)|t=0 = f (x);
∂
∂ t

I
2k−β
k u(x, t)|t=0 = g(x).

(47)

The solution is given by

u(x, t) =

∫

Rn
0G

ρ ,β
n,k,1(x− τ, t)g(τ)dτ +

∫

Rn
0G

ρ ,β
n,k,2(x− τ) f (τ)dτ, (48)

where

0G
ρ ,β
n,k,1(x, t) = kt

β
k
−1

∞

∑
j=0

(−c2) jt
β
k

jE0
k,ρ ,β ( j+1)

(
wt

ρ
k

) 1

(2π)n

∫

Rn
(Q∓ i0)λ je−iξ xdx

= kt
β
k −1

∞

∑
j=0

(−1) jc2 jt
β
k j

Γk (β ( j+ 1))

∫

Rn
(Q∓ i0)λ je−iξ xdx (49)

and

0G
ρ ,β
n,k,2(x, t) = t

β
k
−2

∞

∑
j=0

(−c2) jt
β
k

jE0
k,ρ ,β ( j+1)−k

(
wt

ρ
k

) 1

(2π)n

∫

Rn
(Q∓ i0)λ je−iξ xdx

= t
β
k
−2

∞

∑
j=0

(−1) jc2 jt
β
k

j

Γk (β ( j+ 1)− k)

∫

Rn
(Q∓ i0)λ je−iξ xdx. (50)

Furthermore, under Remark 2, we can formally express the solution as follows

u(x, t) = kt
β
k
−1

∞

∑
j=0

(−c2) jt
β
k

jE0
k,ρ ,β ( j+1)

(
wt

ρ
k

)
(−�)λ j f (x) (51)

+ t
β
k −2

∞

∑
j=0

(−c2) jt
β
k jE0

k,ρ ,β ( j+1)−k

(
wt

ρ
k

)
(−�)λ jg(x). (52)

2.If, in addition to taking γ = 0, we make k = 1, the problem (26) is expressed in terms of the Riemann-Liouville
fractional derivative 




Dβ u(x, t)+ c2(−�)λ u(x, t) = 0, t > 0; x ∈ Rn

I2−β u(x, t)|t=0 = f (x);
∂
∂ t

I2−β u(x, t)|t=0 = g(x).

(53)

The solution can be expressed using (48), (49) and (50) for k = 1:

u(x, t) =

∫

Rn
0G

ρ ,β
n,1,1(x− τ, t)g(τ)dτ +

∫

Rn
0G

ρ ,β
n,1,2(x− τ) f (τ)dτ, (54)
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where

0G
ρ ,β
n,1,1(x, t) =

1

(2π)n

∫

Rn
tβ−1

∞

∑
j=0

(−c2) jtβ j

Γ (β j+β )
(Q∓ i0)λ je−iξ xdx

= F−1{tβ−1Eβ ,β (−c2(Q∓ i0)λ tβ )} (55)

and

0G
ρ ,β
n,1,2(x, t) =

1

(2π)n

∫

Rn
tβ−2

∞

∑
j=0

(−c2) jtβ j

Γ (β j+β − 1)
(Q∓ i0)λ je−iξ xdx

= F−1{tβ−2Eβ ,β−1(−c2(Q∓ i0)λ tβ )}. (56)

But the inverse transforms (55) and (56) were calculated in [31] in terms of the Fox H-function and are given by

F−1{tβ−1Eβ ,β (−c2(Q∓ i0)λ tβ )}

=
e±i

q
2 π tβ−1

(
4λ πc

2
λ t

β
λ

) n
2

H
2,1
2,3


(P± i0)λ

4λ c2tβ

∣∣∣∣∣∣

(1− n
2λ ,1);(β − nβ

2λ ;β )

(1− n
2λ ;1),(0,λ );(1− n

2
;λ )


 (57)

and

F−1{tβ−2Eβ ,β−1(−c2(Q∓ i0)λ tβ )}

=
e±i

q
2 π tβ−2

(
4λ πc

2
λ t

β
λ

) n
2

H
2,1
2,3


 (P± i0)λ

4λ c2tβ

∣∣∣∣∣∣

(1− n
2λ ,1);(β − 1− nβ

2λ ;β )

(1− n
2λ ;1),(0,λ );(1− n

2
;λ )


 . (58)

Finally the solution results from replacing (57) and (58) in (54)

Let us now consider two important particular cases of (53):

1.If we take λ = 1 and P > 0 the problem (26) coincides with the particular case 2 of Problem 3.1 given in [1]:





Dβ u(x, t)− c2
�u(x, t) = 0, t > 0; x ∈ Rn

I2−β u(x, t)|t=0 = f (x);
∂
∂ t

I2−β u(x, t)|t=0 = g(x),

(59)

and the solution can be expressed here according to the Remark 2 by the formal series

u(x, t) = tβ−1
∞

∑
j=0

c2 jtβ j

Γ (β j+β )
�

j f (x) (60)

+ tβ−2
∞

∑
j=0

c2 jtβ j

Γ (β j+β − 1)
�

jg(x). (61)

This is a new expression of the solution given in terms of the two-parameter Mittag-Leffler function. The solution
obtained in [1] is given in terms of the Fox H-function.
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2.Taking now q = 0 it turns out that p = n and then �= ∆ and we obtain





Dβ u(x, t)− c2∆u(x, t) = 0, t > 0; x ∈ Rn

I2−β u(x, t)|t=0 = f (x);
∂
∂ t

I2−β u(x, t)|t=0 = g(x),

(62)

and the solution is given by

u(x, t) = tβ−1
∞

∑
j=0

c2 jtβ j

Γ (β j+β )
∆ j f (x) (63)

+ tβ−2
∞

∑
j=0

c2 jtβ j

Γ (β j+β − 1)
∆ jg(x). (64)

This problem has been studied in [16] for the case m− 1 < α ≤ m, m ∈ N. It can be seen that taking m = 2 both
solutions coincide.

3 Conclusion

It can be seen that for a suitable choice of parameters, the equation (26) also generalizes other equations studied by other
authors, including the one-dimensional case studied by Mainardi [32]. It can be seen that the equation presented here
contains interesting particular cases and can provide a different point of view to interpret the solutions. The equation can
also be generalized considering other fractional derivatives in the time variable and considering other initial conditions.
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