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Abstract: A mixed graph D can be obtained from a graph by orienting some of its edges. Let α be a primitive nth root of unity,

then the α−Hermitian adjacency matrix of a mixed graph is defined to be the matrix Hα = [hrs] where hrs = α if rs is an arc in D,

hrs = α if sr is an arc in D, hrs = 1 if sr is a digon in D and hrs = 0 otherwise. Accordingly, in this paper we study the invertability

of α−hermitian adjacency matrix of a bipartite mixed graph with unique perfect matching. Additionally, we study the inverse of the

α−hermitian adjacency matrix of a tree mixed graph with perfect matching. Finally we restrict our study for α = γ the primitive third

root of unity where we find that H−1
α is {1,−1} diagonally similar to γ−hermitian adjacency matrix of a bipartite graph.
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1 Introduction

A mixed graph D is a digraph where both ways oriented
edge is considered as an undirected edge; we call these
edges digons. To be more formal, a mixed graph is a set
of vertices V (D) together with a set of undirected edges
(digons) E0(D) and a set of directed edges (arcs) E1(D).
For any two vertices x,y ∈ V (D), if xy ∈ E1(D) then
x(resp. y) is called initial (resp. terminal) vertex of the arc
xy. The underlying graph of the mixed graph D, denoted
by Γ (D), is the graph obtained from D after stripping out
the orientation of arcs of D.
A perfect matching of a mixed graph is just a perfect
matching of its underlying graph, that is a collection of
edges and arcs that are vertex disjoint and spans D. To be
more precise M ⊂ E0(D)∪E1(D) is a perfect matching of
D if no two elements in M have a common vertex and for
every vertex v of D, v is an initial or a terminal vertex of
an arc in D or an end vertex of a digon in D. If D has a
unique perfect matching, then we denote it by M . If D

has a perfect matching M, then an arc (resp. digon) e in M

is called a matching arc (resp. a matching digon) in D

with respect to M. For a mixed subgraph X of a mixed
graph D, the mixed graph D\X is defined to be the
induced mixed graph over V (D)\V (X).
Algebraic graph theory includes the study of graphs and
digraphs with respect to some graph matrix and its
spectrum, where the adjacency matrix has been most

intensively used/studied. For undirected graphs
researchers focused on two kinds of adjacency matrices,
the traditional adjacency matrix and the Laplacian
adjacency matrix. On the other hand for directed graphs (
digraphs ) the traditional adjacency matrix was very
challenging to deal with. Recently, many researchers have
proposed other hermitian adjacency matrices of mixed
graphs. For instance in [1], the author studied the singular
values of the traditional adjacency matrix of digraphs, the
author called them non-negative spectrum of digraphs.
Alomari et al. in [2] proved that the non-negative
spectrum is totally controlled by a vertex partition called
common out neighbor partition. Around the same period
of time Guo and Mohar in [3] proposed a new definition
of adjacency matrix of mixed graphs as follows: For a
mixed graph D, the i−hermitian adjacency matrix of D is
a |V |× |V | matrix Hi(D) = [huv], where

huv =











1 if uv ∈ E0(D),
i if uv ∈ E1(D),
−i if vu ∈ E1(D),
0 otherwise.

Authors in [3] proved many interesting properties of Hi

spectrum. Mohar in [4] extended the previously proposed
adjacency matrix to a new kind of hermitian adjacency
matrix called α−hermitian adjacency matrix of mixed
graphs D as follows: For a mixed graph D and the
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primitive nth root of unity α , the α−hermitian adjacency
matrix of D is a |V |× |V | matrix Hα(D) = [huv], where

huv =











1 if uv ∈ E0(D),
α if uv ∈ E1(D),
α if vu ∈ E1(D),
0 otherwise.

The fact that these adjacency matrices (Hi and Hα ) are
hermitian, opens a hot research topic nowadays. For
simplicity if we deal with one mixed graph D, then we
write Hα instead of Hα(D).

Motivated by a chemistry problem, Godsil in [5]
investigated invertibility of adjacency matrix of bipartite
graphs. He proved that for a tree T , the inverse of the
adjacency matrix of T is diagonally similar to adjacency
matrix of another graph that contains a copy of T . More
papers appeared after this paper that continued on
Godsil’s work, see for example, [6], [7] and [8].

In this paper we study the inverse of α−hermitian
adjacency matrix of a mixed graph. We examine the
inverse of α−hermitian adjacency matrix of bipartite
mixed graphs and tree mixed graphs. In order to do that
we need the following definitions and theorems.

Definition 1.[9] Let D be a mixed graph and Hα = [huv]
its α-hermitian adjacency matrix.

–D is called elementary mixed graph if for every

component D′ of D, Γ (D′) is either isomorphic to the

complete graph K2 or to a cycle Ck (for some k ≥ 3).

–Let D be an elementary mixed graph. The rank of D is

defined as r(D) = n− c, where n = |V (D)| and c is the

number of its components. The co-rank of D is defined

as s(D) = m− r(D), where m = |E0(D)∪E1(D)|.
–The value hα(W ) of a mixed walk W with vertices

v1,v2, . . . ,vk is defined as

hα(W ) = (hv1v2
hv2v3

hv3v4
. . .hvk−1vk

) ∈ {αr}r∈Z

Recall that a permutation η of a set of n elements V , is
just a bijective function from V to itself. The set of all
permutations of V form a group under the functions
composition. Let η be a permutation of a set of n

elements V , then sgn(η) is defined to be (−1)k, where k

is the number of transposition when η is decomposed as a
product of transpositions. The following theorem is a well
known result in linear algebra

Theorem 1.If A = [ai j] is an n× n matrix, then

det(A) = ∑
η∈Sn

sgn(η)a1,η(1)a2,η(2)a3,η(3) . . .an,η(n)

2 Inverse of the α-Hermitian adjacency

matrix of a Mixed Graph

A mixed graph D is called α non-singular mixed graph if
its α−hermitian adjacency matrix is non-singular. In this

section we will study when a bipartite mixed graph is α
non-singular, then we give a general description of the
inverse α−Hermitian adjacency matrix of mixed graphs.
We start with the following elementary theorem which
can be found in [9].

Theorem 2.(Determinant expansion for Hα ) [9] Let D be

a mixed graph and Hα its α-hermitian adjacency matrix,

then

det(Hα) = ∑
D′

(−1)r(D′)2s(D′)Re(∏
C

hα(C))

where the sum ranges over all spanning elementary mixed

subgraphs D′ of D, the product ranges over all mixed

cycles C in D′, and C is any mixed closed walk traversing

C.

Suppose that D is a bipartite mixed graph, then the first
(obvious) thing we refer to is, if D has a perfect matching
then the bipartition sets of D have the same cardinality.
Therefore D is of even number of vertices. The second
thing is that D contains no odd cycles, which means, if D

has a unique perfect matching, then for any spanning
elementary mixed subgraph D′, D′ should consist of K2

components only. Thus D contains only one spanning
elementary mixed subgraph. Now using these fact and
Theorem 2 we get the following result:

Theorem 3.Let D be a bipartite mixed graph, |V (D)| =
n and Hα its α-hermitian adjacency matrix. If D has a

unique perfect matching then det(Hα) = (−1)
n
2 and thus

D is α-nonsingular.

By Theorem 3, the determinant of the α-hermitian
adjacency matrix of bipartite mixed graphs with unique
perfect matching is either 1 or −1 and this is independent
of the value of α . Therefore all entries of H−1

α belong to
the ring Z[α].

In the following theorem we characterize the inverse
of α-hermitian adjacency matrix of mixed graphs in terms
of elementary mixed subgraphs.

Theorem 4.Let D be a mixed graph, Hα be its
α-hermitian adjacency matrix and for i 6= j, ℑi j = {P :

P is a mixed path from the vertex i to the vertex j}. If
det(Hα) 6= 0, then

[H−1
α ]i j =

1

det(Hα ) ∑
Pi→ j∈ℑi j



(−1)
|E(Pi→ j )| hα (Pi→ j )



∑
D′

(−1)r(D
′)2s(D′)Re

(

∏
C

hα (C)

)









where the second sum ranges over all spanning

elementary mixed subgraphs D′ of D\P, the product is

being taken over all mixed cycles C in D′ and C is any

mixed closed walk traversing C.

Proof.Suppose that i 6= j, then

[H−1
α ]i j =

m ji

det(Hα)
,
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where
m ji = (−1)i+ j det((Hα )( j,i)),

and (Hα)( j,i) is the matrix obtained from Hα(D) after

removing the jth row and ith column.
Now let M ji be the matrix obtained from Hα by

replacing the ( ji)-entry by 1 and all other entries of jth

row and ith column by 0, then

m ji = det(M ji) (1)

On the other hand, using Theorem 1 we have,

det(M ji) = ∑
η∈Sn

sgn(η)h1η(1)h2η(2) . . .hnη(n)

Now for any η ∈ Sn, since ( j,k)-entries of M ji are
zeros and the ( j, i)-entry is one, if η does not take j to i

then η contributes zero in the expansion of det(M ji). Let

ψ j→i = {φ ∈ Sn : φ is a permutation that takes j to i}.

For each φ ∈ ψ j→i let δφ be the cycle in φ that
permutes j to i and δ c

φ be all other cycles in φ , then

det(M ji) = ∑
φ∈ψ j→i

sgn(φ) ∏
k∈V (G)\{ j}

hkφ(k)

= ∑
φ∈ψ j→i

sgn(δ c
φ )sgn(δφ ) ∏

k∈δφ

hkδφ (k) ∏
k∈δ c

φ

hkδ c
φ (k)

= ∑(−1)|E(Pj→i)|hα(Pj→i)det(Hα(X))

= ∑(−1)|E(Pj→i)|hα(Pi→ j)det(Hα(X))

where X is the induced mixed graph over
V (D)\V (Pi→ j) and Pi→ j ∈ ℑi j. Therefore using Equation
1 together with Theorem 2 we have,

det(Mi j) = ∑
Pi→ j∈ℑi j



(−1)
|E(Pi→ j)|hα (Pi→ j)∑

D′
(−1)r(D

′)2S(D′)Re

(

∏
C

hα (C)

)





where the second sum is taken over all spanning
elementary mixed subgraphs of D\P, the product ranges
over all mixed cycles C in D′, and C is any mixed closed
walk traversing C

Theorem 4 is related to the non-diagonal entries of H−1
α .

Based on Theorem 2, and since a bipartite mixed graph
with unique perfect matching have only one elementary
mixed subgraph that consist of the matching edges of D,
we have the following observation which takes care of the
diagonal entries of H−1

α .

Theorem 5.Let D be a bipartite mixed graph with unique

perfect matching and Hα its α−hermitian adjacency

matrix. Then

1.[H−1
α ]ii = 0 if and only if D\{i} is not α invertible

mixed graph.

2.Suppose that T is a tree mixed graph that has a perfect

matching, then [H−1
α ]i j = 0 if and only if T\Pi→ j does

not have a perfect matching.

Proof. 1.Since D has a unique perfect matching, then D

is an α invertible mixed graph, Further

[H−1
α ]ii =

det((Hα)(i,i))

det(Hα)
,

where (Hα)(i,i) is the matrix obtained from Hα by

deleting the ith row and the ith column.
Therefore [H−1

α ]ii = 0 if and only if det((Hα)(i,i)) = 0.

The fact that (Hα)(i,i) is the α adjacency matrix of

D\{i} ends the proof.

2.Obvious.

Example 1.Consider the mixed graph D shown in Figure 1

and let α = e
πi
7 .

Obviously, D has a unique

Fig. 1: The mixed graph
D of Example 1

perfect matching. Thus

det(Hα) = (−1)320 =−1.

Now for i 6= 2 and i 6= 3,
D\P2→i will leave the vertex
3 as an isolated vertex, which
means D\P2→i does not have
a spanning elementary mixed
subgraph. Also D\{2} leaves
the vertex 3 as an isolated

vertex which means [H−1
α ]22 = 0. So the row corresponds

to 2 in H−1
α will be all zeros except [H−1

α ]23. We have

[H−1
α ]23 =

−1

−1
hα(P2→3)(−1)r(D′)2s(D′)

.

Where D′ is the spanning elementary mixed subgraph of
D\P2→3. Observing that

hα(P2→3) = 1,r(D′) = 2 and s(D′) = 0,

we have, [H−1
α ]23 = 1. Let’s turn to the value of [H−1

α ]05.
In this case there are two paths between the vertices 0 and
5,

1.P0→5 is the path passing through 2. This contributes 0
because the vertex 3 will be an isolated vertex in
D\P0→5.

2.Q0→5 is the path that doesn’t pass through the vertex
2. This contributes

[H−1
α ]05 =

1

−1
(−1)3e

3πi
7 (−1)120 =−e

3πi
7 .

Finally, we notice here D\{3}
is a mixed graph with unique
elementary mixed subgraph,
according to Theorem 2

det(Hα(D\{3}))=−e
iπ
7 −e−

iπ
7 .

One can continue this
process to find all the entries
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of H−1
α . Below we give

the α−hermitian adjacency
matrix of D and its inverse,

Hα =



















0 e
iπ
7 e

iπ
7 0 0 0

e−
iπ
7 0 e−

iπ
7 0 e

iπ
7 0

e−
iπ
7 e

iπ
7 0 1 0 0

0 0 1 0 0 0

0 e−
iπ
7 0 0 0 e

iπ
7

0 0 0 0 e−
iπ
7 0



















H−1
α =



















0 e
iπ
7 0 −1 0 −e

3iπ
7

e−
iπ
7 0 0 −1 0 0

0 0 0 1 0 0

−1 −1 1 e−
iπ
7 + e

iπ
7 0 e

2iπ
7

0 0 0 0 0 e
iπ
7

−e−
3iπ
7 0 0 e−

2iπ
7 e−

iπ
7 0



















.

3 The inverse of α-hermitian adjacency

matrix of a Tree Mixed Graph

In this section, we will introduce a combinatorial
representation of the entries of the inverse of the
α-hermitian adjacency matrix of a tree mixed graph.
Suppose that D is a mixed graph with unique perfect
matching. A path P between two vertices i and j is called
co-augmenting path if the edges of the underlying path of
P alternates between matching edges and non-matching
edges where both first and last edge are matched. In [6]
authors proved that if T is a tree graph and A is its
adjacency matrix then whenever there is a co-augmenting
path between two vertices in T , the corresponding entry
of the matrix A−1 is either 1 or −1. In the following
theorem we show that the co-augmenting path part is still
applicable with the tree mixed graph and its α-hermitian
adjacency matrix. Note that if a tree has a perfect
matching M, then this matching is unique.

Theorem 6.Let T be a tree mixed graph with perfect

matching M , |V (T )| = n and Hα its α-hermitian

adjacency matrix. Then

1.det(Hα) = (−1)
n
2 .

2.[H−1
α ]i j 6= 0 if and only if the path from i to j is a co-

augmenting path.

3.[H−1
α ]i j =















(−1)
k
2−1hα(Pi→ j) Pi→ j is a co-augmenting path and

k = |V (Pi→ j)|,

0 otherwise .

Proof. 1Using Theorem 3, bipartite mixed graphs of
order n with unique perfect matching are non singular

and its determinant equals to (−1)
n
2 . Obviously tree

mixed graphs that have a perfect matching will satisfy
the above conditions.

2Suppose that i 6= j are two vertices of T and Pi→ j is the
path from i to j, then

[Hα (T )]−1
i j

= (−1)
n
2



















(−1)
|E(Pi→ j)|hα (Pi→ j)(−1)r(D

′)2s(D′) if T\Pi→ j has a

perfect matching,

0 otherwise.

Therefore, if [Hα(T )]
−1
i j 6= 0, then T\Pi→ j has a

perfect matching M. Now suppose that Pi→ j is not a
co-augmenting path, M1 = E(Pi→ j) ∩ M and
M2 = M \M1. Since Pi→ j is not a co-augmenting
path, there is v ∈ V (P) such that v is matched by M2,
say (vv′), this means v′ is unmatched vertex in
T\Pi→ j, and so, the component of T\Pi→ j that
contains v′ together with v form a tree with perfect
matching which contradicts the uniqueness of the
perfect matching in a tree.
The other direction is obvious and we left it for the
reader.

3Simple calculation we leave it to the reader.

The above theorem characterizes the entries of the
inverse of the α−hermitian adjacency matrix of a tree
mixed graph with a perfect matching. Note here that H−1

α
nonzero entries depends firstly on the existence of a
co-augmenting path between the two vertices that
corresponds to the location of the entry and secondly on
the ±hα(P). Therefore, if T is a tree mixed graph, Hα its
α−hermitian adjacency matrix and α is the primitive nth

root of unity, then whenever T contains two vertices i and
j with 1 < |E(Pi j| < n, H−1

α nonzero entries may not
belong to {±α,±α,±1}. This is not like the inverse of
tree graph adjacency matrix case, that is described in the
following theorem.

Theorem 7.[5] If T is a tree graph with perfect matching
and A is its adjacency matrix, then

1.A−1 =
{

(−1)u(i, j) if there is a co-augmenting path between i and j,

0 otherwise

where u(i, j) =
|V (P)|

2 −1 is the number of unmatched edges

along the i, j path.

2.There is a bipartite graph G such that A−1 is {1,−1}
diagonally similar to A(G), where A(G) is the adjacency

matrix of G.

The above theorem is not true in general for
α−hermitian adjacency matrix for tree mixed graphs. We
get similar result to previous theorem for the
α−hermitian adjacency matrix of a tree mixed graph
when α = γ , where γ is the third root of unity. We state
this result in the following theorem.

Theorem 8.Let T be a tree mixed graph with perfect

matching, γ is the primitive third root of unity and Hγ is

the γ−hermitian adjacency matrix of T . Then, H−1
γ is

{+1,−1}-diagonally similar to γ−hermitian matrix of a

mixed graph.
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Proof.We observe that in tree mixed graphs
hα(P) ∈ {αr}r∈Z, restricting α to the primitive third root
of unity, we have {αr}r∈Z = {α,α,1}. Moreover there is
no integer r ∈ Z such that αr = −α or αr = −α . This
means the negative sign only comes from the part

(−1)u(i, j) which is the same in both inverse of
γ−hermitian adjacency matrix and inverse of its
underlying adjacency matrix. Therefore, if A is the
adjacency matrix of Γ (T ) and S is a {1,−1} diagonal
matrix with SA−1S is the adjacency matrix of a graph Y

then SHγS is γ−hermitian adjacency matrix of a mixed
graph X with Γ (X)≃ Y .

Definition 2.Let T be a tree mixed graph and that has a

perfect matching. Define T−1
γ to be the mixed graph which

has γ-hermitian adjacency matrix Hγ = [hi j] where

hi j =

{

h(P) if P is a co-augmenting path from i to j,

0 otherwise

Corollary 1.If T is tree mixed graph with perfect

matching, then

Γ (T−1
γ ) = (Γ (T ))−1

.

Example 2.In Figure 4 a tree mixed graph T and γ–inverse
T−1

γ are depicted. The bold arcs and digons correspond

to the positions where |E(Pi j)| are odd. In this case the
{1,−1} diagonal matrix described in [5] is

D =





































1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1





































Fig. 2: The tree mixed graph T

Fig. 3: The mixed graph T−1
γ

Fig. 4: The non-bold arcs and digon in the mixed graph T−1
γ are

corresponding to the entries {−γ ,−γ ,−1}.

A question is raised here which bipartite graphs have
a tree γ inverse. This is an important open question where
we solve it partially in the following theorem:

Theorem 9.If D is a bipartite mixed graph and D ≃ T−1
γ

of some tree mixed graph T , then

σγ (D) = σ(Γ (D)),

where σγ (D) is the spectrum of Hγ(D) and σ(Γ (D)) is the

traditional spectrum of the underlying graph of D, Γ (D).

Proof.Suppose that D ≃ T−1
γ , then there is {1,−1}

diagonal matrix S such that

SH−1
γ (T )S = Hγ(D).

Therefore, γ−spectrum of D is totally controlled by
γ−spectrum of T , but it is known (see [9]) that
σγ(T ) = σ(Γ (T )). Corollary 1 finishes the proof.
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