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Abstract: In this article, the laminar boundary layer flow of a non-compressible viscous fluid with carbon nanotubes over 
an infinite vertical plate is taken into account. Our goal is to study the effects of slip boundary condition on the generalized 
viscous nanofluid over an infinite vertically positioned plate. The unsteady fractional Prabhakar derivative is used to 
introduce the correlated fractional system of the governing equations. We find the analytical expression of velocity of the 
fluid using the Laplace transform method. The results obtained in case of no slip effect are compared with the classical 
results. The impacts of fractional and physical factors are depicted graphically. 
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1 Introduction  

Heat transfer has many industrial and technological applications in addition to several scientific concerns. Some examples 
of heat transfer are fiber coating and wire, filtration, a polymer sheet, space ship construction, cooled or heated storage room, 
artificial fiber, chemical processing equipment, nuclear reactors, geothermal system, and heat exchangers [1]. Fluids are 
utilized in industry for heat transfer between two mediums. A nanofluid is a substance that contains nanoparticles. Choi [2] 
of the Argonne USA in 1995 was firstly used the term nanofluid. Nanofluids are considered to be the upcoming generation 
heat transfer substances because they have large possibilities to increase heat transfer capability in comparison with the 
liquids [3]. These fluids have large heat conductivity and increase the heat transfer rate for a long time. The formation and 
the characterization of nanofluids have been investigated by many researchers in recent years [4,5,6,7,8,9,10,11]. 

The study of nanofluids is interesting because of their numerous industrial and biology applications. They also have 
applications in many engineering works like welding equipment, polymer extrusion, automobile engine, glass fiber 
production, microwave tubes, enhancement in the critical heat flux and electronic cooling system. 
The researchers are fascinated by the improvement of heat transfer conventional fluids. A generic mechanism for the 
enhancement of heat exchange is the use of solid nanoparticles scattered into the base fluid. Different materials can be used 
in the formation of nanofluid such as silver, brass, ethylene glycol, etc. When the nanosized solid particles are suspended 
into the conventional fluids, they increase their thermal conductivity. The thermal conductivity of solid particle is larger than 
fluids. For instance, the thermal conductivity of carbon nanotubes (CNTs) is 3000 and for a diamond is 3300. The metallic 
materials have different values of thermal conductivities such as copper, aluminum, magnesium, and zinc have the values 
397, 226, 151, and 112, respectively, whereas thermal conductivity of base fluid such as engine oil, polydimethylsiloxane 
and water is 0.25, 0.15 and 0.61, respectively. So, the fluids that contain the suspended solid materials can increase the 
thermal conductivity in comparison with the liquids. 

Eastman et al. [12] observed that by having water be the base fluid with a 5 percent volume of copper oxide (CuO) 
nanoparticles, thermal conductivity rises by around 60 percent for the nanofluid. Wang [13] investigated the thermal 
conductivity of CuO and aluminum oxide (AL2O3) by putting them into engine oil, distilled water, and ethylene glycol. They 
found that different base fluids have different enhancements in their thermal conductivities. The enhancement of heat 
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conductivity of copper distilled water nanofluid was discussed by Xuan et al. [14] and showed a 56 percent increase of 
thermal conductivity for the 5 percent volume fraction of the nanofluid. 

Das et al. [15] showed through experiments that when nanofluid like CuO and (AL2O3) nanoparticles are placed in 
water, the heat conductivity increased at high temperatures. Murshed et al. [16] recorded the maximum increase percentage 
of 33% on heat conductivity for 5 percent volumetric filling of titanium dioxide (TiO2) nanoparticles in water. 

Many researchers are interested in CNTs because of their physical characteristics, such as their high thermal and 
electrical conductivity [17]. Choi et al [18] studied that a little number of CNTs suspended in base fluid improved its heat 
conductivity. The effective heat conductivity of suspended CNTs in synthetic poly oil was measured, and a 160 percent rise 
in heat conductivity of oil was reported for 1 percent volume fraction of CNTs. According to the estimation in [19], the heat 
conductivity of copper (Cu) in the base fluid (ethylene glycol) nanofluid is increased by 40 percent having 0.3 percent volume 
of Cu nanoparticles. A model of heat transfer in aqueous suspensions of carbon nanotube was investigated in [20] and found 
that for 0.5 percent to 1.0 percent volume of carbon nanotubes in water, thermal conductivity rises from 35 percent to 79 
percent. 

Hwang et al. [21] used multiwall carbon nanotubes (MCNTs) i.e fullerene (F), CuO, and silicon dioxide (SiO2) for 
the increment of thermal conductivity of conventional fluids like distilled water (DI), ethylene glycol, and oil. After this 
research, they concluded that the multiwall CNTs silicon dioxide have low thermal conductivity while water fluids have 
higher thermal conductivity.  

Saeed et al. [22] investigated mass transference and thermal conduction of free convection with wall slip boundary 
conditions for the flow on a vertical plate. The idea concept of “coefficient of slip” for slip arising adjacent to the wall was 
developed by Helmholtz [23]. The damping of a vibrating disk in gas was studied by Kundt et al. [24] and found that pressure 
was inversely proportioned to the “coefficient of slip”. The wall slip conditions have many essential applications such as in 
medical sciences, micro, and nanofluids lubrication, extrusion, frictional study, biological fluids, and in flows through porous 
media [25-26]. 

Generally, in fluid problems, we use two boundary conditions. The "no-slip" boundary condition is one of the 
foundations on which the mechanics of the linearly viscous liquid is developed. This condition is widely used for non-
Newtonian fluids and occurs when the fluid has zero velocity relative to the boundary. The slip boundary is applied to the 
wall. The velocity function is supposed to be discontinued in this condition i.e., a relative movement between the boundary 
and the fluid [27]. Navier [28] proposed the slip boundary condition in which slip velocity was dependent on the shear stress. 

M. Tahir [29] worked on the non-integer derivative and slip wall effects on the heat transfer flow by using Caputo-
Fabrizio derivatives. Gossaye [30] find the slip effect in the flow and heat transfer on the nanofluid over a Stretching sheet 
by using the optimal homotopy asymptotic method. A. Malvandi et al. [31] find the slip effect of a nanofluid over a stretching 
sheet on time-dependent stagnation point flow. 

Fractional calculus has been recently used in several research areas because of its capability of portraying the 
memory effects of various physical phenomena. Fractional calculus is now being utilized successfully in a variety of scientific 
areas, such as electrochemistry, signals processing, mechatronics, viscoelasticity, mathematical biology, mechanics, and 
dynamics. 
 

We are considering the viscous incompressible fluid with CNTs above an infinite vertically positioned plate. Our 
goal is to study the generalized viscous nanofluid with slip effect along with the Prabhakar-like heat transfer over an infinite 
vertically positioned plate. Slip boundary condition affects only the velocity and temperature of the fluid. The unsteady 
Prabhakar derivative (PD) is employed to introduce the correlated fractional system of the governing equations. The 
utilization of Prabhakar operators with specified coefficients might be a useful strategy for constructing a mathematical 
model that matches practical and theoretical results closely. Three governing equations are used namely momentum equation, 
energy balance equation, and Fourier's law of heat flux. To obtain the dimensionless governing equations, we introduce seven 
dimensionless quantities and substitute them into the governing equations. Using the Laplace transformation method, we 
find the analytical solutions for the fluid's velocity and compare with no slip effect. Thermal properties [32] of carbon 
nanotubes and water are defined in.  

 
Table 1: Physical properties. 

 
Physical properties Water SWCNTs 

Density  997.1 2600 

Heat capacity  4179 425.0 

Thermal conductivity 0.613 6600 



 Progr. Fract. Differ. Appl. 8, No. 4, 545-457 (2022) / http://www.naturalspublishing.com/Journals.asp                                             547 

 
        © 2022 NSP 
         Natural Sciences Publishing Cor. 

 

Thermal coefficient  21.00 1.500 

2 Mathematical Formations 
 
Consider a viscous incompressible fluid containing CNTs that flows across an infinite vertical plate with  being a 

piecewise continuous function. The temperature of the wall is , with  and  is the ambient 
temperature. 

In this study, we have shown the Cartesian coordinate system in Fig. 1.The temperature and velocity fields are 
considered be the functions of  and . Therefore  denotes the unit vector along the horizontal axis and fluid velocity 

will be . 

 
Fig.1: Vertical heated plate. 

 
In the prior assumption, the governing equation for the Boussinesq's approximation without pressure gradient can be given 
as follows [33] 
The momentum equation 

  ,                                            (1) 

 the energy equation  

  ,                                                (2) 

 and the Fourier’s heat flux law 

              ,                                                               (3) 

where , , and   are the velocity, density, heat flux, and thermal conductivity, respectively, of the nanofluid, 

, ,  and is the viscosity, specific heat, temperature, and thermal coefficient of the nanofluid.  
From equation (1),(2) and (3), we assume the following boundary and initial conditions for velocity and temperature, 

when ,  ,  , ,                               (4) 
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for , , , ,                    

     (5) 
for ,  , , ,  
  
                    (6)  
where  is the characteristic velocity and  be the Heaviside unit step function. 
The equations describing the thermophysical parameters of nanofluid are given as follows [34]  

,   ,  

, , 

, 

where  is the volume fraction of nanofluid. 
Introducing the following dimensionless quantities 

, , , , , , ,  ,
   

   

                                                                                                                                                             (7) 
We substitute these dimensionless quantities into Equations , then using thermophysical parameters and ignoring 
the star notation, the following dimensionless governing equations are obtained: 

,                    (8) 

  

    ,                     (9) 

,                     (10) 

In this article, we have taken into account a mathematical model that describes the generalized thermal memory 
effects. For seeking this goal, we introduce the generalized Fourier’s law based on Prabhakar’s fractional derivative [35] 

   ,                     (11) 

 
The dimensionless form of generalized Fourier law depends on fractional Prabhakar’s derivative i.e, 
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, . 

The dimensionless form of initial and boundary conditions is:   
For , , , ,                       (13) 

for ,  , , ,                    (14) 

for , , , .                       (15) 
where the regularized Prabhakar derivative is defined as fallows [36]      

 

                                    

                      ,                  (16) 

where  represents the 𝑟𝑡ℎ	derivative of  , and  is the floor function. 

In Equation , denotes the Prabhakar integral.  

Here , , ,  is the Mittag-Leffler function with three-

parameters [37]. The function , ,  ,  is known as the 
Prabhakar kernel [38]. The Laplace transform of the Regularized Prabhakar derivative [39] 
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2.1 Solution of the problem 
 
Taking Laplace transform of Equations , , , , we obtain 
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   , .                                  (19) 

By substitution Equation  into Equation , we obtain 
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.                              (21) 

 
The solution of Equation  subject to condition in Equation , we obtain 

                             (22) 

where , , . 

.                                 (23) 
Taking inverse Laplace transform on both sides, we get 
  ,                                  (24) 

where  , 

, 

. 

In particular for no slip condition, we substitute  in Equation  to obtain  

.                                (25) 

Taking inverse Laplace transform on both side, we get 

.                                (26) 

 
3 Results and Discussion 
 

The impact of slip of a generalized viscous unsteady nanofluid with thermal flux was studied in natural convection flows 
over an infinite vertically heated plate. The Prabhakar fractional derivative has been utilized in the governing equations to 
account for extended memory effects. Figure 2-9 represent the analytical solution of the velocity of the nanofluid. We 
considered the thermophysical parameter values for nanoparticles (CNTs) and water (base fluid) as ,

, ,  and .  
The influence of the fractional parameters on velocity with the slip effect profiles has been cleared in Figure 2 to Figure 6. 
 In Figure 2-3, the influence of fractional parameters  and on the velocity field is shown at two distinct values of time 
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the values of these parameters. Figure 4 shows the velocity effect due to change in the fractional parameter  and the velocity 
decreases fastly by increasing the value of . Figure 5 is shown to describe the effect of volume fraction  on the velocity 
field. The velocity of the nanofluid decreases with the increase in the value of the . This decrease in velocity is due to the 
slip effect on the nanofluid. The comparison between fractional and classical models is illustrated in Figure 6. For small time, 
the values in the classical model are smaller than those in the fractional model. However this trend reverses in the case of 
large values of time. 
 The slip effect depends on the fractional parameter . If the value of fractional parameter gamma is nonzero it is considered 
slip boundary condition otherwise it will be no slip boundary condition. The effects of fractional parameter  with slip and 
no slip conditions are considered. The graph of slip and no slip conditions will overlap in the case of a small value of gamma 
as can be seen in Figure 6. In Figure 7 and Figure 8 the behavior of velocity of the nanofluids for the large value of parameter 
gamma is shown. It can be seen that the velocity of the fluid decreases as the slip effect becomes significant. Figure 9 explains 
that for increasing the slip parameter , the velocity of the fluid decreases. 

 
 Fig.2: Velocity profiles for different combinations of parameter values. Here , , ,  and 

. 

 
Fig. 3: Velocity profiles for different combinations of parameter values. Here , , ,  and 
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 Fig.4:  Velocity profiles for different combinations of parameter values. Here , , ,  and 

. 
 
 
 

  
Fig.5: Velocity profiles for different combinations of parameter values. Here , , ,  and 
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Fig. 6:  Velocity profiles for different combinations of parameter values. Here , ,  and  

 
 

 
Fig. 7: Velocity profiles for different combinations of parameter values. Here , , ,  and
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Fig.8: Velocity profiles for different combinations of parameter values. Here , , ,  and

. 

 
 Fig.9: Velocity profiles for different combinations of parameter values. Here , , ,  and

. 
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Fig.10: Velocity profiles for different combinations of parameter values. Here , , ,  and

. 

4 Conclusions 
 
The purpose of this paper is to investigate the effects of slip on generalized viscous nanofluid Prabhakar heat transport near 
an infinite vertically heated plate. The unsteady fractional Prabhakar derivative is used to introduce the correlated fractional 
system of the governing equations. We find the exact solution of the velocity of the fluid by using the Laplace transform 
method and compare with no slip condition.  We analysed the results obtained and the finding are presented as follows: 

• Velocity profile increases by increasing the values of and but decreases by increasing the value of . 
• Velocity profile decreases by increasing the value of volume fraction . 
• For the small-time result of a classical model is less than the fractional model, whereas for large time influence is 

opposite. 
• For the small value of fractional parameter  the graphs of velocity with or without slip show the overlapping 

behavior. 
• The velocity decreases by increasing the values of and the graph of velocity with no slip become comparable 

with the graph of velocity with slip effect.  
• For increasing the slip affect the velocity of fluid decreases. 

This means that the fluid flow can be reduced by introducing the slip effect. i.e. the fractional fluid has less velocity than the 
ordinary fluid. Moreover, the fluid velocity is a decreasing function of gamma and time. 
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