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Abstract: The position vector of the surface r = r(s, t) is called Hasimoto surface if the relation rt = rs ∧ rss hold. In this paper

Hasimoto surfaces in Euclidean space E
3 will be introduced. Hasimoto surfaces are investigated by using the Darboux frame and

discuss the geometric properties. The position vector of W-curve is stated by a linear combination of its Frenet frame with differentiable

functions.
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1 Introduction

In the theory of curves in Riemannian manifolds, one of
the most and to give characterizations of a regular curve.

Let r = r(s, t) be a position vector of a moving curve φ
on surface M2 in E

3 such that r(s, t) is a unit speed curve
for all t. If the surface M2 is a Hasimoto surface, then, the
position vector r satisfy the following condition

rt = rs ∧ rss. (1)

This equation is called the vortex filament or smoke
ring equation.

The geometric properties of Hasimoto surfaces are
investigated in detail by [1,2]. In 1972, Hasimoto showed
that vortex filament equation is equivalent non-linear
Schrodinger equation [3,4].

In 1965, R. Betchov [5] transformed (1) into a coupled
system of intrinsic equations for the curvature and torsion
with the aid of the Serret-Frenet formula.

2 Preliminaries

Let φ : I → M 2 be a regular unit speed curve on the
orientiable surface M 2. Let {T,N,B} be an orthonormal
Frenet frame along a moving curve φ in M 2 such that
T = φ ′ is the unit vector field tangent to φ , N is the unit

vector field in the direction T ′ normal to φ ( principal
normal ) and B = T ∧N (binormal vector). Then we have
the following Frenet equations





T ′

N′

B′



=





0 k 0
−k 0 τ
0 −τ 0









T

N

B





, (2)

where the functions k and τ are called the curvature
and the torsion of the curve φ , respectively. Find the
curvature of the curve as follows

k2 = g
E3(T ′

, T ′).

The planes spanned by {T,N} , {T,B} and {N,B} are
respectively known as the osculating, the rectifying and the
normal plane.

Introduce a new frame, called Darboux frames
{T, η , g} with





T

η
g



=





1 0 0
0 cosβ sinβ
0 −sinβ cosβ









T

N

B





, (3)
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where g = η ∧T and β is the angle between the vector
fields N and η .
The derivative formulas of (3) can be given as follows:





T ′

η ′

g′



=





0 kη kg

−kη 0 −tr
−kg tr 0









T

η
g





, (4)

where kg is the geodesic curvature, kη is the normal
curvature, tr is the geodesic torsion of the curve φ and ′ =
d
d s

. Here Darboux curvatures are defined by







kη(s) = k(s)cosβ (s)
kg(s) =−k(s)sin β (s)
tr(s) =−τ(s)−β ′(s).

(5)

Theorem 2.1.[14] Suppose r = r(s, t) is a NLS surface
such that r = r(s, t) is a unit speed curve with normal
vector field for all t. Then the following is satisfied:





Tt

ηt

gt



=





0 α λ
−α 0 −γ
−λ γ 0









T

η
g





, (6)

where α , λ and γ are smooth functions given by







α = k′g − kηtr
λ =−k′η − kgtr

k2γ = (kk′)′−α2 −λ 2 + δ ,
(7)

where δ = kgt kη − kηt kg.

Lemma 2.2. From (5), we obtain

δ =−βtk
2
, (8)

α2 +λ 2 = k2τ2 + k′
2
, (9)

αkg −λ kη = kk′. (10)

Using compatibility conditions Tst = Tts, ηst = ηts and
gst = gts, we get





α ′

λ ′

γ ′



=





0 −tr kg

tr 0 −kη

−kg kη 0









α
λ
γ



+





kηt

kgt

trt





. (11)

The mean curvature Hmean and the Gaussian curvature
KG are, respectively, defined by

Hmean =
EN +GL− 2FM

2(EG−F2)

and

KG =
LN −M2

EG−F2
.

The Laplace-Beltrami operator of a smooth function
ϕ : M2 → R,(s, t) 7→ ϕ(s, t) with respect to the first

fundamental form of the surface M2 is the operator ∆ ,
defined as [6]

∆ϕ =
−1

W

[(

Gϕs −Fϕt

W

)

s

+

(

Eϕt −Fϕs

W

)

t

]

, (12)

where ϕ = ϕ(s, t) and W =
√

EG−F2.

3 Hasimoto surface

In this section, Hasimoto surface are investigated by using
the Darboux frame and discuss the geometric properties of
Hasimoto surface.

Lemma 3.1.[1]

βt =
k′′

k
− τ2 − γ, (13)

where β is the angle between the vector fields N and η .

Moreover, the evolution equations for curvature and
torsion are

kt = kτ ′+ 2τk′, τt =−
(

k′′

k

)′
+ 2ττ ′− kk′. (14)

The coefficients of the first fundamental form of the
surface r = r(s, t) are

E = 1, F = 0, G = k2
. (15)

The unit normal vector of the Hasimoto surface is
given by

N =−kg

k
g− kη

k
η . (16)

Then the coefficients of the second fundamental form
of the surface r = r(s, t) are

L =−
k2

η + k2
g

√

k2
η + k2

g

=−k,

M =
(k2

η + k2
g)tr + kgk′η − kηk′g
√

k2
η + k2

g

=
β ′k2 + trk

2

k
=−τk,

N =
(kgk′g + kηk′η)

′− (trkg + k′η)
2 − (trkη − k′g)

2

√

k2
η + k2

g

= −kτ2 + k′′,

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 5, 689-694 (2022) / www.naturalspublishing.com/Journals.asp 691

where ′ = ∂
∂ s

.

Thus, one can find that the mean curvature Hmean and
the curvature KG of r = r(s, t) as:

Theorem 3.2.[1] Let r = r(s, t) be a Hasimoto surface,
then the Gaussian curvature KG and mean curvature Hmean

are given by

KG =−k′′

k
, (17)

Hmean =
k′′− k(k2 + τ2)

2k2
, (18)

respectively, where k 6= 0.

Corollary 3.3. Let r = r(s, t) be a Hasimoto surface. There
are no developable and minimal Hasimoto surface in E

3.

Proof.
If r = r(s, t) is a developable and minimal Hasimoto

surface, then KG = 0 and Hmean = 0. From (17) and (18)
we have that k = 0, which is a contradiction. Hence there
are no developable and minimal Hasimoto surface in E

3.

4 I− Harmonic Hasimoto surfaces in E
3

Theorem 4.1. The Laplacian ∆ of the Hasimoto surface
r = r(s, t) can be expressed as

∆r(s, t) =
−1

k
[Q(s, t)η +P(s, t)g] , (19)

where

Q(s, t) =−ktkg

k2
+ kkη +

kgt

k
− γkη

k
,

P(s, t) =
ktkη

k2
+ kkg −

kηt

k
− γkg

k
,

kgt =
∂ kg

∂ t
, kηt =

∂ kη

∂ t
.

Proof. By (12), the Laplacian operator ∆ of r can be
expressed as

∆r(s, t) =
−1

k

[

∂

∂ s

(

k2rs

k

)

+
∂

∂ t

( rt

k

)

]

. (20)

From (1), we have

rs = T, rss = kη η + kgg, rt = kgη − kηg. (21)

rtt = (−αkg+λ kη)T +(kgt −γkη)η −(kηt +γkg)g. (22)

Then using (21) and (22), we have

∆r(s, t) =
−1

k
[R(s, t)T +Q(s, t)η +P(s, t)g] ,

where

R(s, t) = ks −
αkg

k
+

λ kη

k
,

Q(s, t) = −ktkg

k2
+ kkη +

kgt

k
− γkη

k
,

P(s, t) =
ktkη

k2
+ kkg −

kηt

k
− γkg

k
.

Now we take the derivative with respect to s of k2, that
is

kks = kgkgs + kηkηs .

Substituting the latter in R(s, t), we have R(s, t) = 0,
we obtain the Laplacian ∆ of the Hasimoto surface
r = r(s, t) given as in (20). Thus, the proof is completed
�.

Remark 4.2.

kηQ(s, t)+ kgP(s, t) = k(k2 + τ2)− k′′.

Corollary 4.3. Therefore, r is harmonic if and only if
Hmean = 0.

5 Hasimoto surfaces having pointwise

1-Type Gauss Map in E
3

Let r = r(s, t) be a Hasimoto surface. From (12), (15) and
(16), we write the Laplacian operator of the Gauss map as

∆N =−k′

k
Ns −Nss −

1

k2
Ntt +

k′

k3
Nt , (23)

where

Ns = k T − τ sinβ η − τ cosβ g,

Nt = kτ T +ϑ sinβ η +ϑ cosβ g,

Nss = k′ T +((k2 + τ2)cosβ − τ ′ sinβ )η

− ((k2 + τ2)sinβ + τ ′ cosβ )η

Ntt = (ktτ + kτt −ϑα sin β −ϑλ cosβ )T +

(αkτ +ϑβt cosβ +ϑt sinβ +ϑγ cosβ )η

+ (λ kτ −ϑγ sinβ −ϑβt sin β +ϑt cosβ )g,

where ϑ = k′′
k
− τ2.
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(23) can be rewritten as

∆N =− 1

k3
Λ1 T − 1

k4
Λ2 η − 1

k4
Λ3 g, (24)

where

Λ1 = kk′(k2 + τ2)− kk′τ + 3k2ττ ′− kk′′′+ 2k′k′′,

Λ2 = (k2τ ′′′− k4τ ′− k′k′′+ kk′τ2 + 4kk′′τ ′+ 4kk′τ ′′

− 4k′k′′τ + 4kτk′′′− 4k2τ2τ ′)sin β +

(k4(k2 + 2τ2)+ (k′′− kτ2)2)cosβ ,

Λ3 = (k2τ ′′′− k4τ ′− k′k′′+ kk′τ2 + 4kk′′τ ′+ 4kk′τ ′′

− 4k′k′′τ + 4kτk′′′− 4k2τ2τ ′)cosβ

− (k4(k2 + 2τ2)+ (k′′− kτ2)2)sin β .

Suppose that the Hasimoto surface has harmonic
Gauss map. Then, the vector ∆N given with (24) is zero.
Thus, we have (Λ1, Λ2, Λ3) = (0,0,0).

Hence, the equation

Λ2 cosβ −Λ3 sinβ = k4(k2 + 2τ2)+ (k′′− kτ2)2

implies that k = 0. It is a contradiction �.

Theorem 5.1. Let r = r(s, t) be a Hasimoto surface. There
are no Hasimoto surfaces in E

3, satisfying the condition
∆N = 0.

6 A characterization of involutes of a given

curve in E
3

Let φ and φ∗ be two curves in the Euclidean space E3.

Let {T,η ,g} and {T ∗
,η∗

,g∗} be Darboux frame of φ
and φ∗ respectively. Then the curve φ∗ is called the
involute of the curve φ , if the tangent vector of the curve
φ at the points φ(s) passes through the tangent vector of
the curve φ∗ at the point φ∗(s) and

g
E3(T, T ∗) = 0.

Definition 6.1. Let φ be a curve in E
3.

1) If both k and τ are constant along φ , then is called
circular helix with respect to Frenet frame.
2) A curve φ such that

τ

k
= a, a ∈R,

is called a general helix with respect to Frenet frame.

If k =constant 6= 0 and τ = 0, then the curve φ is a
circle.

Theorem 6.2. Let the curve φ∗ be involute of the curve φ
and let c be a constant real number. Then

φ∗(s) = φ(s)+ (c− s)T (s). (25)

Proof. Assume that φ∗ is an involute of φ . Then φ∗ can be
parameterized by

φ∗(s) = φ(s)+ µ(s)T (s),

where µ(s) is some differentiable function in s.
Differentiating the previous equation with respect to s and
using (2), we obtain

T ∗ = (1+ µ ′(s))T (s)+ µ(s)(kη η + kgg).

Since g
E3(T, T ∗) = 0. Then, we get

µ(s) = c− s.

Thus we get

φ∗(s) = φ(s)+ (c− s)T (s).

Theorem 6.3. Let the curve φ∗ be involute of the curve φ ,
then

g
E3(φ∗

s ∧φ∗
ss, φ∗

sss) =−(c− s)3k3τ2

(

k

τ

)′
. (26)

Proof. If we take the derivative (25), we can write

φ∗
s = (c− s)kηη +(c− s)kgg.

φ∗
ss =−(c− s)k2T +Λ1η +Λ2g,

φ∗
sss = Γ1T +Γ2η +Γ3g, (27)

where

Λ1 =−kη +(c− s)k′η +(c− s)kgtr =−kη − (c− s)λ ,

Λ2 =−kg +(c− s)k′g − (c− s)kηtr =−kg +(c− s)α,

Γ1 = 2k2 − 3(c− s)kk′,

Γ2 =−(c− s)k2kη + trΛ2 − 2k′η +(c− s)k′′η − kgtr+

(c− s)trk
′
g +(c− s)t ′rkg,

Γ3 =−(c− s)k2kg − trΛ1 − 2k′g+(c− s)k′′g + kη tr−

(c− s)trk
′
η − (c− s)t ′rkη .

Hence, we have

φ∗
s ∧φ∗

ss = (c− s)(kηΛ2 − kgΛ1)T − (c− s)2k2kgη (28)

+ (c− s)2k2kηg.
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Lemma 6.4.

kηΛ1 + kgΛ2 =−k2 +(c− s)kk′.

kηΛ2 − kgΛ1 = k2(c− s)τ.

If we take the inner product with (28) on both sides of
(27), we have (26)

Corollary 6.5. If the curve φ is a general helix, then

g
E3(φ∗

s ∧φ∗
ss, φ∗

sss) = 0.

7 W - curve in E
3

The aim of this section is to continue the study of W -
curves. The curve φ is called a W - curve, if its curvature
and torsion functions are constant. The simplest examples
of W - curves are circles, hyperbolas and helices as non-
planar W - curves. The characterizations of W - curves
are investigated in [7]. W - curves in Lorentz- Minkowski
space are investigated in [8,9,10,11].

The authors in [12,13] examined the curvatures of
Hasimoto surface according to Bishop frame and give
some characterization of parameter curves of these
surfaces.
In this section, we give characterization of W - curve.
Then the position vector φ(s) can be written as linear
combinations as follows

φ(s) = x1(s)T + x2(s)η + x3(s)g (29)

for some differentiable functions x1, x2 and x3 of s.

Taking the derivative of (29) with respect to the arc
length parameter and using Serret Frenet formulas which
are given by (4), we get





x′1
x′2
x′3



=





0 kη kg

−kη 0 −tr
−kg tr 0









x1

x2

x3



+





1
0
0





, (30)

or, equivalently

X ′ = MX +B,

where

X =





x1

x2

x3





, M =





0 kη kg

−kη 0 −tr
−kg tr 0





, B =





1
0
0





.

The characteristic polynomial is

det(M−λ I) =−λ (λ 2 + k2 + t2
r ),

so the spectrum of M is
σ(M) = {λ1 = 0,λ2 = iω ,λ3 = −iω}, where

ω =
√

k2 + t2
r .

Each eigenvalue λ1, λ2 and λ3 corresponds to an
eigenvector:

V1 =





tr
kg

−kη





, V2 =





trkη − iωkg

kgkη + iωtr
k2

g + t2
r





,

V3 =





trkη + iωkg

kgkη − iωtr
k2

g + t2
r





.

Form matrices P−1 and D

P−1 =
1

2 iω3(k2
g + t2

r )
G

where

G=





(k2
g + t2

r )2 iωtr (k2
g + t2

r )2 iωkg −(k2
g + t2

r )2 iωkη

−kgω2 + iωkη tr trω2 + iωkηkg iω(k2
g + t2

r )

kgω2 + iωkηtr −trω
2 + iωkηkg iω(k2

g + t2
r )





P−1MP = D =





0 0 0
0 iω 0
0 0 −iω





,

where P is the change-of-coordinates matrix (matrix
formed from the eigenvectors) and D is the diagonal
matrix.

We define

Y (s) = P−1X(s) =





y1(s)
y2(s)
y3(s)





,

then

Y (s)′ = DY (s)+P−1B.

The new variables y1(s), y2(s) and y3(s) now are
solutions of the decoupled system











y′1(s) =
tr

ω2

y′2(s) = iωy2 +
1

2ω2(k2
g+t2

r )
(kη tr + iωkg)

y′3(s) =−iωy3 +
1

2ω2(k2
g+t2

r )
(kη tr − iωkg).

Then the solution to the differential equation

Y (s)′ = DY (s)+P−1B

is











y1(s) =
tr

ω2 s+ c0

y2(s) =
1

2ω3(k2
g+t2

r )
(−ωkg + ikη tr)+ c1eiωs

y3(s) =
1

2ω3(k2
g+t2

r )
(−ωkg − ikη tr)+ c2e−iωs

.
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Then



































x1(s) =
t2
r

ω2 s+ c0tr +(akηtr − bωkg)cosωs+
(bkη tr + aωkg)sinωs

x2(s) =
trkg

ω2 s+ c0kg − kη

ω2 +(akηkg + bωtr)cosωs+
(bkηkg − aωtr)sinωs

x3(s) = − trkη

ω2 s− c0kη − kg

ω2 + accosωs+
bcsinωs,

where c = k2
g + t2

r , a = c1 + c2 and b = i(c1 − c2).

Thus, we can state the following theorem:

Theorem 7.1. Let φ : J ⊂R→ E
3 be a twisted W - curve,

then the position vector φ(s) is obtained with the following
differentiable functions



















































x1(s) =
t2
r

ω2 s+ c0tr +(akηtr − bωkg)cosωs+
(bkη tr + aωkg)sinωs

x2(s) =
trkg

ω2 s+ c0kg − kη

ω2 +(akηkg + bωtr)cosωs+
(bkηkg − aωtr)sinωs

x3(s) = − trkη

ω2 s− c0kη − kg

ω2 + accosωs+
bcsinωs.

8 Conclusions

In this paper, authors obtained the characterization of
Hasimoto surfaces in Euclidean space E

3. Hasimoto
surfaces are investigated by using the Darboux frame and
discuss the geometric properties. The position vector of
W-curve is stated by a linear combination of its Frenet
frame with differentiable functions.
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