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1 Introduction and preliminaries

Despite the fact that fractional calculus has the same
historic antique origins of the classical calculus, it has
become of extreme interest in the past few years for the
researchers, in several and numerous science areas. In
recent years, the theory and applications of fractional
derivatives and integrals [1] have been widely formulated
by different pure and applied mathematicians. Among a
lot of determinations, we can assert that the researcher’s
community noticed that fractional differential equations
and fractional integral results yield a natural framework
for the description and the research of real phenomena,
for example, those that exist in ecology, biology, and
neuroscience [2, 3, 4].

The Hermite-Hadamard inequality is the fundamental
result for convex functions along with a natural
geometrical interpretation and has several applications.
Different mathematicians have been concerned about
their efforts to extend, generalize and refine it for
numerous classes of functions such as convex mappings.
In literature, C. Hermite and J. Hadamard discovered

these inequalities for convex functions [5,6,7]. These
inequalities state that: Let & : I — R be a convex function
in I and x;,y; € I for x| < yj, then

x1+y1 1 Vi E(x1)+E (1)
5( : )gyl_m [" ¢(q)aq < 2S00

For more recent developments of Hermite-Hadamard
inequality, one can consult
[8,9,10,11,12,13,14, 15,16, 17, 18].

The stochastic process may be defined in a general
sense and it has different applications such as
mathematics, engineering, physics, and economics,
therefore K. Nikodem introduced the idea of convex
stochastic processes and also described their properties in
1980 [19, 20]. Also, A. Skorownski presented some more
results using convex stochastic processes which
generalize to some known results about classical convex
mappings in [21,22]. Later, D. Kotrys developed
Hermite-Hadamard inequality using convex stochastic
processes [23,24, 25]. The well-known
Hermite-Hadamard inequality for convex stochastic
processes is as follows: Let & : I — R be a convex
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stochastic process in the interval I and x;,y; € I with
x1 < y1, then holds almost everywhere

é(xl‘;)’l,.)

1 V1

< [ ety Sl gnd

For more on these inequalities, we refer [26, 27, 28, 29].

Definition 1.[30] A stochastic process is a family of
random variables &(x1) parametrized by x| € I, with
I C R When I ={1,2,...}, then &(x1) is known as a
stochastic process in discrete time ( i.e. a sequence of
random variables). When I € R (I = [0,0)), then & (x;) is
a stochastic process in continuous time.
For every w € Q the function
I3x; — &E(xp,w)

is termed as a path or sample path of & (x1).
Definition 2.[30] A family Fy, of o-fields on Q
parametrized by x| € I, where I C R, is called a filtration
if

F, CF, CF
for any y1,x1 € I such that y; < xj.

Definition 3.[30] A sochastic process &(x1) parametrized
by x1 € T is termed as a martingale (supermartingale,
submartingale) with respect to a filtration Fy, if

1) & (xy) is integrable for each x| € I;
2) E(xy) is Fj-measurable for each xy € I;

3) E(y1) = E(E(x))|F;) (respectively,< or >) for
every y1,x1 € I such that y; < xj.

Definition 4.[31] Ler (2, A, P) be an arbitrary probability
space and I C R. A stochastic process & : 1 x  — R is
known as

(1) Stochastically continuous in I, if V xo € I
P— lim é(xlv') = é(x%')a
[—xo

where P —lim shows the limit in probability.
(2) Mean-square continuous in I, if V x, € I

Jim E(& (r1,) — & (x0,))> =0,

where E(E(x1,-)) shows the expectation value of the
random variable & (xy,-).
(3) Increasing (decreasing) if ¥ x1,y1 € I with x; <y

é(xla')gé(yla')v é(xlv')zé(ylv')'
(4) Monotonic if it is increasing or decreasing.
(5) Mean square differentiable at a point x; € I, If there
exist a random variable &' (xy,-) : I x Q — R such that

é(xlv') 7X(x07')'

X1 — Xo

E(x,)=P— lim

X]—Xo

A stochastic process & : 1 x Q — R is continuous
(differentiable) if it is continuous (differentiable) at every
point of interval I.

Definition 5.[31] Assume that (Q,A,P) be a probability
space and 1 C R with E(X,(p)?) <o ¥V p € L If
X, 1) CLxi =po < p1 < P2 < ... < Py =0y be a
partition of [x1,y1] and © € [px_1,px] for k = 1,2,....n.
A random variable Z; : Q — R is termed as mean-square
integral of the process X1 (p,-) on [x1,y1] if

2

lim E =0,

n—yoo

i X1(Ox, ) (Px; Px—1) — Z(+)
k=1

then
Vi
[ X 1dp =21() (@)
X
Also, mean square integral operator is increasing,

Vi Vi

/ Xl(p,-)dpé/ Yi(p,-) (ae.),
X1 J X1

where X(p,-) <Y(p,-) in [x1,y1]-

For more on stochastic processes, one can consult (see
[32, 33, 34, 35, 36)).

First, we give the definition of convex stochastic

processes as follows:

Definition 6.4 function & : [ — R is said to be a convex
stochastic process if

holds for all ¢y,¢, € I and p € [0,1].

(1-6)&(¢2,°) (ae.),

Numerous researchers have worked on huge applications
of different inequalities. Jensen inequality and
Hermite-Hadamard inequality are highly notable
problems in the literature. Jensen inequality is one of the
famous and essential inequalities in the mathematical
study. Jensen inequality and Jensen inequality of Mercer
type developed in the year 2003 and 2006 [37,38]. In
2009, Mercer’s results are generalized by M. Niezgoda to
higher dimensions [39]. Further, several authors have
discussed Jensen inequality, Jensen-Mercer operator
inequalities, and reverse Jensen-Mercer operator type
inequalities using super-quadratic functions derive in
[40, 41, 42]. H. R. Moradi and S. Furuichi derive different
improvements for Jensen-Mercer type inequalities in
2019,[43]. In 1980, K. Nikodem developed a Jensen
inequality for convex stochastic processes. Now, we
establish a Jensen-Mercer inequality with the help of
Jensen inequality for convex stochastic processes. Next,
we derive Hermite-Hadamard-Mercer inequalities by
using Jensen-Mercer inequality in the setting of convex
stochastic processes.

Here, we give definitions of fractional calculus theory.
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Definition 7.[44] Let (¢1,¢2)(—o < ¢ < ¢ < o) and
o > 0. Also, consider Yy be an increasing positive
monotone function on [@1,$], having a continuous

derivative W on (¢1,92). Then left and right sided
y-Riemann-Liouville fractional integrals of a function &

with respect to another function W on [9;, ¢] are defined
by

—w(p))* ' E(p)ds

¢l <X,

and

. 6,
(15%) ) = e | V() (v(p) =y Epds,
x1 < ¢27
respectively.

Definition 8.[45] Diaz et al. defined the x-gamma I'c(-) a
generalization of classical gamma function, which is
expressed as

nIK" (ni) !

I'i(q) :nngW’ k> 0.

It is note that, Mellin transform of the exponential function
JK‘

e~ % is the K-gamma presented by

FK(OC):/O e % prldg.

Clearly, F,;(q—i— k) = qli(q), I'(q) = limy_1 I'i(q) and
Ii(q) =x="'T" (%),

Definition 9.[46] Let (¢1,¢2)(—c0 < @1 < ¢ < ) and
o,k > 0. Also, consider y be an increasing positive
monotone function on [@1,¢,], having a continuous
derivative Y on (¢1,02). Then left and right sided
Wi-Riemann-Liouville fractional integrals of a function &

with respect to another function Y on [@y, ¢, are defined
by

(x5¥) £ )

1 X

= 2@ Jyy ¥ P W) V) E (NS, 0 <
and

(wg¥) o)

1 o, .

— e [ VO 0 - v ) £ 0 <
respectively.

The present article is organized as follows: In section 2,
we established Jensen-Mercer inequality via convex
stochastic processes. In section 3, we present the
Hermite-Hadamard-Mercer type inequalities using of
Jensen-Mercer inequality with the help of convex

stochastic processes. In section 4, we derive some new
inequalities via improved power-mean and Holder /scan
inequality and also obtain different inequalities for a
differentiable function whose first derivative in absolute
value are convex stochastic processes. In section 5, we
discussed some applications to special means and at last,
we write concluding remarks related to our present paper.

2 Jensen-Mercer inequality for convex
stochastic process

In this section, we will obtain Jensen-Mercer inequality
by using two technical Lemmas for convex stochastic
processes.

Lemma 1.[20] Suppose that & : I x Q — R be a convex
stochastic process, then for all x1,x2,....,x, € [ and ¥V
61,62,y G € QN [0,1] such that G+ G + ... + G = 1,
then

g (Zn‘igxi,) < iing (xi,)

holds almost everywhere.

To prove Jensen-Mercer inequality for convex stochastic
process first we prove lemma 2.

Let0 <x; <x; <...<ux,andtake ¢;(1 <i<n) be positive
weights associated with these ¢; and Y7 | x; = 1.

Lemma 2.Suppose that & : I X Q — R be a convex
stochastic process, then the following inequality holds
almost everywhere

—xiy) < E(x1,) + & (xn, ) —
Vel l1<i<nandV¢e(0,1).

& (x1 +xn & (xi,), )]

Proof.Note that y; = x1 +x,, — x;. Then x; +x,, = x; +y; so
that the pairs x1,x, and x;,y; posses the same mid point.
Since that is the case there exist ¢ such that

xp = 6x1 4+ (1= ¢)xn,
Yi= (17G)x1 + GXn,
where)0 <¢g<land1<i<nm.

Thus, from the definition of convex stochastic process
yields

§ i) =&((1=¢)x1 + 6,
<(1=¢)8(x1,) +68(xn,°)
[

=&(x1,) + 8 () = [66 (x1, ) + (1=6)& (xn, )]
Sé(xlv)+§(xn7) é(gxl+(lf ) )
=& (x1,7) +&(xn, ) =& (xi0) (ae.).
Take y; = x1 + x, — x;, then
é(xl +Xn*X,’,')Sé()f],')ﬁ“é(xn,')*é(xl‘,') (a'e')'
This completes the proof.
@© 2022 NSP
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Theorem 1.Suppose that & : 1 x Q — R be a convex
stochastic process and take 0 < x1 < 55 < ... < x,, be real
numbers in I If (1 < i < n) be positive weights
associated with these ; and Y, x; = 1. Then

(xl +Xn — thxu )

<E(x,)+E (xn,) Zg, (xi,-) (a.e.). ®)
Proof.
<x1+xn Zg,xl, ) =¢ (ii Gi(x1 +xn—xi,-)>
< Ig Gi& (x1 +xq —x;,-) from Lemma 1
< ig[éul,-waxn,»—é(xi,-n from Lemma2

Il
o
=

)+ 6 (o,

th xl

This completes the proof.

3 Hermite-Hadamard-Mercer type
fractional integral inequalities

In this section, we derive some inequalities of
Hermite-Hadamard type. Also develop some new
Lemmas using Yi-Riemann-Liouville fractional integrals
and obtain related fractional integral inequalities.
Throughout the paper, we use the following assumption:

My : Let & : [¢1,02] x 2 — R be a convex stochastic

processes on [¢y, ¢»] with 0 < ¢; < ¢ and & € Ly [¢1, 9n].
Also, suppose that y(-) is an increasing and positive

monotone on [¢;,¢] and W is a mean square
differentiable (continuous) on (¢, ¢,) and o, x > 0.

Theorem 2.Suppose My holds, then
3 (¢, =T )
<[8(91,-)+8(92,)] -
20y —xp)
A (et ) (Eow) (v'01,)))
+ (st ) (Gow (v ) )}

B0+ () @e) O

Y x1,y1 € [@1, 9] with x; < yi, and Ii(:) is K-gamma
function.

FK((X+K)

Proof.From Jensen-Mercer inequality (2), we have
v +v
¢ (¢1 +gp— 2 )

<&(1,)+8(92,) —

Evi, ) +E(n,)
2 b

Vv, va € [91, 2]
By substituting v; = ¢x; + (1 —¢)y; and vy = (1 — ¢)x; +
¢yy, forall x1,y; € [¢1,¢-] and ¢ € [0,1], we get

& (ot - M7 ) <o) +E(en)

e+ (- )Ma)"‘é(( §hxi+6y1,) @

2

Multiplying both sides of (4) by g%’l and then integrate
with respect to ¢ over [0, 1] yields that

K X1 +0
25 (¢1+¢2* )

[E(01,-)+6(92

- (é(gxl C—om.)

QM
|

N =

—
o\;‘
)
=R

LE((1- o) +gy1,->)dg},

where

20,‘({/ ¢ (Elen+1-om.)

+&((1=¢)x +gy1,-))d€}

21</ gK

*g/o ¢FTE((1—¢)xt +6y1,)dg

_a /“”('“’)‘) (yi' - "’m) e

2K Jy(x y1—Xx

a v o w(Y) —x -1
el (T—xl ) £ (y(T).)

Thus,

zofc{/;c%l (gten+-am.)

+E((1=6)x1 +6y1, ))d€}=m

A (et ) (8000)+ (13 ) (8600 }-

By rearranging first inequality of (3) is proved.
Now, we prove the second part of (3). Since & is convex
stochastic process, then for ¢ € [0, 1], we get

(252

_¢ (gx1+(1 —on+( —Q)x1+Py17.)

E(gx1 +(1=¢)y1,-)dg

’

v
y1—X1

/

v
y1—X1

2
Sf(é?xﬂr(l*G)yl,)erfi(( St pyi) )
Both sides of inequality (5) is multiplying by g%’l and

then integrate with respect to ¢ over [0, 1], and let y(1') =

@© 2022 NSP
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¢x1+ (1 —¢)y1, and y(ar) = (1 — ¢)x; + py; yields that

5 (Xl +1 )

g%* E(gx1+(1—g)y1,)+E((1—¢)x1 +py1,-)) de.

Imphes that

(237

e frger Y (Eow (v o))

2(yp —x1)*
)

+ (Kla lV(yl ) <(é V) (

Both sides of above inequality multiplying by (—
then add & (¢;) + & (¢n), we get

o)+ £ - (D52 ) 2 o) +Eoar)
e () (180w (o)
1))}

+ () (Eow (v

Thus, we get second part of (3).

1) and

Corollary 1.By the assumption of Theorem 2, substituting
y(Y) =T, we get

5(¢1+¢2*x1+y1 )

<[8(91,-) +&(92,7)]

Iic(a +x) " ,
N m {K[<Xl)+§(y1>')+K[<yl),€(xl7.)}

<[+ (252 ).
Theorem 3.Suppose M| holds, then
¢ (¢1 +r -2 +y1 )

< Le(a+ K)a
2(y1 —x1)~

[(Kz“*"w,% ) (Eow) (v *1<¢1+¢2—y1,~>))

(g ) (€0 (¥ 01402 -x1.9) )]

§(¢1+¢2 x1,) + 5(¢1+¢2 Yis-)

S[é(d)nw)%((bz;)]*M, ©

Sor all x1,y1 € [¢1, 0] with x| < y; and I(-) is K-gamma
function.

Proof-Since & is a convex stochastic processes yields that

(o272 )
:€(¢1+¢2—V1+¢1+¢2—V2 )

2

- E(P1+¢—vi,- ) +E (91 +d2—12,)
— 2 b

for all vy, vy € [§1, ¢a].

By putting vi = ¢(¢1 + ¢ —x1) + (1 —6)(¢1 + ¢2 — y1)

and vo = (1 =6)(¢1 + @2 — x1) + G(¢1 + ¢ — y1), for all
x1,y1 € [01,¢] and ¢ € [0, 1], we have
€(¢ +6— xlﬂ' )
< 5 [6 001+ 0221+ (1 =901+ 31).)
L= +0—x)+5@+02-n))] D

a4

Multiplying both sides of inequality (7) by ¢x ' and then
integrate with respect to ¢ over [0, 1], and y(Y') = ¢(¢; +

¢ —x1)+(1—6)(91+¢2—y1). and y(a) = (1 —¢)(¢1 +
¢ —x1) + (91 + ¢ —y1), we can write

X 1 a
§(¢1+¢2 s )g%[/o g+
x& (p (¢1+¢2*x1) (1-=6)(@1 +¢2—y1),-)dg
] o
+/0 SETE (1= ) (@1 + 02— x1) + (01 + 92 — 1), ) dg

_ o
T2k
W (G102 —y1) (¢1+¢2—y1)—l[/(1'))z1 |
X/W7](¢l+¢2*xl) ( y1—X1 5(‘[/(}"),)
der
y1—

+ﬁ/wil(¢'+¢ry'> (V’(T) —(¢1+ ¢ xl))%]
2K v (¢ +¢r—xi) y1—X
<& (), Y g

yi—X
implies that
Iie(a+x)

x +
§(¢1+¢2 N .)§2(Y1*x1)%
[(Kla X o) )((5 ) (Vfﬁ](dh +¢2*)’1,'))>

(e ) (o (v s -10) )]

Thus, we proved the first inequality of (6).
Now, we prove second inequality of (6). Since & is a
convex stochastic processes, then for ¢ € [0, 1] yields that

E((@r+¢2—x1)+(1=¢)(d1 +92—y1).")
<pE(d1+¢—x1,) +(1=¢)E (d1+¢2—y1,),
E((1=¢)(¢1 + 2 —x1) +6(d1 +¢2—y1),")
< (1=6)8(¢1+ 2 —x1,-) + p& (d1+ 2 —y1,-).

Adding above inequalities and employing Jensen-Mercer
inequality (2), we have

S((dr+¢2—x1)+ (1 =6)(¢1+d2—y1),)
+E((1=6)(¢1+ 2 —x1) +6(¢1 + P2 —y1),°)
<E(Pr+d—x1,)+E (1 +p2—y1,0)
<2[8(91,) +&(92,)] = [E(x1,) +E O, )] (®)

Both sides of (8) multiplying by g%’l and then integrate
with respect to ¢ over [0, 1] yields the second and third
inequalities of (6).

@© 2022 NSP
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Corollary 2.Substituting y(Y') =

§(¢1+¢ x1+y1 )

Ie(o+ )
<m|:(’<[<¢|+¢z —x1) )§(¢1+¢2 yi,e)
+< (P1+¢2—y1) )§(¢]+¢2 xlv)]
_S@0 4o —x )+ E(91+ 00— y10)
N 2

§[€(¢1,~)+§(¢2,.)]_w4

Y, we get

Remark.1. Fora=xk=1, y(I') =71, x; = ¢; and y; = ¢, in
Theorem 3 yields the Hermite-Hadamard inequality for convex
stochastic processes [23].

Theorem 4.Let M| holds, then

5(¢1+¢2—x1+“ )

ZK*'FK(a-i-K)
(1 —x1)*

X [(K’a:l’.,wlwzn%ﬁ) ((5 oY) (Wﬁl(fpl +¢ _x1>')>>

(2 ) (€ (v 040 m) )]

<&, ”5("’2“)‘(W)7

Sorall x1,yy € [¢1,02] with x; < y; and I(-) is K-gamma
function.

Proof.-We prove first inequality of (9), since & is convex
stochastic process yields that

5(¢1+¢2— e )

- (¢ +¢2*V17')+§(¢1 +¢2—v2,-)
— 2 b

for all vi,vy € [¢17¢2]
By setting vi = Xl +2
we get

é(¢1+¢z nin )

oo (755))
+§§(¢1+¢2 ( S+ yl) ) ©)

Multiplying both sides of (9) by g%" and then integrate
with  respect to ¢ over [0,1], and set

v(T) (¢1 + ¢ — (%xl +%y1)), and

=5y andvzf x1+2y1 ¢ €[0,1],

y(a) = (¢1+¢2 (—lerzy])) yields that

o) [
(v (e 5n) )
oo () o

Implies that

é(¢l+¢zf’”+“,-)

ZK*'FK(OH-K)
(1 —x1)*

X{( ) w(¢ IR )((éo‘l/) (‘Vﬁl(¢l+¢z*x1,'))>
() (G (v 01+ 0 10) ).

Thus, the first part of inequality (9) proved.

Now, we prove second part of (9). Since & is convex
stochastic process and applying Jensen-Mercer inequality
(2), then for ¢ € [0, 1], we can write

e (nro—(Sn+2550))

sé(¢1,~)+é<¢z,-)f{§€<x1,~)+2%gé<y1,-)}, (10)

X +y1

( +¢2*( X1+§)’1) )
<o) +E0) - |23+ SEm) . an

Adding (10) and (11) yields that

§(¢1+¢2*(*x1+27g)’) )
+§(¢1+¢2 ( gx1+§y1))

<2091, ) +6 (92, )] = [Ex1, ) +E (1))

Multiplying both sides of (12) by g%’l and then integrate with
respect to ¢ over [0, 1], we have

Lot oo (37550
o (55 5.

< 218001+ 000,01 -6+ £, ) [ 6 e

@© 2022 NSP
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Thus, we can write

x{(xza*”w% o ) (€ (v o+ 011,

(6 sy ) (Eom (v 0 10) )
< {2[E(01) +E92)) — [E () +EO} =

Multiplying by 5= to both sides of above inequality yields
that

| (1Y g sz ) (G0 (0100, )

A oz ) (EoW) (¥ 0 02-310) )]
(¢17~)+§(¢2,.)_(5(1w)42r§(y1,~))A

This completes the proof.

‘SQ

Corollary 3.By setting y(1') =

§(¢1+¢2—x1+y] )

2"711—‘1( o
- # (’%w—%ﬁ) E(@1+9—x1,0)

/R RS yl,)]

<ED1,) HED2 ) - (w)

Y, we get

Theorem 5.Let M satisfied, then following inequality will be of
the form:

§(¢1+¢27x1+y' )
2¥71FK(05+K) o
SW{(’J Nt y1)+)

X((éow)( (¢ - T

)))
G
(eem (vt fore3) )]

<E(0r,)+E(02,) (M) (12)

2

Sorall x;,y € [¢1,92] with x; < y; and I(-) is kK-gamma
function.

Proof.To prove first part of (12), take the definition of &
convex stochastic process, we have

5(¢1+¢r“+vz )
< E(@1+¢2—vi, ) +E(P1 + 92 —12,0)

2 )
for all vy, v, € [91, §2].
By setting v; = ngl 4! 2y1 and v, = —x1 + l+gyl,
G €10, 1] yields that
g (onro-Tg2 )
1+ 1-—
§(¢1+¢2 ( *x) +72gy1),')
1+
+55(¢1+¢2—( gx+—2gy) ) (13)
Multiplying both sides of (13) by g%’l and then integrate
with  respect to ¢ over [0,1], and let
v() = (¢1+¢2*(1+gx1+ 7 yl)) and

@) = (614> — (1550 + 5501 ) ) yields that

( o x1+)’1 )/ e
<z / { (¢1+¢2*(% +T€)’) )
+§(¢1+¢2—(1;gn+1+7gy1)w)}d9

Implies that

(orre- Tt ) <2 e
(1 —x1) ¢

() (o0 (v 0 000))
+(K1;:‘]”(¢]+¢2 vy ) (€ (v o0 -0) )]

The first part of (9) is proved.

Now, we prove second inequality of (9). Tke the
definition of & convex stochastic process and
Jensen-Mercer inequality (2), then for ¢ € [0,1] yields
that

§(¢1+¢2 (l+gX1+Tgy1) )

<801 +E0) - | 2 )+ 1558000 0

§(¢1+¢2—(IEGX1+HTgy1),')
<

+f00]. s
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Adding (14) and (15) yields that

§(¢1+¢2* (]+€X1+]%€)’1),')

+¢ (¢1+¢2* (TQ 1+%)’1) )
<2[8(¢1,) +&(2,)] = [E(x1,) +E (1, 0)]- (16)

Multiplying both sides of (16) by g%’
with respect to ¢ over [0, 1], we have

/Olgzl{ (¢1+¢z ( +gxergyl) )
€(¢1+¢z ( i +%y1) )}dg

<{2[8(91,) +&(02,1)] - [€(X17-)+5(y1,~)]}Al % dg.

Thus,

! and then integrate

2% KFK(Ot)|: v
a 1%
(y1 —x1)* ( Hr+h—y)* )

<(Eow (v (orre-"132

))
n (,{1];',‘1".'@, o 7x.>*>
X((éolﬂ)( (¢ + 0y — X1+y1 )))}

s{2[é<¢1,~>+5<¢z,-n7[5<x1,->+5<y1,->1}§.

Multiplying by 5% to both sides of above inequality yields

that
—1
FK a+1<
I:(KI Y1 +¢2—y1) )

Y1 _xl
so552)

§< (w
(5om (v (oo 222.)))
(é(m)%(m»)_

X

+

» X1 +y1

(
(o (o
<&(91,)) +8(92,1) —

The second part of (9) is proved.

Corollary 4.By setting y(X') =1, we obtain
11",( (a + K)

£(¢1+¢2—M )
)’I*XI

{( (6r-+02-31) +)5(¢1+¢2 At )
- )§(¢ x‘”' )}
oo (i)

<&(91,°)

Lemma 3.Consider & : I x  — R be a mean square
differentiable stochastic process on I° and ’g'/ is a mean square
integrable on (@1, ¢2], where ¢1,¢ € I with 0 < @1 < ¢». Also,
suppose that Y(-) is an increasing and positive monotone on

[01,00] and W' is a mean square continuous (dif ferentiable)
on (¢1,¢2) and o, x > 0, then

E(@r1+¢—x1,)+E(@1+¢—y1,)  Ti(at+k)

2 20y —y1)*
N L )

(e ) (G (0]

o [0 () - o
_2()’1*351)% v (¢4 —y1) v ! I

(oo -x) - ) (£ ow) r) v )

for all xy,yy € [@1,¢2] with x; <y, and Ix() is k-gamma
Sunction.

Proof.Note that

E(O1+¢2—x1,-) —
2

I— S(¢1+¢2—y1,)

—[h + D], (18)

where

Le(a+x)
2y —x1)*

x [(KI:;:YW#%,VI)*) ((5 °y) (wil(qjl + 0 _xlv')) )}

a v (d+—x1)
m/‘IFIW’mL@iVI) v

< (01462 —x1) — p(r)) £ ((éow) m))dr
o

= m [5(4’1 +¢2—vy1)(n _xl)%]

+/V’7I(¢1+¢2*X1) /(T)
JyH(gi+2—y1) v

(@02 -x) w0 ((Eow) ) Jar, a9)

L=

and

* [("15:‘((¢1+¢”,>> ((5 oy) (‘If1 (01 +¢2 —y1, ')) )}
o v (i+g—x1)
m/wmwﬂn v

< (= (91 + 6 —x) + w(T)) 5! ((éow) (h-))dr
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o o / /

= o ayE [ e =) x{k<mfﬂ+k<mfﬂ
(¢1+92—x1) / /

. o ~(sfgmo]+a-alg o)) }

/V/"(¢1+¢z*yu) vir) S} ’ . ‘ ’ D
a 21—
wfwwwfwn+wa»r*(@o ). >)ﬂ o Tz vkl =
where

By setting (19) and (20) in (18) yields (17).

Theorem 6.Consider My holds. Also, suppose that |E'| is convex
stochastic process on (91, ¢2], then

+E(@1+92—y1,)  Ii(a+x)
2 2(y1 —y1)¥

) (Eow(

’am+@—m»

v (61 + 62 _x1>')>>

[
(1y

xl (¢1+¢7 —x1) ) ((6 oy) (
(1) (%)
X{WKmohéK@Aﬂ—(k@”ﬂzk@”m)}

@n

J’_

v (¢ +¢2—,V1?')> )] ‘

Sor all xy,y; € [¢1,9] with x; <y, and Ii(-) is kK-gamma
function.

Proof:By using Lemma 3, Jensen-Mercer inequality (2) and the
fact that "g'/ ’ is convex stochastic processes yields that

’5(¢1+¢2—X17')+5(¢1+¢2—y1?') _ Li(a+x)
2 20y —y1)%

((5011’) (Wﬁl(¢1 +¢2—x1>')>>

+

[
(ty

I (PP )((é‘ow) <w1(¢1+¢zy1,~)))”
/ NP1 +¢2—x1)
v (91+62-y1)

’wa><m+mm»%(WH¢2xowaQ”>

IA

|
2(y1 —X1)
)’1—961 a
3 (I-¢)¥
xk’m+wa—@n+wl—gmfnwg

y'fxl/ [cF - (-9

/

@hwynﬂwawr

X

#IR

a
K
} ) (23)

<l @] +[¢ 020

~(s|g G| +1-9)]g 0r1,0])

—

= ([&'@1)|+ | (92,1

{k“”mﬁiaéig

/ 1 7%71
+’£ (ylv')‘((z+])(g+2)_(g'i‘l))}. -

Substituting (23) and (24) in (22) yields (21).

Corollary 5.By putting y(Y') = 1, we get the following
inequality

E@1+¢—x1,-)+E(D1+2—y1,-)  ILi(a+k)

2 2y —y1)*

¢1+¢2 X],)

J’_

l: ¢l+¢7 =)t
(s

(G, p—x1) ) 1+¢2—y17')”
(ev) ()
%Hﬂmwwéwwﬂoﬂ“ﬂzkm”g.

Lemma 4.Consider & : I x  — R be a mean square
!
differentiable stochastic process on I° and & is a mean square

IN
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integrable on (@1, ¢2], where ¢1,¢ € I with 0 < ¢ < ¢». Also,
suppose that y(-) is an increasing and positive monotone on
(01, ¢0] and l//, is a mean square continuous (dif ferentiable)
on (¢1,¢2) and o,k > 0, then

S(¢1+¢—x1,-) + (91 + 2 —y1,°)
2

ZQ*IFK((X+K) v
B )% {( I, (P +gr—y1) T )

(el (ornn0)
LGRS
b

n (v (ae=23))
y1—X1){/ gvé& (q) +¢ — ( +gx1+Tgy1,))d€
7/0 Q%é/(¢1+¢2 ( i +]T€y1,))d€}y (25)

for all xy,yy € [@1,¢2] with x; <y, and Ix() is k-gamma
Sfunction.

Proof.Note that

1= —n}, 26)
where
U w +
=/0 gr& (¢1+¢r( 2g +Tgy ))dg
a
. _ J) K
- y] §(¢1+¢2 .)C], ) y] *x]

/gx '€(¢1+¢r(1+—g 1+Tgy1 ))dg
ylix]5(¢1+¢2—x1w)

_2%+1FK((X+K) ( oy )
O ,yl)%Jrl Ky 1(014+0,—x1)~

x((éow)( (¢ TN )))] @7

and

oy 1
h= [t (oro (550 o) as
2 29
et AR e DR re

1 o
X/o gr e (¢ +¢r— (—g 1+1;g 1,-))01;

S L TP |

Y1 =X
25 L(a+ k) ( @y )
(y1 —y1) 5+ Ky (g +g—y1)+

x((éow)( (¢ TN )))} 28)

Setting (27) and (28) in (26) yields (25).

Theorem 7.Let My hold. Also, suppose that |E'| is a convex
stochastic process on 1, ¢2], then

E(O1+ 92 —x1, )+5( o1+ 02 —y1,°)

Dt

IFK_ |:

K

¢1+¢v )" )
e o)

2
(vl o))
1

1%

O1—x1)
+1)

y(
wabﬂ+éuwwﬂ—<k@“m+k@””)}

2

(29)

Sor all xi,y1 € [¢1,¢2] with x; < y1, and Ii(-) is x-gamma
Sfunction.

Proof By using Lemma 4, Jensen-Mercer inequality (2),
properties of absolute value and the fact that ’51‘ is a convex
stochastic process yields (29).

Corollary 6.By putting y(Y') =1 yields the following inequality
‘5((01 o —x1, ) +E@ +r—y1,) 25 'Ti(a+k)
2 1 —=y1)*

{( (61-+02-3) >€(¢1+¢ x‘”{.)
(e )6 (0 v 252 )]

(1—x1)

( 1)

X{Uéwhﬂ+5WwLM](k(m“mzk(w”ﬂ)}.

Lemma 5.Consider & : 1 x Q — R be a mean square
differentiable stochastic process on I° and 5/ is a mean square
integrable on (9, $2], where ¢1,¢5 € I with 0 < ¢y < ¢». Also,
suppose that Y(-) is an increasing and positive monotone on

(91, ¢0] and l//, is a mean square continuous (dif ferentiable)
on (¢1,¢2) and o,k > 0, then

¢ (¢1 P +y1) 25 'L(a+k)
(1 —y1)*

<[ (s ¢+%Aﬁny)(jémm(w*W¢r+@—wn))
+( )( o1+ — )’1)))}
(y1—x1 {/Olg%g (¢ ( x1+2Tgy1))dg
/Olg 3 (¢1+¢2 (22g9€1+ YI))d€:|>

<

K\Q
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Sor all xy,y; € [¢1,¢] with x; <y, and Ii(-) is kK-gamma Corollary 7.By choosing y(Y') = Y yields the following

function. inequality
E(oritn )2 Nar
Proof.The proof of this Lemma is similar to the proof of Lemma (y1 — 1 )%
4.
o —_ .
Theorem 8.Let M hold. Also, consider that |E'| is convex
stochastic process on (@1, ¢2], then ¢ +¢2 SECIN E(91+02—y1,)
. < bi=x)
+ 2« Tx(a+x = (%4
’5(¢1+¢2_XI Y .)_ : i ( g ) 2(%+1) )
~1 X ) | — .
><|:( ¢+¢2 "lf"l)*) ((501,1) (V/ (¢]+¢2*X1,')>) I 2
+( | (0r-+0n— 1) ) Theorem 9.Suppose My hold. If "g'/’q is a convex stochastic
process on [¢1,$), for g > 1 with ﬁ+$ =1, then
(o (v o)) L
’5 (‘P . x1+y1 ) 25 L(a+k)
< bizx) (1 =y1)*
“2(%+1) l)

, : ‘5/(x1,~)’+‘5/(y1,')‘ K H(pr+02— "*‘")+) (@OW) (Wl(q}ﬁ%_n")))
X{Hé<¢1,.>]+é |(¢z,-)l]( > )} ( A )((M,)(Wfl(q,ﬁ%_yh.)))”
N .

€2y
. . = :Cl) ([.LOCK-FK') K’é o ‘ +’€ ' ‘
Sor all x1,y1 € [¢1,¢2] with x; < y1, and Ii(-) is kK-gamma 1
Sfunction. —(i‘él(xl,')’q-i‘%’5,()’17")“1))4
Proof By Lemma 5, Jensen-Mercer inequality (2), properties of , , 3., g 1., q zl,
absolute value and the fact that ’él‘ is convex stochastic process (‘é Z ’ ’é ’ (Z & )‘ +716 00 ’ )) } ’
yields that (33)

., Sor all xy,y; € [¢1,9] with x; <y, and Ii(:) is kK-gamma
X1 +y1 2% I he(a+x unction.
’5(¢1+¢* yw)* <l 3 ) I , . . .
(1 —=y1)* Proof.-Applying Lemma 5, Holder integral inequality,

ay . Jensen-Mercer inequality (2), properties of absolute value and
| (w1 ) (Eew) (v @+ 6 -, e . . .
v (0 +0,— 5L the fact that |£ | is convex stochastic process yields the desired

B inequality (33).
(Iaw S )((5011/)(1// ](¢1+¢27y1,-)>)”
H(91+0r— ) Corollary 8.Substituting w(X') = Y yields the following
(1 —x1) -/'
4 /o

2—g¢ inequality
< |E (¢1+¢2 ( X+ y1:))‘d€ x1+y1 25 (ot 4 &)
1 —-¢ o €(¢1+¢2 ) o
Ll (oo (5 5o
0

+

IN

(1 —=y1)~

< O] et e o] +4 100, (oo “*“>)5(¢1+¢2*’”)
- (58 11+ 255 100 G )W‘*"’Z‘“)H
+ [t Je @] +2 1020 <z (WH) [(Jetn ]¢] ["+[g @]
- (558 o+ £ 1001) s o (Gl +3Eon]) + ([g @+ g
After simplification, we obtin (31). ~(Glewof s mal)) é )|
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4 New results related to improved Holder
inequalities

Theorem 10.Suppose M; hold. If ‘5’
process on [§1, @], for g > 1, then

‘5 (‘Pl +¢27x1 +y )

w { (Klzi‘f'( ., ngy)
x ((5 oY) (W*l (91 +¢2—x1,~)))

i (KI;:’V',(@mkn%)—)

X ((é oy) <V/*' (¢ +¢2,y17,)))} ’

R it 1 =
Y (R

(J¢' @[ +]¢ @] ()|
X( (%+1)(9+2) (2(9+2)(ﬂ+3)

q . .
’ is a convex stochastic

) (5¢1, ]5 \)
(% +1) (% +2)
(§+9) g @ oV
) (%+U@+QM%+$+2@+aﬂz+g>>}

(% +1)
(J¢' @[ +]¢ @]
U EeE)
(£+5)]€ @)/ g
C\2(g 1 (%+2)(%+3) 2(%‘+2)(‘,?+3)>>

’5 iy ‘ i
: (%))) -

Sorall x1,y1 € [¢1, 0] with x; <y, and I(+) is K-gamma
function.

Proof.It follows from Lemma 5, improved power-mean
integral inequality, properties of absolute value,
1|4
Jensen-Mercer inequality (2) and the fact that “g’ ’ is
convex stochastic process yields the required result.

Corollary 9.Substituting w(Y') =Y in Theorem 10, we get

‘5 (¢ -0 )

72K*'FK(a+K) {( o

1=y ) (¢1+¢r@)+)5(¢]+¢27x1")

S CRS LUl |

(& 0+ @
( (%+ l)( +2)
‘5 yis)

+2(@+1

\) £,
(uﬁ+@<ﬁ+w

=) ()

’<¢1,->\"+\é’<¢z, )
’ ) q ‘11
+2w+a<z+w>>}

(E+0(ED)

15) € (a0l
2(+D (R +2) (£ +3)

(¢

[
(
(s
(£ T e
(
[
£

) (2+1) (2 +2)
(8+5)[¢' (o) I ))
2(EH1) (2+2) (2+3) T 2(2+2) (2+3)
N %1+2> (!m f) )
() Ew)| Jé . \))}
2(3+2)(§+3)  2(%+3) '

Theorem 11.Let M, hold. If ’g’
on (@1, 9], for g > 1 with ﬁ + % =1, then

q . .
‘ is a convex stochastic process

‘5(¢1+¢2—M )

8- ‘FK(a—Q;K){( ]al,,((wz ))

(1 =y1)
X ((5 oY) (llfl (61 +¢2—X17')))
(sr5

wi' ¢1+¢2*”%)7) ((5 °V) (Wil @1 +¢2_y1")))} ’

+
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é’@»!"))q
) (3@l )

’ q 5
Sl |+

L é’<y1,~>]"))q
(_,fﬂ)> (; (& 00| +]¢ 020]")

o ) )

for all xy,y1 € [¢1,¢] with x; < y1, and I(-) is K-gamma
function.

ProofBy using Lemma 5, from Holder-fscan inequality,
properties of absolute value, Jensen-Mercer inequality (2) and

q . .
the fact that ‘5/’ is a convex stochastic process simultaneously
yields the desired result.

Corollary 10.Substituting y(1') =
X +y1
(vt )

_W [ (Hovorszy)

<ot (o ) e

1

(y1 —x1) 1 “
= H(("ﬁi‘+1)(°§f+2)>

x (% (&' @[ +]g 02n]")

~(Blg w3 ’<y1,~>]"))q

Y in Theorem 11, we get

!

(35)

wrg) (3@l

(ieafien) (o)
5

1

' +[¢ )

%‘5’()61)’61"‘%’5,(”)’(]))E}}

5 Applications

Consider the following special means for arbitrary /;,, € R,

l] 75122

Arithmetic mean

Harmonic mean

2
H(lj,h) = T ll,lzeR\{O}

A I

Logarithmic mean

b —1
1,1 — |/ b, 0.
L(li,h) = Injla| — ln|ll||1|$‘é|2|123‘é

r-logarithmic mean

1
lr+lilr+l T
L(ly,b)= |2

(r+1)(—1h)
re Z\{*l,O}, L, eR, [ 75 L.
Now, we give some applications to special means:

Proposition 1.Let ¢y, ¢p,x1,y1 €ERT, ¢y < ¢, 0 & [y,
andn € Z, |n| > 2.

9], ¢>0,

A((zA(¢1,¢z>—x1>",<2A(¢1,¢2>—y1>")

_ (LZ (2A(¢17¢2) —Y1,24(91.92) 7x]))n

< y1—X1
=\ 4

S CIRERISISE (”(xl)"fl )™ |

Proof:By substituting £(x,-) = X", y(x) =x, a = k=1 in
Theorem 6, we get the desired result.
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Proposition 2.Let ¢] ,(l)z,xl ,V1 € R+, (])1 < ¢2, 0 ¢ [¢] ,¢2], c> 0,
andn €7, |n| > 2.

I CIORSENCITNSEENY
y
1

o)

1
y1—Xx 1 1 _ (x1)2
S( z )[<¢1>2+<¢2>2 ( )]

Proof By choosing & (x,-) = L, y(x) =x, & = k = 1 in Theorem
6 yields the desired result.

ol

- (17 (200 - 3128010 -
)
2

6 Conclusion

In the present note, we develop inequalities of the
Hermite-Hadamard-Mercer type by using the Jensen-Mercer
inequality for convex stochastic processes in the setting of
Vi-Riemann-Liouville fractional integrals. We also derive
different inequalities of the Hermite-Hadamard-Mercer type
with the help of Holder integral and power-mean integral
inequality. In literature, some known results become the special
cases of these inequalities as mentioned in remarks. Some
applications to special means are also developed. All
inequalities and related results presented here are unique,
fascinating, and important in the field of integral inequalities.
We hope that our new ideas and techniques utilized in this paper
may inspire several interested authors to explore new results. It
is an interesting and new result that the upcoming researchers
can offer the same inequalities for different types of convex
stochastic processes in their future research.
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