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Abstract: In this paper, we consider a new class of quasi variational inequalities involving three operators, which is called the extended
general quasi variational inequality. It is shown that the extended general quasi variational inequalities are equivalent to the fixed
problems. This equivalence is used to suggest and analyze some iterative methods for solving the extended general quasi variational
inequalities. Convergence analysis is also considered. We have also shown that the extended general quasi variational inequalities are
equivalent to the extended general implicit Wiener-Hopf equations. This alternative formulation is used to suggest and analyze some
iterative methods. The convergence analysis of these new methods under some suitable conditions is investigated. Several special
cases are discussed. Since the extended general quasi variational inequalities include general variational inequalities, quasi variational
inequalities and related optimization problems as special cases, results proved in this paper continue to hold for these problems. Results
of this paper may stimulate further research in this fascinating area.
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1 Introduction

Variational inequalities theory can be viewed as a natural
generalization and extension of the variational principles,
the origin of which can be traced back to Fermat, Newton,
Euler and Lagrange. Variational inequalities contain a
wealth of new and novel ideas with a wide class of
applications in all areas of pure and applied sciences.
Variational inequalities have played significant and
fundamental part as a unifying influence and as a guide in
the mathematical interpretation of many physical
phenomena. It is well known that the optimality
conditions of the minimum of a differentiable convex
function can be characterized by the variational
inequalities. This interplay between variational
inequalities and optimization has been used to develop
several numerical techniques for solving variational
inequalities and nonlinear optimization problems. In
recent years, considerable interest have been shown in
developing various extensions and generalizations of
variational inequalities, both for their own sake and for
their applications. There are significant developments of
these problems related to nonconvex optimization,
iterative method and structural analysis. It is well-known

that, if the convex set depends upon the solution explicitly
or implicitly, then the variational inequality is called the
quasi variational inequality. Benssousan and Lions [2]
have shown that a class of impulse control problems can
be formulated as a quasi variational inequality problem.
Variational and quasivariational inequalities theory with
their applications to mathematical physics, pure and
applied sciences provides us with a simple, natural,
efficient and unified frame work to study a wide class of
unrelated problems. This theory combines the theory of
extremal problems and monotone operators under a
unified view point For recent work on the quasi
variational inequalities and their applications, see [1-42].

In recent years, Noor [19-23] has shown that the
minimum of differentiable nonconvex functions on the
nonconvex set can be characterized by a class of
variational inequalities. This has motivated Noor [19-23]
to introduce and consider a new class of variational
inequalities, which is called the extended general
variational inequalities. For the applications and
numerical methods for solving the extended general
variational inequalities, see [18-24, 27-2934] and the
references therein. Noor et al [32] have introduced and
studied a new class of variational inequalities, which is
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called the extended general quasi variational inequalities.
It has been shown that the extended general quasi
variational inequalities are equivalent to the fixed point
problem. This fixed point formulation is used to study the
existence of a solution of the extended general quasi
variational inequalities. One of the most difficult and
important problems in variational inequalities is the
development of an efficient numerical methods. Several
numerical methods have been developed for solving the
variational inequalities and their variant forms. One of the
technique is called the projection method and its variant
forms. Projection methods represent an important tool for
finding the approximate solution of various types of
variational inequalities. The projection type methods were
developed in 1970’s. These methods have been extended
and modified in various ways. The main idea in this
technique is to establish the equivalence between the
variational inequalities and the fixed point problem using
the concept of the projection. This alternative equivalent
formulation has played a significant role in the
developments of various projection type methods for
solving the variational inequalities and related
optimization problems. Noor [8] proved that a class of
quasi variational inequalities is equivalent to the
fixed-point problem using the projection technique. This
equivalent formulation has been used to develop iterative
methods for solving the quasi variational inequality and
its various variant forms, see [8,9-28] and the references
therein. Using the projection method, it has been shown
that the extended general quasi variational inequalities are
equivalent to the implicit fixed point problem. We use this
alternative equivalent formulation to suggest and analyze
some iterative methods for solving the extended general
quasi variational inequalities. We also discuss the
convergence of these iterative methods.

Projection iterative methods have been modified and
generalized in several directions using various techniques.
Shi [40] considered the problem of solving a system of
nonlinear projections, which are called the Wiener-Hopf
equations. It has been shown by Shi [40] that the
Wiener-Hopf equations are equivalent to the variational
inequalities. It turns out that this alternative formulation is
more general and flexible. It has been shown that the
Wiener-Hopf equations provide us a simple, natural,
elegant and convenient device to develop some efficient
numerical methods for solving variational and
complementarity problems, see [6, 8,9 13,15,16-18] and
the references therein. Essentially using the projection
technique, we prove that the extended general quasi
variational inequalities are equivalent to nonlinear
implicit projection equations and the implicit
Wiener-Hopf equations. We use these equivalent
formulations to suggest and analyze some projection
iterative methods for solving the extended general quasi
variational inequalities under suitable conditions. Since
the extended general variational inequalities include
several classes of (quasi) variational inequalities and
related optimization pr-oblems as special cases, results

proved in this paper continue to hold for these problems.
Results proved in this paper may be starting point for a
wide range of further new and novel applications.

2 Preliminaries and Basic Results

Let H be a real Hilbert space whose inner product and
norm are denoted by ⟨·, ·⟩ and ∥.∥ respectively. Let K(u)
be a nonempty closed convex-valued set in H .

For given three operators T, g, h : H → H , consider
the problem of finding u ∈ H,h(u) ∈ K(u) such that

⟨ρTu+ h(u)− g(u), g(v)− h(u)⟩ ≥ 0,

∀v ∈ H : g(v) ∈ K(u), (1)

where ρ > 0 is a constant. Inequality of type (1) is called
the extended general quasi variational inequality involving
three operators, introduced by Noor and Noor [32].

We now list some special cases of the extended general
quasi variational inequality (1).

I. If K(u) ≡ K, the convex set in H, then (1) is equivalent
to finding u ∈: h(u) ∈ K such that

⟨ρTu+ h(u)− g(u), g(v)− h(u)⟩ ≥ 0,

∀v ∈ H : g(v) ∈ K, (2)

which is called the extended general variational inequality,
introduced and studied by Noor [20].
II. If g = h, then problem (1) is equivalent to finding
u ∈ H : g(u) ∈ K(u) such that

⟨Tu, g(v)− g(u)⟩ ≥ 0, ∀v ∈ H : g(v) ∈ K(u), (3)

which is known as general quasi variational inequality
and appears to be a new one. If g = h and K(u) ≡ K,
then problem (3) is called the general variational
inequality involving two operator, which was introduced
and studied by Noor [9] in 1988. It turned out that odd
order and nonsymmetric obstacle, free, moving, unilateral
and equilibrium problems arising in various branches of
pure and applied sciences can be studied via general
variational inequality (3), see [11-28].

To convey an idea of the applications of the general
quasi variational inequality (3), we consider the
third-order implicit obstacle boundary value problem of
finding u such that

−u′′′ ≥ f(x) on Ω = [0, 1]
u ≥ M(x, u) on Ω = [0, 1]
[−u′′′ − f(x)][u−M(x, u)] = 0 on Ω = [0, 1]
u(0) = 0, u′(0) = 0, u′(1) = 0.

(4)

where f(x) is a continuous function and M(x, u(x)) is
the obstacle function. We study the problem (4) in the
framework of variational inequality approach. To do so,
we first define the set K(u) as

K(u) = {u : u ∈ H2
0 (Ω) : u ≥ M(x, u) on Ω},
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which is a closed convex set in H2
0 (Ω), where H2

0 (Ω) is a
Sobolev (Hilbert) space, see [1,5]. One can easily show
that the energy functional associated with the problem
(2.2) is

I[v] = −
∫ 1

0

(
d3v

dx3

)(
dv

dx

)
dx− 2

∫ 1

0

f(x)

(
dv

dx

)
dx,

for all dv
dx ∈ K(u)

=

∫ 1

0

(
d2v

dx2

)2

dx− 2

∫ 1

0

f(x)

(
dv

dx

)
dx

= ⟨Tv, g(v)⟩ − 2⟨f, g(v)⟩ (5)

where

⟨Tu, g(v)⟩ =
∫ 1

0

(
d2u

dx2

)(
d2v

dx2

)
dx (6)

⟨f, g(v)⟩ =
∫ 1

0

f(x)
dv

dx
dx

and g =
d

dx
is the linear operator.

It is clear that the operator T defined by (6) is linear,
g-symmetric and g-positive. Using the technique of Noor
[18,28], one can easily show that the minimum
u ∈ H : g(u) ∈ K(u) of the functional I[v] defined by
(5) associated with the problem (4) on the closed
convex-valued set K(u) can be characterized by the
inequality of the type

⟨Tu, g(v)− g(u)⟩ ≥ ⟨f, g(v)− g(u)⟩, ∀g(v) ∈ K(u),

which is exactly the general quasi variational inequality
(3).

III. For g ≡ I , the identity operator, the extended general
quasi variational inequality (1) collapses to: find u ∈ H :
h(u) ∈ K(u) such that

⟨Tu, v − h(u)⟩ ≥ 0, ∀v ∈ K(u), (7)

which is also called the general quasi variational
inequality, see [27].

IV. For h = I, the identity operator, then problem (1) is
equivalent to finding u ∈ K(u) such that

⟨Tu, g(v)− u⟩ ≥ 0, ∀v ∈ H : g(v) ∈ K(u), (8)

which is also called the general quasi variational
inequalities, introduced and studied by Noor [28].

V. For g = h = I, the identity operator, the extended
general variational inequality (1) is equivalent to finding
u ∈ K(u) such that

⟨Tu, v − u⟩ ≥ 0, ∀v ∈ K(u), (9)

which is known as the classical quasi variational inequality
and was introduced by Benssousan and Lions [2].

VI. If K∗(u) = {u ∈ H; ⟨u, v⟩ ≥ 0, ∀v ∈ K(u)} is a
polar(dual) cone of a closed convex-valued cone K(u) in

H, then problem (1) is equivalent to finding u ∈ H such
that

g(u) ∈ K(u), Tu ∈ K∗(u), ⟨g(u), Tu⟩ = 0, (10)

which is known as the general quasi complementarity
problem, see[3, 6,11, 17]. If g = I, the identity operator,
then problem (10) is called the generalized quasi
complementarity problem. For g(u) = u − m(u), where
m is a point-to-point mapping, then problem (10) is
called the quasi (implicit) complementarity problem, see
[16,17] and the references therein.

From the above discussion, it is clear that the
extended general quasi variational inequality (1) is most
general and includes several previously known classes of
variational inequalities and related optimization problems
as special cases. These variational inequalities have
important applications in mathematical programming and
engineering sciences. For the recent applications,
numerical methods, sensitivity analysis, dynamical
systems and formulation of quasi variational inequalities
and related fields, see [1-42] and the references therein.

We also need the following concepts and results.
Lemma 2.1. Let K(u) be a closed convex set in H. Then,
for a given z ∈ H, u ∈ K(u) satisfies the inequality

⟨u− z, v − u⟩ ≥ 0, ∀v ∈ K(u),

if and only if

u = PK(u)z,

where PK(u) is the projection of H onto the closed
convex-valued set K(u) in H.

Definition 2.3. An operator T : H → H is said to be:
(i) strongly monotone, if there exists a constant α > 0

such that

⟨Tu− Tv, u− v⟩ ≥ α||u− v||2, ∀u, v ∈ H.

(ii) Lipschitz continuous, if there exists a constant β >
0 such that

||Tu− Tv|| ≤ β||u− v||, ∀u, v ∈ H.

From (i) and (ii), it follows that α ≤ β.

We would like to point out that the implicit projection
operator PK(u) is not nonexpansive. We shall assume that
the implicit projection operator PK(u) satisfies the
Lipschitz type continuity, which plays an important and
fundamental role in the existence theory and in
developing numerical methods for solving extended
general quasi variational inequality (1) and its variant
forms.
Assumption 2.1. The implicit projection operator PK(u)

satisfies the condition

∥PK(u)w − PK(v)w|∥ ≤ ν∥u− v||, ∀u, v, w ∈ H, (11)

where ν > 0 is a positive constant.
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In many important applications [1-6] the
convex-valued set K(u) can be written as

K(u) = m(u) +K, (12)

where m(u) is a point-point mapping and K is a convex
set. In this case, we have

PK(u)w = Pm(u)+K(w) = m(u) + PK [w −m(u)],

∀u, v ∈ H. (13)

We note that if K(u) is defined by (12) and m(u) is a
Lipschitz continuous mapping with constant γ > 0, then,
using (13), we have

∥PK(u)w − PK(v)w∥
= ∥m(u)−m(v) + PK [w −m(u)]− PK [w −m(v)∥
≤ 2∥m(u)−m(v)∥ ≤ 2γ∥u− v∥, ∀u, v, w ∈ H.

which shows that Assumption 2.1 holds with ν = 2γ.

3 Projection Iterative Methods

In this section, we suggest and analyze some new
approximation schemes for solving the extended general
quasi variational inequality (1). One can show that the
extended general quasi variational inequality (1) is
equivalent to the fixed point problem by invoking Lemma
2.1.

Lemma 3.1 [32]. The function u ∈ H : h(u) ∈ K(u) is a
solution of the extended general quasi variational
inequality (1) if and only if u ∈ H : h(u) ∈ K(u)
satisfies the relation

h(u) = PK(u)[g(u)− ρTu], (14)

where PK(u) is the projection operator and ρ > 0 is a
constant.

Lemma 3.1 implies that the extended general quasi
variational inequality (1) is equivalent to the implicit fixed
point problem (14). This alternative equivalent
formulation is very useful from the numerical and
theoretical points of view. Zhao and Sun [35] used the
concept of the exceptional family to study the existence
of a solution of the nonlinear projection equations (14) for
the case K(u) = K, the convex set. Liu and Cao [7] and
Liu and Yang [8] have developed the recurrent neural
network technique for solving the extended general
variational inequalities. We hope this technique can be
extended for solving the implicit fixed point problem
(14), which is another direction for future research work.

Using the fixed point formulation (14), we suggest
and analyze the following iterative method for solving the
extended general quasi variational inequality (1).

Algorithm 3.1. For a given u0 ∈ H, find the approximate
solution un+1 by the iterative schemes

un+1

= (1− αn)un

+αn{un − h(un) + PK(un)[g(un)− ρTun]},
n = 0, 1, . . . (15)

which is known as the Mann iteration process for solving
the extended general quasi variational inequalities (1).

Note that if h = g, then Algorithm 3.1 reduces to the
following iterative method for solving the general quasi
variational inequalities (3) and appears to be a new one.
Algorithm 3.2. For a given u0 ∈ H, find the approximate
solution un+1 by the iterative schemes

un+1 = (1− αn)un + αn{un − g(un)

+PK(un)[g(un)− ρTun]}, n = 0, 1, . . . .

For different and appropriate choice of the operators
T, g, h, set K and the space H, one can obtain several
known and new iterative methods for solving a wide class
of variational inequalities and related complementarity
p-roblems. This clearly shows that the iterative methods
considered in this paper are more general and unifying
ones.

We now consider the convergence analysis of
Algorithm 3.1 and this is the main motivation of our next
result.

Theorem 3.1. Let the operators T, g, h : H −→ H be
both strongly monotone with constants
α > 0, σ > 0, µ > 0 and Lipschitz continuous with
constants with β > 0, δ > 0, η > 0 respectively. If
Assumption 2.1 holds and

|ρ− α

β2
| <

√
α2 − β2k(2− k)

β2
,

α > β
√
k(2− k), k < 1, (16)

where

k =
√

1− 2σ + δ2 +
√

1− 2µ+ η2 + ν, (17)

and 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn = ∞, then
the approximate solution un obtained from Algorithm 3.1
converge to a solution u ∈ H : h(u) ∈ K(u) satisfying
the extended general quasi variational inequality (1).
Proof. Let u ∈ H : h(u) ∈ K(u) be a solution of the
extended general quasi variational inequality (1). Then,
using Lemma 3.1, we have

u = (1− αn)u

+α{u− h(u) + PK(u)[g(u)− ρTu]}, (18)

where 0 ≤ αn ≤ 1 is a constant.
From Assumption 2.1, (15) and (18), we have

||un+1 − u||
≤ ∥(1− αn)(un − u) + αn(un − u− (h(un)− h(u))∥
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+αn∥{PK(un)[g(un)− ρTun]− PK(u)[g(u)− ρTu]}∥
= ∥(1− αn)(un − u) + αn(un − u− (h(un)− h(u)))

+∥PK(un)[g(un)− ρTun]− PK(u)[g(un)− ρTun]∥
+∥PK(u)[g(un)− ρTun]− PK(u)[g(u)− ρTu]∥
≤ (1− αn)||un − u||+ αn||un − u− (g(un)− g(u))||
+ν + αn||un − u− (h(un)− h(u))||
+αn||un − u− ρ(Tun − Tu)||+ ν∥un − u∥. (19)

Since the operator T is strongly monotone with constant
α > 0 and Lipschitz continuous with constant β > 0, it
follows that

||un − u− ρ(Tun − Tu)||2

≤ ||un − u||2 − 2ρ⟨Tun − Tu, un − u⟩
+ρ2||Tun − Tu||2

≤ (1− 2ρα+ ρ2β2)||un − u||2. (20)

In a similar way, we have

||un − u− (g(un)− g(u))||2

≤ (1− 2σ + δ2)||un − u||2, (21)
||un − u− (h(un)− h(u))||2

≤ (1− 2µ+ η2)||un − u||2, (22)

using the strongly monotonicity and Lipschitz continuity
of the operators g and h.

From (17), (19), (20), (21) and (22), we have

||un+1 − u||

≤ (1− αn)∥un − u∥+ {
√
1− 2σ + δ2

+
√
1− 2µ2 + η2 +

√
1− 2αρ+ β2ρ2}||un − u||

= (1− αn)∥un − u∥+ (k + t(ρ))||un − u||,
= (1− αn)∥un − u∥+ θ||un − u||,

where

t(ρ) =
√
1− 2αρ+ ρ2β2. (23)

and

θ = k + t(ρ) < 1.

Thus, we have

||un+1 − u|| ≤ (1− αn)||un − u||+ αnθ||un − u||
= [1− (1− θ)αn]||un − u||

≤
n∏

i=0

[1− (1− θ)αi]||u0 − u||.

Since
∑∞

n=0 αn diverges and 1− θ > 0, we have
limn−→∞ {

∏n
i=0[1− (1− θ)αi]} = 0. Consequently the

sequence {un} converges strongly to u ∈ H : h(u) ∈
K(u) satisfying (1). This completes the proof. �

We again use the fixed point formulation (14) to
suggest the following implicit method for solving solving
the extended general quasi variational inequality (1).

Algorithm 3.3. For a given u0 ∈ H, compute the
approximate solution un+1 by the iterative scheme

h(un+1) = PK(un)[g(un)− ρTun+1], n = 0, 1, 2, . . .

To implement this implicit method, one usually uses the
predictor-corrector technique. Consequently, Algorithm
3.3 can be rewritten in the following form.
Algorithm 3.4. For a given u0 ∈ H, compute the
approximate solution un+1 by the iterative schemes

h(wn) = PK(un)[g(un)− ρTun]

h(un+1) = PK(un)[g(un)− ρTwn], n = 0, 1, 2, . . . .

Algorithm 3.4 is called the extragradient method. The
implementation and comparison of Algorithm 3.4 is an
open problem.

We can use the fixed point formulation (14) to suggest
the following two-step iterative method for solving (1).
Algorithm 3.5. For a given u0 ∈ H, compute the
approximate solution un+1 by the iterative schemes

h(wn) = PK(un)[g(un)− ρTun]

h(un+1) = PK(un)[g(wn)− ρTwn], n = 0, 1, 2, . . . .

Algorithm 3.5 is also known as the modified extragradient
method. Such type of the modified projection methods for
solving the variational inequalities and their variant forms
are due to Noor [17]. We remark that Algorithm 3.4 and
Algorithm 3.5 are quite different. The problem of
comparing these methods is an open problem.

4 Wiener-Hopf Equations Technique

In this Section, we first consider the problem of solving
the extended general implicit Wiener-Hopf equations.
These problems are related with the extended general
quasi variational inequality (1). To be more precise, let
QK(u) = I − gh−1PK(u), where I is the identity
operator and h−1 inverse exist. For given nonlinear
operators T, g, h, we consider the problem of finding
z ∈ H such that

Th−1PK(u)z + ρ−1QK(u)z = 0, (24)

which is called the extended general implicit
Wiener-Hopf equation. We note that if gh−1 = I, that is,
g = h, then the Extended general implicit Wiener-Hopf
equations (24) are exactly the general implicit
Wiener-Hopf equations introduced and studied by Noor
[13,21]. In addition if g = h = I and K(u) ≡ K, then
one can obtain the original Wiener-Hopf equations, which
are mainly due to Shi [40]. It have been shown that the
Wiener-Hopf equations have played an important and
significant role in developing several numerical
techniques for solving variational inequalities and related
optimization problems. One can obtain a wide class of
implicit Wiener-Hopf equations as special cases of the
extended general quasi Wiener-Hopf equations, see
[11-33].
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It has been shown in [32] that the problems (1) and
(24) are equivalent. This equivalence has been used to
study the sensitivity analysis of the extended general
quasi variational inequality (1). For the sake of
completeness and to convey an idea, we include its proof.
Lemma 4.1 [32]. The solution u ∈ H : h(u) ∈ K(u)
satisfies the extended general quasi variational inequality
(1), if and only if, z ∈ H is a solution of the extended
general implicit Wiener-Hopf equation (24), where

h(u) = PK(u)z (25)
z = g(u)− ρTu, (26)

where ρ > 0 is a positive constant.
Proof. Let u ∈ H : h(u) ∈ K(u) be a solution of (1).
Then, from Lemma 3.1, we have

h(u) = PK(u)[g(u)− ρTu]. (27)

Let

z = g(u)− ρTu. (28)

Then

h(u) = PK(u)z. (29)

Combining (27) and (28), and using the fact that h−1

exists, we have

z = g(u)− ρTu = g(h−1(PK(u)z))− ρT (h−1(PK(u)z)),

from which it follows that z ∈ H is a solution of the
extended general implicit Wiener-Hopf equation (24), the
required result. �

Lemma 4.1 implies that the extended general quasi
variational inequality (1) and the Wiener-Hopf equation
(4) are equivalent. We use this equivalent formulation to
suggest a number of iterative methods for solving the
extended general quasi variational inequalities.

I. Using (25), the Wiener-Hopf equation (24) can be
rewritten in the form as:

QK(u)z = −ρTh−1PK(u)z,

which implies that

z = gh−1PK(u)z − ρTh−1PK(u)z = g(u)− ρTu,

This fixed point formulation enables to suggest the
following iterative method for solving problem (24).

Algorithm 4.1. For a given z0 ∈ H, compute the
approximate solution zn+1 by the iterative schemes

h(un) = PK(un)zn, (30)
zn+1 = (1− αn)zn + αn{g(un)− ρTun},

n = 0, 1, . . . , (31)

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn = ∞.

II. By an appropriate and suitable rearrangement of the
terms and using (25), the Wiener-Hopf equations (24) can
be written as:

z = gh−1PK(u) − ρTh−1PK(u)z + (1− ρ−1)QK(u)z

= g(u)− ρTu+ (1− ρ−1)QK(u)z,

which is another fixed point formulation. Using this fixed
point formulation, we can suggest the following iterative
method.
Algorithm 4.2. For a given z0 ∈ H, compute the
approximate solution zn+1 by the iterative schemes

h(un) = PK(un)zn

zn+1 = g(un)− ρTun + (1− ρ−1)QK(un)zn,

n = 0, 1, . . . .

III. If T is linear and T−1 exists, then the implicit Wiener-
Hopf equation (2.11) can be written as:

z =
(
I − ρhT−1

)
QK(u)z.

This fixed point formulation allows us to suggest the
following iterative method for solving the extended
general quasi variational inequality (1).

Algorithm 4.3. For a given z0 ∈ H, compute the
approximate solution zn+1 by the iterative schemes

zn+1 =
(
I − ρhT−1

)
QK(un)zn, n = 0, 1, . . . .

For g = h, K(u) ≡ K, Algorithm 4.1- Algorithm
4.3 are due to Noor [13]. In brief, by an appropriate and
suitable rearrangements of the terms of the extended
general Wiener-Hopf equations (24), one can suggest and
analyze a number of iterative methods for solving the
extended general variational inequality (1) and related
optimization problems. The investigation of such type of
projection iterative methods and the verification of their
numerical efficiency, further research efforts are needed.

We now consider the convergence analysis of
Algorithm 4.1. In a similar way, one can study the
convergence analysis of Algorithm 4.2 and Algorithm 4.3.

Theorem 4.1. Let the operators T, g, h satisfy all the
assumptions of Theorem 3.1. If the condition (16) and
Assumption 2.1 hold, then the approximate solution {zn}
obtained from Algorithm 4.1 converges to a solution
z ∈ H satisfying the Wiener-Hopf equation (24) strongly
in H.

Proof. Let u ∈ H be a solution of (1). Then, using Lemma
4.1, we have

z = (1− αn)z + αn{g(u)− ρTu}, (32)

where 0 ≤ αn ≤ 1, and
∑∞

n=0 an = ∞.
From(20), (21), (31) and (32), we have

∥zn+1 − z∥
≤ (1− αn)∥zn − z∥
+αn∥g(un)− g(u)− ρ(Tun − Tu)∥
≤ (1− αn)∥zn − z∥+ αn∥un − u− (g(un)− g(u))∥
+αn∥un − u− ρ(Tun − Tu)∥

≤ (1− αn)∥zn − z∥+ αn

{√
1− 2σ + δ2

+
√
1− 2ρα+ β2

}
∥un − u∥, (33)
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Also from (17), (25), (30), (22) and Assumption 2.1, we
have

∥un − u∥
≤ ∥un − u− (h(un)− h(u))∥
+∥PK(un)zn − PK(u)z∥,
= ∥un − u− (h(un)− h(u))∥
+∥PK(un)zn − PK(un)z∥+ ∥PK(un)z − PK(u)z∥

≤ {
√
1− 2µ+ η2∥un − u∥+ ∥zn − z∥+ ν∥un − u∥

which implies that

∥un − u∥ ≤ 1

1− (ν +
√
1− 2µ+ η2)

∥zn − z∥. (34)

Combining (33) and (34), we have

∥zn+1 − z∥ ≤ (1− αn)∥zn − z∥+ αnθ1∥zn − z∥, (35)

where

θ1 =

√
1− 2σ + δ2 + t(ρ)

1− (ν +
√

1− 2µ+ η2)
. (36)

Using (16),(17) and (36), we see that θ1 < 1.
Consequently, from (35), we have

||zn+1 − z||
≤ (1− αn)||zn − z||+ αnθ1||zn − z||
= [1− (1− θ1)αn]||zn − z||

≤
n∏

i=0

[1− (1− θ1)αi]||z0 − z||.

Since
∑∞

n=0 αn diverges and 1− θ1 > 0, we have
limn−→∞ {

∏n
i=0[1− (1− θ1)αi]} = 0. Consequently

the sequence {zn} converges strongly to z in H satisfying
(24), the required result. �

5 Conclusion

In this paper, we have introduced and considered a class
of quasi variational inequalities involving three operators.
We have shown that the third order obstacle boundary
value problems can be studied in the general framework
of the new quasi variational inequalities. It have been
shown that the extended general quasi variational
inequalities are equi-valent to the fixed point and implicit
Wiener-Hopf equations. These equivalent formulations
have been used to suggest and analyze several iterative
methods for solving the quasi variational inequalities. We
expect that the ideas and techniques of this paper will
motivate and inspire the interested readers to explore its
applications in various fiel-ds.
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