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Abstract: The position vector of the surface r = r(s,) is called Hasimoto surface if the relation r; = ry A rg hold. In this paper
Hasimoto surfaces in Euclidean space E> will be introduced. Hasimoto surfaces are investigated by using the Darboux frame and
discuss the geometric properties. The position vector of W-curve is stated by a linear combination of its Frenet frame with differentiable

functions.
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1 Introduction

In the theory of curves in Riemannian manifolds, one of
the most and to give characterizations of a regular curve.

Let r = r(s,) be a position vector of a moving curve ¢
on surface M? in E3 such that r(s,?) is a unit speed curve
for all ¢. If the surface M? is a Hasimoto surface, then, the
position vector r satisfy the following condition

1y = rg N\ rgg. (1)

This equation is called the vortex filament or smoke
ring equation.

The geometric properties of Hasimoto surfaces are
investigated in detail by [1,2]. In 1972, Hasimoto showed
that vortex filament equation is equivalent non-linear
Schrodinger equation [3,4].

In 1965, R. Betchov [5] transformed (1) into a coupled
system of intrinsic equations for the curvature and torsion
with the aid of the Serret-Frenet formula.

2 Preliminaries

Let ¢ : I — .#* be a regular unit speed curve on the
orientiable surface .#>. Let {T,N,B} be an orthonormal
Frenet frame along a moving curve ¢ in .#? such that
T = ¢’ is the unit vector field tangent to ¢, N is the unit

vector field in the direction 7’ normal to ¢ ( principal
normal ) and B =T AN (binormal vector). Then we have
the following Frenet equations

T 0 kO T
N =|-korz|[N], 2)
B 0 —70 B

where the functions k and 7 are called the curvature
and the torsion of the curve ¢, respectively. Find the
curvature of the curve as follows

K = ggs(T', T').

The planes spanned by {7,N}, {T,B} and {N,B} are
respectively known as the osculating, the rectifying and the
normal plane.

Introduce a new frame, called Darboux frames
{T, n, g} with

* Corresponding author e-mail: se2014bendhiba @ gmail.com

T 1 0 0 T
n|=10 cosf sinf N |, 3)
g 0 —sinf cosf B
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where g =N AT and B is the angle between the vector
fields N and 1.
The derivative formulas of (3) can be given as follows:

T 0 kn ke \ [T
n|=|-k 0 -t ]|n|, “4)
g —kg 1, 0 g

where k; is the geodesic curvature, ky is the normal
curvature, 7, is the geodesic torsion of the curve ¢ and’ =
%. Here Darboux curvatures are defined by

(
ko (s) = —k(s)sin B(s) (5)

Theorem 2.1.[14] Suppose r = r(s,t) is a NLS surface
such that r = r(s,#) is a unit speed curve with normal
vector field for all z. Then the following is satisfied:

T; 0 o A T
771 = —a 0 7,)/ TI 5 (6)
g A7 0 g

where o, A and y are smooth functions given by

o = ky — knty
A = —kpy — kgt @)
Ky = (kk’)’ —a?—A*+6,
where 6 = kg, kn — kn,kg.
Lemma 2.2. From (5), we obtain
§ =Bk, ®)
o>+ A2 =Kk, 9)
akg — Akn = kK. (10)

Using compatibility conditions T,
8st = 815, WE get

= Tis, Mgt = Nys and

o 0 —t, kg o kn,
AMl=1 6 0 kg | [2]+|k |. aD
% kg ky O ¥ t,

The mean curvature H,,.,, and the Gaussian curvature
Kg are, respectively, defined by

EN+GL—-2FM
2(EG— F2)

Hmean -

and
LN — M?

EG—F?*
The Laplace-Beltrami operator of a smooth function
¢ M?> = R, (s,t) — @(s,t) with respect to the first

G =

fundamental form of the surface M? is the operator A,
defined as [6]

_ 11 (Ge,—Fo E@, — F oy
s |(*570) (7)) o

VEG—F2.

where @ = ¢(s,t) and W =

3 Hasimoto surface

In this section, Hasimoto surface are investigated by using
the Darboux frame and discuss the geometric properties of
Hasimoto surface.

Lemma 3.1.[1]

k//
p="-T-1. (13)

where B is the angle between the vector fields N and 7.

Moreover, the evolution equations for curvature and
torsion are

!

k[ /
ki =kt 421k, 7, =— <?> +2t7 —kk.  (14)

The coefficients of the first fundamental form of the
surface r = r(s,t) are
E=1, F=0, G=k*. (15)
The unit normal vector of the Hasimoto surface is
given by

ke kn
kg——n (16)

Then the coefficients of the second fundamental form
of the surface r = r(s,t) are

N=—

2 2
kn +hke
\/ Kk
_ (ks + k3 )ty + kgkyy — knk,

8
2 2
R+

/kZ trkz
gkl k) (1rkg - Kp)® = (1rkn — ki)
\/ K3+ K2
_ —sz—l—k”,
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r_ 9
where ' = 55

Thus, one can find that the mean curvature H,;eq, and
the curvature Kg of r = r(s,t) as:

Theorem 3.2.[1] Let r = r(s,¢) be a Hasimoto surface,
then the Gaussian curvature K and mean curvature Hyyeq,
are given by

Kg = O (17)
K" — k(k* + 7>
Hyean = %a (]8)

respectively, where k # 0.

Corollary 3.3. Let » = r(s,t) be a Hasimoto surface. There
are no developable and minimal Hasimoto surface in E3.
Proof.

If r = r(s,t) is a developable and minimal Hasimoto
surface, then Kg = 0 and H,eq, = 0. From (17) and (18)
we have that kK = 0, which is a contradiction. Hence there
are no developable and minimal Hasimoto surface in E3.

4 [— Harmonic Hasimoto surfaces in E>

Theorem 4.1. The Laplacian A of the Hasimoto surface
r = r(s,t) can be expressed as

Ar(s,1) = —=[Q(s.0)n + P(s,1)g], (19)
where
kek ke, Yk
Qs,1) = —=5" +hkp + =2 — =L,
kikn kn, kg
P(s,t) = =" +hkg— =1 = 2F,
Dkg [25)

kg = 57 kn, = 7

Proof. By (12), the Laplacian operator A of r can be
expressed as

—1[9 [Kr d /r
A4;07;{5;<7;>+5;<z)}. (20)
From (1), we have

rs=T, rss:knn+kgga rl:kgn_kng' 21

iy = (—0tkg +Aky)T 4 (kg, — Yk )N — (kn, + kg )g. (22)

Then using (21) and (22), we have

Ar(s,t) = 71 [R(s,t))T + Q(s,1)n + P(s,1)g],

where
ok, Ak
R _ o 8 n
(s7t) s % P
kik kg, Yk
O(s,1) = —% +kky + = —T",
kikn kn, ke
P(s,t) = 2 + kkg P P

Now we take the derivative with respect to s of k2, that
is
kky = kokg, + knkny,.

Substituting the latter in R(s,?), we have R(s,t) =0,
we obtain the Laplacian A of the Hasimoto surface
r =r(s,t) given as in (20). Thus, the proof is completed
.

Remark 4.2.
knQ(s,t) +koP(s,1) = k(K> + %) — K.

Corollary 4.3. Therefore, r is harmonic if and only if
Hypean = 0.

5 Hasimoto surfaces having pointwise
1-Type Gauss Map in >

Let r = r(s,t) be a Hasimoto surface. From (12), (15) and
(16), we write the Laplacian operator of the Gauss map as

K 1 K
_Ns - Nss - _]vtl + _]vh (23)

AN = —
k TS

where
Ny =kT —7sinf3n —tcosf g,
N, =ktT+9Vsinffn+>ScosPg,

Ny = K'T + (k> + 1) cosp — 7'sinB)n
— (K +1*)sinB+1'cosB)n

Ny = (kT+kt, — Sasinf—OdAcosPB) T +
(akt+ P, cos B+ Y sinff + Bycos B)n
+ (Akt — Oysin B — OB, sin f + O cos B)g,

"
where ¥ = kT — 12

@© 2022 NSP
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(23) can be rewritten as

1 1 1

where

Ay = kK (K2 +1%) — ki T+ 3K% Tt — kK" + 2Kk,
Ay = (I — kM — KK+ Kk + 4k T+ 4Kk T
— 4K'K" T+ dktk" — 4k 77 ) sin B +
(K (K 4-27%) + (K" — kt*)?) cos B,
Ay = (T — kM — KK+ kK 0+ 4k T+ 4kK T
— 4K K" T + dktk" — 4K 7% 1) cos B
— (K*(K* +27%) + (K" — kt*)?) sin B.

Suppose that the Hasimoto surface has harmonic
Gauss map. Then, the vector AN given with (24) is zero.
Thus, we have (Ay, Az, Az) =(0,0,0).

Hence, the equation

Ascos B — Azsin B = k* (K 4 27%) + (K" — kt?)?

implies that k = 0. It is a contradiction .

Theorem 5.1. Let r = r(s,¢) be a Hasimoto surface. There
are no Hasimoto surfaces in 3, satisfying the condition
AN = 0.

6 A characterization of involutes of a given
curve in |3

Let ¢ and ¢* be two curves in the Euclidean space [E3.

Let {T,n,g} and {T*,n*,¢*} be Darboux frame of ¢
and ¢* respectively. Then the curve ¢* is called the
involute of the curve @, if the tangent vector of the curve
¢ at the points ¢(s) passes through the tangent vector of
the curve ¢* at the point ¢*(s) and

8R3 (T, T*) =0.

Definition 6.1. Let ¢ be a curve in [E3.

1) If both k and 7T are constant along ¢, then is called
circular helix with respect to Frenet frame.

2) A curve ¢ such that

is called a general helix with respect to Frenet frame.
If k =constant # 0 and 7 = 0, then the curve ¢ is a
circle.

Theorem 6.2. Let the curve ¢* be involute of the curve ¢
and let ¢ be a constant real number. Then

9" (s) = 9(s) + (c=5)T(s)- (25)

Proof. Assume that ¢* is an involute of ¢. Then ¢* can be
parameterized by

9" (s) = ¢(s) + u(s)T(s),

where p(s) is some differentiable function in s.
Differentiating the previous equation with respect to s and
using (2), we obtain

T = (1+u ()T (s) + u(s) (knn + keg)-
Since gg3 (T, T*) = 0. Then, we get
u(s)=c—s.
Thus we get
9" (s) = 9(s)+ (c —5)T(s)-

Theorem 6.3. Let the curve ¢* be involute of the curve ¢,
then

(00 105 05) = (=707 (1) 09

Proof. If we take the derivative (25), we can write
¢ = (c—s)kgn + (c — 5)keg.

95 = —(c—s)°T + A + Aug,

Ogs = T +13m + I3g, 27)

where
Ar = —kn + (c = 8)ky + (¢ = 8)kgty = —ky — (c = 5)A,

Ay = —kg + (¢ — $)ky — (¢ — $)knt, = —kg + (c — )0,
I = 2k* — 3(c — s)kK/,
I = —(c— 8)kky + 1 Ag — 2Kk + (¢ — 5)Kyy — kglrt-
(c— s)trkg, + (c—s)t)kg,
I3 = —(c— $)k*kg — trAy — 2K + (c — $)ky + knt,—
(¢ =8tk — (c = s)t7kn.
Hence, we have
05 NS = (c—5)(knAa —keAD)T — (c = 5)°K°ken (28
+ (¢ —5)*KPkng.
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Lemma 6.4.
kn A1+ kg = —k* + (c — s)kK .

knAz — keAr = K (c —5)T.

If we take the inner product with (28) on both sides of
(27), we have (26)

Corollary 6.5. If the curve ¢ is a general helix, then

8E3 (¢v* A ¢;w ¢v*w) =0.

7 W - curve in E3

The aim of this section is to continue the study of W -
curves. The curve ¢ is called a W - curve, if its curvature
and torsion functions are constant. The simplest examples
of W - curves are circles, hyperbolas and helices as non-
planar W - curves. The characterizations of W - curves
are investigated in [7]. W - curves in Lorentz- Minkowski
space are investigated in [8,9,10,11].

The authors in [12,13] examined the curvatures of
Hasimoto surface according to Bishop frame and give
some characterization of parameter curves of these
surfaces.

In this section, we give characterization of W - curve.
Then the position vector ¢(s) can be written as linear
combinations as follows

¢(s) =x1(s)T +x2(s5)n +x3(5)g (29)
for some differentiable functions x;, x, and x3 of s.
Taking the derivative of (29) with respect to the arc

length parameter and using Serret Frenet formulas which
are given by (4), we get

X} 0 ky kg X1 1
X | =\ —ky 0 —t, x|+{0], @30
X, —kg 1, 0 X3 0
or, equivalently
X' =MX +B,
where
X 0 ky kg 1
X=|x], M=| kg 0 -1, |, B=|0
X3 —kg t, 0O 0
The characteristic polynomial is
det(M — A1) = —A(A* + K> +12),
SO the spectrum of M is
G(M) = {ﬂvl = 0,3,2 = ia),)g = —iw}, where

®=\/k>+12

Each eigenvalue A;, A, and A3 corresponds to an
eigenvector:

1 trky — iok,
Vi=| kg |, Vo= | kekntiot, |,
—ky kg +17
trky + i@k
Vi = | kgky —iot,
kg +17

Form matrices P~! and D

1
—1
=— G
2iw3 (k3 +17)
where
(k2 +1)2iot (K2 411)2i0k, — (k2 +17)2iok,
G=| —keo’ +iwknt, t.@*+ iwkyk, ia)(k§+t,2)
kg®* + ioknt, —t,0% +ioknk, o (kg +17)
00 0
P 'MP=D=|0io 0 |,
00 —iw

where P is the change-of-coordinates matrix (matrix
formed from the eigenvectors) and D is the diagonal
matrix.

We define

then

Y(s) =DY(s)+ P 'B.

The new variables yi(s), y2(s) and y3(s) now are
solutions of the decoupled system

) =5
Yo (s) = iwys + W%Hz) (knty + iwky)
Y5(8) = —i@y3 + s (knty — i0ky).

202 (kZ+17)
Then the solution to the differential equation

Y(s) =DY(s)+P'B

y1(s) = 255+ co '
yz(S) = WM(-(DI&;—Fi’Qﬂ}) +C1€lws

yB(S) == m(fwkg _ lk?’]tr) +Cze*l'ws'

@© 2022 NSP
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Then
l2

x1(s) = s+ coty + (aknty — bwkg) cos ws+
(bknt, 4+ awky) sin ws

x2(s) = I:Difs + cokg — % + (aknkq + bot,) cos ws+
(bknky — aot,)sin ws

x3(s) = ft;)—k}s — coky — Z% +accos ws+
bcsin @s,

where ¢ = k§ +t2,a=ci+crand b =i(c; —cy).

Thus, we can state the following theorem:
Theorem 7.1. Let ¢ : J C R — E3 be a twisted W - curve,
then the position vector ¢ () is obtained with the following
differentiable functions

xi(s) = C’o—is + cotr + (aknt, — bowkg) cos ws+
(bknt, 4+ awky) sin ws

x2(5) = D54 cokg — L+ (aknky + boot,) cos s+
(bknky — aot,)sin ws

tk k
x3(s) = —73s — cokny — & +accos ws+

bcsin @s.

8 Conclusions

In this paper, authors obtained the characterization of
Hasimoto surfaces in Euclidean space E3. Hasimoto
surfaces are investigated by using the Darboux frame and
discuss the geometric properties. The position vector of
W-curve is stated by a linear combination of its Frenet
frame with differentiable functions.
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