689

Characterizations of Hasimoto Surfaces in Euclidean 3-spaces \mathbb{E}^{3}

Bendehiba Senoussi ${ }^{1, *}$ and Alev Kelleci Akbay ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ecole Normale Supérieure, Mostaganem, Algeria
${ }^{2}$ Department of Mathematics, Iskenderun Technical University, Hatay 23100, Turkey

Received: 2 Jun. 2022, Revised: 22 Jul. 2022, Accepted: 5 Aug. 2022
Published online: 1 Sep. 2022

Abstract

The position vector of the surface $r=r(s, t)$ is called Hasimoto surface if the relation $r_{t}=r_{s} \wedge r_{s s}$ hold. In this paper Hasimoto surfaces in Euclidean space \mathbb{E}^{3} will be introduced. Hasimoto surfaces are investigated by using the Darboux frame and discuss the geometric properties. The position vector of W-curve is stated by a linear combination of its Frenet frame with differentiable functions.

Keywords: Hasimoto surface, Darboux frame, W-curve, Euclidean space

1 Introduction

In the theory of curves in Riemannian manifolds, one of the most and to give characterizations of a regular curve.

Let $r=r(s, t)$ be a position vector of a moving curve ϕ on surface M^{2} in \mathbb{E}^{3} such that $r(s, t)$ is a unit speed curve for all t. If the surface M^{2} is a Hasimoto surface, then, the position vector r satisfy the following condition

$$
\begin{equation*}
r_{t}=r_{s} \wedge r_{s s} \tag{1}
\end{equation*}
$$

This equation is called the vortex filament or smoke ring equation.

The geometric properties of Hasimoto surfaces are investigated in detail by [1,2]. In 1972, Hasimoto showed that vortex filament equation is equivalent non-linear Schrodinger equation [3,4].

In 1965, R. Betchov [5] transformed (1) into a coupled system of intrinsic equations for the curvature and torsion with the aid of the Serret-Frenet formula.

2 Preliminaries

Let $\phi: I \rightarrow \mathscr{M}^{2}$ be a regular unit speed curve on the orientiable surface \mathscr{M}^{2}. Let $\{T, N, B\}$ be an orthonormal Frenet frame along a moving curve ϕ in \mathscr{M}^{2} such that $T=\phi^{\prime}$ is the unit vector field tangent to ϕ, N is the unit
vector field in the direction T^{\prime} normal to ϕ (principal normal) and $B=T \wedge N$ (binormal vector). Then we have the following Frenet equations

$$
\left(\begin{array}{l}
T^{\prime} \tag{2}\\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

where the functions k and τ are called the curvature and the torsion of the curve ϕ, respectively. Find the curvature of the curve as follows

$$
k^{2}=g_{\mathbb{E}^{3}}\left(T^{\prime}, T^{\prime}\right)
$$

The planes spanned by $\{T, N\},\{T, B\}$ and $\{N, B\}$ are respectively known as the osculating, the rectifying and the normal plane.

Introduce a new frame, called Darboux frames $\{T, \eta, g\}$ with

$$
\left(\begin{array}{c}
T \tag{3}\\
\eta \\
g
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & \sin \beta \\
0 & -\sin \beta & \cos \beta
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right)
$$

[^0]where $g=\eta \wedge T$ and β is the angle between the vector fields N and η.
The derivative formulas of (3) can be given as follows:
\[

\left($$
\begin{array}{c}
T^{\prime} \tag{4}\\
\eta^{\prime} \\
g^{\prime}
\end{array}
$$\right)=\left($$
\begin{array}{ccc}
0 & k_{\eta} & k_{g} \\
-k_{\eta} & 0 & -t_{r} \\
-k_{g} & t_{r} & 0
\end{array}
$$\right)\left($$
\begin{array}{c}
T \\
\eta \\
g
\end{array}
$$\right)
\]

where k_{g} is the geodesic curvature, k_{η} is the normal curvature, t_{r} is the geodesic torsion of the curve ϕ and ${ }^{\prime}=$ $\frac{d}{d s}$. Here Darboux curvatures are defined by

$$
\left\{\begin{array}{l}
k_{\eta}(s)=k(s) \cos \beta(s) \tag{5}\\
k_{g}(s)=-k(s) \sin \beta(s) \\
t_{r}(s)=-\tau(s)-\beta^{\prime}(s)
\end{array}\right.
$$

Theorem 2.1.[14] Suppose $r=r(s, t)$ is a NLS surface such that $r=r(s, t)$ is a unit speed curve with normal vector field for all t. Then the following is satisfied:

$$
\left(\begin{array}{l}
T_{t} \tag{6}\\
\eta_{t} \\
g_{t}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \alpha & \lambda \\
-\alpha & 0 & -\gamma \\
-\lambda & \gamma & 0
\end{array}\right)\left(\begin{array}{l}
T \\
\eta \\
g
\end{array}\right)
$$

where α, λ and γ are smooth functions given by

$$
\left\{\begin{array}{l}
\alpha=k_{g}^{\prime}-k_{\eta} t_{r} \tag{7}\\
\lambda=-k_{\eta}^{\prime}-k_{g} t_{r} \\
k^{2} \gamma=\left(k k^{\prime}\right)^{\prime}-\alpha^{2}-\lambda^{2}+\delta,
\end{array}\right.
$$

where $\delta=k_{g_{t}} k_{\eta}-k_{\eta_{t}} k_{g}$.
Lemma 2.2. From (5), we obtain

$$
\begin{gather*}
\delta=-\beta_{t} k^{2}, \tag{8}\\
\alpha^{2}+\lambda^{2}=k^{2} \tau^{2}+k^{\prime^{2}}, \tag{9}\\
\alpha k_{g}-\lambda k_{\eta}=k k^{\prime} . \tag{10}
\end{gather*}
$$

Using compatibility conditions $T_{s t}=T_{t s}, \eta_{s t}=\eta_{t s}$ and $g_{s t}=g_{t s}$, we get

$$
\left(\begin{array}{l}
\alpha^{\prime} \tag{11}\\
\lambda^{\prime} \\
\gamma^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -t_{r} & k_{g} \\
t_{r} & 0 & -k_{\eta} \\
-k_{g} & k_{\eta} & 0
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\lambda \\
\gamma
\end{array}\right)+\left(\begin{array}{c}
k_{\eta_{t}} \\
k_{g_{t}} \\
t_{r_{t}}
\end{array}\right)
$$

The mean curvature $H_{\text {mean }}$ and the Gaussian curvature K_{G} are, respectively, defined by

$$
H_{\text {mean }}=\frac{E N+G L-2 F M}{2\left(E G-F^{2}\right)}
$$

and

$$
K_{G}=\frac{L N-M^{2}}{E G-F^{2}}
$$

The Laplace-Beltrami operator of a smooth function $\varphi: M^{2} \rightarrow \mathbb{R},(s, t) \mapsto \varphi(s, t)$ with respect to the first
fundamental form of the surface M^{2} is the operator Δ, defined as [6]

$$
\begin{equation*}
\Delta \varphi=\frac{-1}{W}\left[\left(\frac{G \varphi_{s}-F \varphi_{t}}{W}\right)_{s}+\left(\frac{E \varphi_{t}-F \varphi_{s}}{W}\right)_{t}\right] \tag{12}
\end{equation*}
$$

where $\varphi=\varphi(s, t)$ and $W=\sqrt{E G-F^{2}}$.

3 Hasimoto surface

In this section, Hasimoto surface are investigated by using the Darboux frame and discuss the geometric properties of Hasimoto surface.
Lemma 3.1.[1]

$$
\begin{equation*}
\beta_{t}=\frac{k^{\prime \prime}}{k}-\tau^{2}-\gamma \tag{13}
\end{equation*}
$$

where β is the angle between the vector fields N and η.
Moreover, the evolution equations for curvature and torsion are

$$
\begin{equation*}
k_{t}=k \tau^{\prime}+2 \tau k^{\prime}, \quad \tau_{t}=-\left(\frac{k^{\prime \prime}}{k}\right)^{\prime}+2 \tau \tau^{\prime}-k k^{\prime} \tag{14}
\end{equation*}
$$

The coefficients of the first fundamental form of the surface $r=r(s, t)$ are

$$
\begin{equation*}
E=1, F=0, G=k^{2} \tag{15}
\end{equation*}
$$

The unit normal vector of the Hasimoto surface is given by

$$
\begin{equation*}
\mathbf{N}=-\frac{k_{g}}{k} g-\frac{k_{\eta}}{k} \eta \tag{16}
\end{equation*}
$$

Then the coefficients of the second fundamental form of the surface $r=r(s, t)$ are

$$
L=-\frac{k_{\eta}^{2}+k_{g}^{2}}{\sqrt{k_{\eta}^{2}+k_{g}^{2}}}=-k
$$

$$
M=\frac{\left(k_{\eta}^{2}+k_{g}^{2}\right) t_{r}+k_{g} k_{\eta}^{\prime}-k_{\eta} k_{g}^{\prime}}{\sqrt{k_{\eta}^{2}+k_{g}^{2}}}
$$

$$
=\frac{\beta^{\prime} k^{2}+t_{r} k^{2}}{k}=-\tau k
$$

$$
\begin{aligned}
N & =\frac{\left(k_{g} k_{g}^{\prime}+k_{\eta} k_{\eta}^{\prime}\right)^{\prime}-\left(t_{r} k_{g}+k_{\eta}^{\prime}\right)^{2}-\left(t_{r} k_{\eta}-k_{g}^{\prime}\right)^{2}}{\sqrt{k_{\eta}^{2}+k_{g}^{2}}} \\
& =-k \tau^{2}+k^{\prime \prime},
\end{aligned}
$$

where $^{\prime}=\frac{\partial}{\partial s}$.
Thus, one can find that the mean curvature $H_{\text {mean }}$ and the curvature K_{G} of $r=r(s, t)$ as:
Theorem 3.2.[1] Let $r=r(s, t)$ be a Hasimoto surface, then the Gaussian curvature K_{G} and mean curvature $H_{\text {mean }}$ are given by

$$
\begin{gather*}
K_{G}=-\frac{k^{\prime \prime}}{k} \tag{17}\\
H_{\text {mean }}=\frac{k^{\prime \prime}-k\left(k^{2}+\tau^{2}\right)}{2 k^{2}} \tag{18}
\end{gather*}
$$

respectively, where $k \neq 0$.
Corollary 3.3. Let $r=r(s, t)$ be a Hasimoto surface. There are no developable and minimal Hasimoto surface in \mathbb{E}^{3}.

Proof.

If $r=r(s, t)$ is a developable and minimal Hasimoto surface, then $K_{G}=0$ and $H_{\text {mean }}=0$. From (17) and (18) we have that $k=0$, which is a contradiction. Hence there are no developable and minimal Hasimoto surface in \mathbb{E}^{3}.

$4 I$ - Harmonic Hasimoto surfaces in \mathbb{E}^{3}

Theorem 4.1. The Laplacian Δ of the Hasimoto surface $r=r(s, t)$ can be expressed as

$$
\begin{equation*}
\Delta r(s, t)=\frac{-1}{k}[Q(s, t) \eta+P(s, t) g] \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
Q(s, t)=-\frac{k_{t} k_{g}}{k^{2}}+k k_{\eta}+\frac{k_{g_{t}}}{k}-\frac{\gamma k_{\eta}}{k} \\
P(s, t)=\frac{k_{t} k_{\eta}}{k^{2}}+k k_{g}-\frac{k_{\eta_{t}}}{k}-\frac{\gamma k_{g}}{k}
\end{gathered}
$$

$$
k_{g_{t}}=\frac{\partial k_{g}}{\partial t}, k_{\eta_{t}}=\frac{\partial k_{\eta}}{\partial t}
$$

Proof. By (12), the Laplacian operator Δ of r can be expressed as

$$
\begin{equation*}
\Delta r(s, t)=\frac{-1}{k}\left[\frac{\partial}{\partial s}\left(\frac{k^{2} r_{s}}{k}\right)+\frac{\partial}{\partial t}\left(\frac{r_{t}}{k}\right)\right] \tag{20}
\end{equation*}
$$

From (1), we have

$$
\begin{equation*}
r_{s}=T, r_{s s}=k_{\eta} \eta+k_{g} g, r_{t}=k_{g} \eta-k_{\eta} g \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
r_{t t}=\left(-\alpha k_{g}+\lambda k_{\eta}\right) T+\left(k_{g_{t}}-\gamma k_{\eta}\right) \eta-\left(k_{\eta_{t}}+\gamma k_{g}\right) g . \tag{22}
\end{equation*}
$$

Then using (21) and (22), we have

$$
\Delta r(s, t)=\frac{-1}{k}[R(s, t) T+Q(s, t) \eta+P(s, t) g]
$$

where
$R(s, t)=k_{s}-\frac{\alpha k_{g}}{k}+\frac{\lambda k_{\eta}}{k}$,
$Q(s, t)=-\frac{k_{t} k_{g}}{k^{2}}+k k_{\eta}+\frac{k_{g_{t}}}{k}-\frac{\gamma k_{\eta}}{k}$,
$P(s, t)=\frac{k_{t} k_{\eta}}{k^{2}}+k k_{g}-\frac{k_{\eta_{t}}}{k}-\frac{\gamma k_{g}}{k}$.
Now we take the derivative with respect to s of k^{2}, that is

$$
k k_{s}=k_{g} k_{g_{s}}+k_{\eta} k_{\eta_{s}}
$$

Substituting the latter in $R(s, t)$, we have $R(s, t)=0$, we obtain the Laplacian Δ of the Hasimoto surface $r=r(s, t)$ given as in (20). Thus, the proof is completed

Remark 4.2.

$$
k_{\eta} Q(s, t)+k_{g} P(s, t)=k\left(k^{2}+\tau^{2}\right)-k^{\prime \prime} .
$$

Corollary 4.3. Therefore, r is harmonic if and only if $H_{\text {mean }}=0$.

5 Hasimoto surfaces having pointwise 1-Type Gauss Map in \mathbb{E}^{3}

Let $r=r(s, t)$ be a Hasimoto surface. From (12), (15) and (16), we write the Laplacian operator of the Gauss map as

$$
\begin{equation*}
\Delta N=-\frac{k^{\prime}}{k} N_{s}-N_{s s}-\frac{1}{k^{2}} N_{t t}+\frac{k^{\prime}}{k^{3}} N_{t} \tag{23}
\end{equation*}
$$

where

$$
\begin{gathered}
N_{s}=k T-\tau \sin \beta \eta-\tau \cos \beta g \\
N_{t}=k \tau T+\vartheta \sin \beta \eta+\vartheta \cos \beta g
\end{gathered}
$$

$$
\begin{aligned}
N_{s s} & =k^{\prime} T+\left(\left(k^{2}+\tau^{2}\right) \cos \beta-\tau^{\prime} \sin \beta\right) \eta \\
& -\left(\left(k^{2}+\tau^{2}\right) \sin \beta+\tau^{\prime} \cos \beta\right) \eta
\end{aligned}
$$

$$
\begin{aligned}
N_{t t}= & \left(k_{t} \tau+k \tau_{t}-\vartheta \alpha \sin \beta-\vartheta \lambda \cos \beta\right) T+ \\
& \left(\alpha k \tau+\vartheta \beta_{t} \cos \beta+\vartheta_{t} \sin \beta+\vartheta \gamma \cos \beta\right) \eta \\
+ & \left(\lambda k \tau-\vartheta \gamma \sin \beta-\vartheta \beta_{t} \sin \beta+\vartheta_{t} \cos \beta\right) g
\end{aligned}
$$

where $\vartheta=\frac{k^{\prime \prime}}{k}-\tau^{2}$.
(23) can be rewritten as

$$
\begin{equation*}
\Delta N=-\frac{1}{k^{3}} \Lambda_{1} T-\frac{1}{k^{4}} \Lambda_{2} \eta-\frac{1}{k^{4}} \Lambda_{3} g \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
\Lambda_{1}= & k k^{\prime}\left(k^{2}+\tau^{2}\right)-k k^{\prime} \tau+3 k^{2} \tau \tau^{\prime}-k k^{\prime \prime \prime}+2 k^{\prime} k^{\prime \prime}, \\
\Lambda_{2}= & \left(k^{2} \tau^{\prime \prime \prime}-k^{4} \tau^{\prime}-k^{\prime} k^{\prime \prime}+k k^{\prime} \tau^{2}+4 k k^{\prime \prime} \tau^{\prime}+4 k k^{\prime} \tau^{\prime \prime}\right. \\
- & \left.4 k^{\prime} k^{\prime \prime} \tau+4 k \tau k^{\prime \prime \prime}-4 k^{2} \tau^{2} \tau^{\prime}\right) \sin \beta+ \\
& \left(k^{4}\left(k^{2}+2 \tau^{2}\right)+\left(k^{\prime \prime}-k \tau^{2}\right)^{2}\right) \cos \beta \\
\Lambda_{3}= & \left(k^{2} \tau^{\prime \prime \prime}-k^{4} \tau^{\prime}-k^{\prime} k^{\prime \prime}+k k^{\prime} \tau^{2}+4 k k^{\prime \prime} \tau^{\prime}+4 k k^{\prime} \tau^{\prime \prime}\right. \\
- & \left.4 k^{\prime} k^{\prime \prime} \tau+4 k \tau k^{\prime \prime \prime}-4 k^{2} \tau^{2} \tau^{\prime}\right) \cos \beta \\
- & \left(k^{4}\left(k^{2}+2 \tau^{2}\right)+\left(k^{\prime \prime}-k \tau^{2}\right)^{2}\right) \sin \beta
\end{aligned}
$$

Suppose that the Hasimoto surface has harmonic Gauss map. Then, the vector ΔN given with (24) is zero. Thus, we have $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)=(0,0,0)$.

Hence, the equation

$$
\Lambda_{2} \cos \beta-\Lambda_{3} \sin \beta=k^{4}\left(k^{2}+2 \tau^{2}\right)+\left(k^{\prime \prime}-k \tau^{2}\right)^{2}
$$

implies that $k=0$. It is a contradiction \square.
Theorem 5.1. Let $r=r(s, t)$ be a Hasimoto surface. There are no Hasimoto surfaces in \mathbb{E}^{3}, satisfying the condition $\Delta N=0$.

6 A characterization of involutes of a given curve in \mathbb{E}^{3}

Let ϕ and ϕ^{*} be two curves in the Euclidean space \mathbb{E}^{3}.
Let $\{T, \eta, g\}$ and $\left\{T^{*}, \eta^{*}, g^{*}\right\}$ be Darboux frame of ϕ and ϕ^{*} respectively. Then the curve ϕ^{*} is called the involute of the curve ϕ, if the tangent vector of the curve ϕ at the points $\phi(s)$ passes through the tangent vector of the curve ϕ^{*} at the point $\phi^{*}(s)$ and

$$
g_{\mathbb{E}^{3}}\left(T, T^{*}\right)=0 .
$$

Definition 6.1. Let ϕ be a curve in \mathbb{E}^{3}.

1) If both k and τ are constant along ϕ, then is called circular helix with respect to Frenet frame.
2) A curve ϕ such that

$$
\frac{\tau}{k}=a, \quad a \in \mathbb{R}
$$

is called a general helix with respect to Frenet frame.
If $k=$ constant $\neq 0$ and $\tau=0$, then the curve ϕ is a circle.

Theorem 6.2. Let the curve ϕ^{*} be involute of the curve ϕ and let c be a constant real number. Then

$$
\begin{equation*}
\phi^{*}(s)=\phi(s)+(c-s) T(s) . \tag{25}
\end{equation*}
$$

Proof. Assume that ϕ^{*} is an involute of ϕ. Then ϕ^{*} can be parameterized by

$$
\phi^{*}(s)=\phi(s)+\mu(s) T(s),
$$

where $\mu(s)$ is some differentiable function in s. Differentiating the previous equation with respect to s and using (2), we obtain

$$
T^{*}=\left(1+\mu^{\prime}(s)\right) T(s)+\mu(s)\left(k_{\eta} \eta+k_{g} g\right)
$$

Since $g_{\mathbb{E}^{3}}\left(T, T^{*}\right)=0$. Then, we get

$$
\mu(s)=c-s
$$

Thus we get

$$
\phi^{*}(s)=\phi(s)+(c-s) T(s) .
$$

Theorem 6.3. Let the curve ϕ^{*} be involute of the curve ϕ, then

$$
\begin{equation*}
g_{\mathbb{E}^{3}}\left(\phi_{s}^{*} \wedge \phi_{s s}^{*}, \phi_{s s s}^{*}\right)=-(c-s)^{3} k^{3} \tau^{2}\left(\frac{k}{\tau}\right)^{\prime} \tag{26}
\end{equation*}
$$

Proof. If we take the derivative (25), we can write

$$
\begin{gather*}
\phi_{s}^{*}=(c-s) k_{\eta} \eta+(c-s) k_{g} g . \\
\phi_{s s}^{*}=-(c-s) k^{2} T+\Lambda_{1} \eta+\Lambda_{2} g, \\
\phi_{s s s}^{*}=\Gamma_{1} T+\Gamma_{2} \eta+\Gamma_{3} g, \tag{27}
\end{gather*}
$$

where

$$
\begin{gathered}
\Lambda_{1}=-k_{\eta}+(c-s) k_{\eta}^{\prime}+(c-s) k_{g} t_{r}=-k_{\eta}-(c-s) \lambda, \\
\Lambda_{2}=-k_{g}+(c-s) k_{g}^{\prime}-(c-s) k_{\eta} t_{r}=-k_{g}+(c-s) \alpha \\
\Gamma_{1}=2 k^{2}-3(c-s) k k^{\prime} \\
\Gamma_{2}=-(c-s) k^{2} k_{\eta}+t_{r} \Lambda_{2}-2 k_{\eta}^{\prime}+(c-s) k_{\eta}^{\prime \prime}-k_{g} t_{r}+ \\
(c-s) t_{r} k_{g}^{\prime}+(c-s) t_{r}^{\prime} k_{g} \\
\Gamma_{3}=-(c-s) k^{2} k_{g}-t_{r} \Lambda_{1}-2 k_{g}^{\prime}+(c-s) k_{g}^{\prime \prime}+k_{\eta} t_{r}- \\
(c-s) t_{r} k_{\eta}^{\prime}-(c-s) t_{r}^{\prime} k_{\eta} .
\end{gathered}
$$

Hence, we have

$$
\begin{align*}
\phi_{s}^{*} \wedge \phi_{s s}^{*} & =(c-s)\left(k_{\eta} \Lambda_{2}-k_{g} \Lambda_{1}\right) T-(c-s)^{2} k^{2} k_{g} \eta \tag{28}\\
& +(c-s)^{2} k^{2} k_{\eta} g .
\end{align*}
$$

Lemma 6.4.

$$
\begin{gathered}
k_{\eta} \Lambda_{1}+k_{g} \Lambda_{2}=-k^{2}+(c-s) k k^{\prime} \\
k_{\eta} \Lambda_{2}-k_{g} \Lambda_{1}=k^{2}(c-s) \tau
\end{gathered}
$$

If we take the inner product with (28) on both sides of (27), we have (26)

Corollary 6.5. If the curve ϕ is a general helix, then

$$
g_{\mathbb{E}^{3}}\left(\phi_{s}^{*} \wedge \phi_{s s}^{*}, \phi_{s s s}^{*}\right)=0 .
$$

$7 W$ - curve in \mathbb{E}^{3}

The aim of this section is to continue the study of W curves. The curve ϕ is called a W - curve, if its curvature and torsion functions are constant. The simplest examples of W - curves are circles, hyperbolas and helices as nonplanar W - curves. The characterizations of W - curves are investigated in [7]. W - curves in Lorentz- Minkowski space are investigated in $[8,9,10,11]$.

The authors in $[12,13]$ examined the curvatures of Hasimoto surface according to Bishop frame and give some characterization of parameter curves of these surfaces.
In this section, we give characterization of W - curve. Then the position vector $\phi(s)$ can be written as linear combinations as follows

$$
\begin{equation*}
\phi(s)=x_{1}(s) T+x_{2}(s) \eta+x_{3}(s) g \tag{29}
\end{equation*}
$$

for some differentiable functions x_{1}, x_{2} and x_{3} of s.
Taking the derivative of (29) with respect to the arc length parameter and using Serret Frenet formulas which are given by (4), we get

$$
\left(\begin{array}{l}
x_{1}^{\prime} \tag{30}\\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{\eta} & k_{g} \\
-k_{\eta} & 0 & -t_{r} \\
-k_{g} & t_{r} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),
$$

or, equivalently

$$
X^{\prime}=M X+B,
$$

where

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad M=\left(\begin{array}{ccc}
0 & k_{\eta} & k_{g} \\
-k_{\eta} & 0 & -t_{r} \\
-k_{g} & t_{r} & 0
\end{array}\right), \quad B=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

The characteristic polynomial is

$$
\operatorname{det}(M-\lambda I)=-\lambda\left(\lambda^{2}+k^{2}+t_{r}^{2}\right),
$$

so the spectrum of M is $\sigma(M)=\left\{\lambda_{1}=0, \lambda_{2}=i \omega, \lambda_{3}=-i \omega\right\}$, where
$\omega=\sqrt{k^{2}+t_{r}^{2}}$.
Each eigenvalue λ_{1}, λ_{2} and λ_{3} corresponds to an eigenvector:

$$
\begin{gathered}
V_{1}=\left(\begin{array}{c}
t_{r} \\
k_{g} \\
-k_{\eta}
\end{array}\right), V_{2}=\left(\begin{array}{c}
t_{r} k_{\eta}-i \omega k_{g} \\
k_{g} k_{\eta}+i \omega t_{r} \\
k_{g}^{2}+t_{r}^{2}
\end{array}\right), \\
V_{3}=\left(\begin{array}{c}
t_{r} k_{\eta}+i \omega k_{g} \\
k_{g} k_{\eta}-i \omega t_{r} \\
k_{g}^{2}+t_{r}^{2}
\end{array}\right) .
\end{gathered}
$$

Form matrices P^{-1} and D

$$
P^{-1}=\frac{1}{2 i \omega^{3}\left(k_{g}^{2}+t_{r}^{2}\right)} G
$$

where

$$
\begin{gathered}
G=\left(\begin{array}{ccc}
\left(k_{g}^{2}+t_{r}^{2}\right) 2 i \omega t_{r} & \left(k_{g}^{2}+t_{r}^{2}\right) 2 i \omega k_{g} & -\left(k_{g}^{2}+t_{r}^{2}\right) 2 i \omega k_{\eta} \\
-k_{g} \omega^{2}+i \omega k_{\eta} t_{r} & t_{r} \omega^{2}+i \omega k_{\eta} k_{g} & i \omega\left(k_{g}^{2}+t_{r}^{2}\right) \\
k_{g} \omega^{2}+i \omega k_{\eta} t_{r} & -t_{r} \omega^{2}+i \omega k_{\eta} k_{g} & i \omega\left(k_{g}^{2}+t_{r}^{2}\right)
\end{array}\right) \\
P^{-1} M P=D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & i \omega & 0 \\
0 & 0 & -i \omega
\end{array}\right),
\end{gathered}
$$

where P is the change-of-coordinates matrix (matrix formed from the eigenvectors) and D is the diagonal matrix.

We define

$$
Y(s)=P^{-1} X(s)=\left(\begin{array}{l}
y_{1}(s) \\
y_{2}(s) \\
y_{3}(s)
\end{array}\right)
$$

then

$$
Y(s)^{\prime}=D Y(s)+P^{-1} B
$$

The new variables $y_{1}(s), y_{2}(s)$ and $y_{3}(s)$ now are solutions of the decoupled system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(s)=\frac{t_{r}}{\omega^{2}} \\
y_{2}^{\prime}(s)=i \omega y_{2}+\frac{1}{2 \omega^{2}\left(k_{g}^{2}+t_{r}^{2}\right)}\left(k_{\eta} t_{r}+i \omega k_{g}\right) \\
y_{3}^{\prime}(s)=-i \omega y_{3}+\frac{1}{2 \omega^{2}\left(k_{g}^{2}+t_{r}^{2}\right)}\left(k_{\eta} t_{r}-i \omega k_{g}\right) .
\end{array}\right.
$$

Then the solution to the differential equation

$$
Y(s)^{\prime}=D Y(s)+P^{-1} B
$$

is

$$
\left\{\begin{array}{l}
y_{1}(s)=\frac{t_{r}}{\omega^{2}} s+c_{0} \\
y_{2}(s)=\frac{1}{2 \omega^{3}\left(k_{g}^{2}+t_{r}^{2}\right)}\left(-\omega k_{g}+i k_{\eta} t_{r}\right)+c_{1} e^{i \omega s} \\
y_{3}(s)=\frac{1}{2 \omega^{3}\left(k_{g}^{2}+t_{r}^{2}\right)}\left(-\omega k_{g}-i k_{\eta} t_{r}\right)+c_{2} e^{-i \omega s} .
\end{array}\right.
$$

Then

$$
\left\{\begin{aligned}
x_{1}(s)= & \frac{t_{r}^{2}}{\omega^{2}} s+c_{0} t_{r}+\left(a k_{\eta} t_{r}-b \omega k_{g}\right) \cos \omega s+ \\
& \left(b k_{\eta} t_{r}+a \omega k_{g}\right) \sin \omega s \\
x_{2}(s)= & \frac{t_{r} k_{g}}{\omega^{2}} s+c_{0} k_{g}-\frac{k_{\eta}}{\omega^{2}}+\left(a k_{\eta} k_{g}+b \omega t_{r}\right) \cos \omega s+ \\
& \left(b k_{\eta} k_{g}-a \omega t_{r}\right) \sin \omega s \\
x_{3}(s)= & -\frac{t_{r} k_{\eta}}{\omega^{2}} s-c_{0} k_{\eta}-\frac{k_{g}}{\omega^{2}}+a c \cos \omega s+ \\
& b c \sin \omega s
\end{aligned}\right.
$$

$$
\text { where } c=k_{g}^{2}+t_{r}^{2}, a=c_{1}+c_{2} \text { and } b=i\left(c_{1}-c_{2}\right)
$$

Thus, we can state the following theorem:
Theorem 7.1. Let $\phi: J \subset \mathbb{R} \rightarrow \mathbb{E}^{3}$ be a twisted W - curve, then the position vector $\phi(s)$ is obtained with the following differentiable functions

$$
\left\{\begin{aligned}
x_{1}(s)= & \frac{t_{r}^{2}}{\omega^{2}} s+c_{0} t_{r}+\left(a k_{\eta} t_{r}-b \omega k_{g}\right) \cos \omega s+ \\
& \left(b k_{\eta} t_{r}+a \omega k_{g}\right) \sin \omega s \\
x_{2}(s)= & \frac{t_{r} k_{g}}{\omega^{2}} s+c_{0} k_{g}-\frac{k_{\eta}}{\omega^{2}}+\left(a k_{\eta} k_{g}+b \omega t_{r}\right) \cos \omega s+ \\
& \left(b k_{\eta} k_{g}-a \omega t_{r}\right) \sin \omega s \\
x_{3}(s)= & -\frac{t_{r} k_{\eta}}{\omega^{2}} s-c_{0} k_{\eta}-\frac{k_{g}}{\omega^{2}}+a c \cos \omega s+ \\
& b c \sin \omega s .
\end{aligned}\right.
$$

8 Conclusions

In this paper, authors obtained the characterization of Hasimoto surfaces in Euclidean space \mathbb{E}^{3}. Hasimoto surfaces are investigated by using the Darboux frame and discuss the geometric properties. The position vector of W-curve is stated by a linear combination of its Frenet frame with differentiable functions.

Acknowledgement

The authors are thankful to the referees for their careful reading of the manuscript and insightful comments.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] N. H. Abdel-All, R. A. Hussien and T. Youssef, Hasimoto surfaces, Life Science Journal., 556-560 (2012).
[2] C. Rogers and W.K. Schief, Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory. Cambridge University Press, Cambridge, (2002).
[3] H. Hasimoto, Motion of a vortex filament and its relation to elastica, Journal of the Physical Society of Japan., 31, 293294 (1971).
[4] H. Hasimoto, A soliton on a vortex filament, Journal of Fluid Mechanics., 51 (3), 477-485 (1972).
[5] R. Betchov, On the curvature and torsion of an isolated vortex filament, J . Fluid Mech., 22, 471-479 (1965).
[6] M. Bekkar and B. Senoussi, Factorable surfaces in the threedimensional Euclidean and Lorentzian spaces satisfying $\Delta r_{i}=\lambda_{i} r_{i}$, J. Geom., 96, 17-29 (2012).
[7] B. Y. Chen, D.S. Kim, Y-H. Kim, New characterization of W-curves, Publ. Math. Debrecen., 69, No.4, 457-472 (2006).
[8] K. Ilarslan and Ö. Boyacoig̃lu, Position vectors of a spacelike W -curve in Minkowski space \mathbb{E}_{1}^{3}, Bull. Korean Math. Soc., 44, 429-438 (2007).
[9] E. Öztürk and Y. Yayli, W - curves in Lorentz-Minkowski space, Mathematical Sciences and Applications E-Notes., 5, No.2, 76-88 (2017).
[10] M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski spacetime, Novi. Sad. J. Math., 32, 55-65 (2002).
[11] A. Yavuz and M. Erdog̃du, A different approach by system of differential equations for the characterization position vector of spacelike curves, Punjab Univ. J. Math., 53 (4), 231245 (2021).
[12] A. Kelleci, M. Bektaş and M. Ergüt, The Hasimoto surface according to bishop frame, Adiyaman University Journal of Science., 9, 13-22 (2019) .
[13] K. Eren and A. Kelleci, On the harmonic evolute surfaces of Hasimoto surfaces, ADYU J SCI., 11(1), 87-100 (2021).
[14] M. Erdog̃du and A. Yavuz, Differential geometric aspects of nonlinear Schrödinger equation, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 510- 521 (2021).

Bendehiba Senoussi is a Professor in the Department of Mathematics at ENS (Ecole Normale Supérieure) Mostaganem, Algeria and member in the Laboratory of Mathematical Analysis and Applications (LMAA). His research areas include Differential Geometry and Partial Differential Equations.

Alev Kelleci Akbay was born in Hatay, Turkey, in 1989. She is an associate Professor at Iskenderun Technical University. She received her BSc and MSc, PhD in Ege University, in 2010 and Firat University, in 2014, 2018, respectively. Her research is focused largely on Differential Geometry and also Mathematical Physics.

[^0]: * Corresponding author e-mail: se2014bendhiba@gmail.com

