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Abstract: This paper is firstly devoted to the derivation of a new mathematical framework of the thermostatted kinetic theory for active

particles with continuous activity variable. Specifically the thermostat operator is modified in order to take into account the role of the

nonconservative interactions occuring among the particles of a complex biological system. The time evolution of the density of the

system and of the linear-momentum are afterwards derived by employing the method of separation of variables. The new framework

opens to further research perspectives and applications from the theoretical and modeling viewpoints.
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1 Introduction

The aim of the applied mathematics is the proposition of
theoretical tools coming from mathematics for the
modeling and simulation of systems of the applied
sciences. In particular an important research field of the
applied mathematics is the modeling and the
subsequently analysis and simulation of complex systems
[1]. A complex system is usually composed by a large
number of particles or elements, called active particles,
which are able to carry out a specific job (function). The
active particles are able to interact each others and with
the outer environment and the result of the interactions is
the emerging of a collective behaviour (emerging
phenomena) which cannot be explained as a result of the
single-particle strategies [2,3].
Scholars of the applied sciences have been attracted by
the modeling of complex living systems and have been
involved in the development of new mathematical
theories [4,5,6,7] and models [8,9,10,11]. Different
mathematical frameworks have been proposed and
employed in the attempt of understanding the complex
mechanics of the living systems [12,13,14]. Differently
from the inner matter, a living system is composed of

particles which are also able to proliferate and mutate; in
particular the modeling and analysis of complex
biological systems are the target of the present paper.
Recently, a new mathematical theory has been proposed
for the modeling of complex biological systems, called
the thermostatted kinetic theory for active particles [15].
According to this theory, the system is modeled by
introducing a distribution function which models the time
evolution of the system; the microscopic state of the
particles is composed by the space, velocity and the
activity variables. The activity variable models the role of
the particles in the system and this internal variable can
attain discrete or continuous values. The thermostatted
kinetic theory for active particles is considered as a
generalized kinetic theory with respect to the classical
kinetic theory [16] and other thermostatted kinetic
frameworks proposed in the pertinent literature, see [17,
18].
This paper is firstly devoted to the derivation of a new
mathematical framework of the thermostatted kinetic
theory for active particles. In particular in a complex
biological system the role of the nonconservative
interactions needs to be taken into account; a particle in a
biological system can proliferate (human cells) or mutate
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[19,20,21,22]. From the mathematical point of view,
these events have been already modeled in the
generalized thermostatted kinetic theory of the active
particles by introducing two specific functional operators
[23,24,25]; however the novelty of this paper is the
derivation of a new termostat operator which includes the
conservative and nonconservative interaction tems for
preventing the uncontrolled energy of the system (the
activation energy). Specifically the thermostat operator is
modified in order to take into account the role of the
nonconservative interactions occuring among the particles
of a complex biological system. The time evolution of the
macroscopic quantities such as the density of the system
and the linear-momentum, are investigated and the related
evolution equations are derived.
The present paper is organized as follows: After this brief
introduction, the new mathematical framework of the
thermostatted kinetic theory for active particles is derived
in Section 2; the new thermostat term is computed and the
main assumptions are summarized within the section.
Section 3 deals with the derivation of the evolution
equations for the density and the linear-momentum; in
particular the derivation of the macroscopic equations is
based on the factorization assumption of the distribution
function (separation of variables method). The Section 4
contains conclusions and discussions on future research
perspectives and possible applications.

2 The nonconservative-thermostat kinetic

theory framework

This section is devoted to the derivation of a new
mathematical framework of the thermostatted kinetic
theory. Specifically the role of nonconservative
interactions (proliferation and destruction of active
particles) is introduced and a new thermostat operator is
proposed which takes into account the new term.
According to the thermostatted kinetic theory [26], the
time evolution of the system is modeled by introducing a
distribution fonction f defined on the microscopic state of
the particles. In particular

f = f (t,u) : [0,+∞[×Du → R
+
,

where Du denotes the domain of the activity variable u

introduced to model the strategy of the particles. Let F be
a constant external force acting on the system, the
primitive thermostatted framework writes:



















∂t f (t,u)+ ∂u ((F − uαF [ f ](t)) f (t,u)) =

= J[ f ](t,u)+P[ f ](t,u), u ∈ Du

f (t,u) = 0, u ∈ ∂Du,

(1)

where:
• αF [ f ](t) denotes the primitive thermostat operator which

needs to be derived with respect to the selected contraint;
• J[ f ](t,u) denotes the following conservative interaction
operator:

J[ f ](t,u) = G[ f ](t,u)−L[ f ](t,u)

=

∫

D2
u

η(u∗,u
∗)A (u,u∗,u

∗) f (t,u∗) f (t,u∗)du∗ du∗

− f (t,u)

∫

Du

η(u,u∗) f (t,u∗)du∗, (2)

where η(u∗,u
∗) represents the conservative interaction

rate between the particles u∗ and u∗, and A (u,u∗,u
∗)

denotes the probability function that the particle u∗
acquires the state u after the interaction with the particle
u∗;
• P[ f ](t,u) denotes the following nonconservative
interaction operator:

P[ f ](t,u) = f (t,u)

∫

Du

η(u,u∗)µ(u,u∗) f (t,u∗)du∗, (3)

where µ(u,u∗) denotes the nonconservative interaction
rate between the particles u and u∗. This operator models
the proliferative (µ > 0) and the destructive (µ < 0)
events.

The pth-order moment of the distribution function f is
defined as follows:

Ep[ f ](t) =

∫

Du

up f (t,u)du, p ∈ N.

The thermostat operator αF is derived by imposing a
specific constraint, see [27] for a general understanding of
the thermostats in nonequilibrium statistical mechanics.
Specifically in this article the thermostatted operator αF is
obtained by requiring the conservation of the 2nd-order
moment E2[ f ](t) (the activity energy).
By assuming that E2[ f ](t) = 1 for all t > 0, we have:

d

dt
E2[ f ](t) = 0,

and then

d

dt
E2[ f ](t) =

∫

Du

u2 ∂t f (t,u)du = 0. (4)

By using the equations (1) and (4) we have:

−

∫

Du

u2 ∂u ((F −αF u) f (t,u)) du+

∫

Du

u2 J[ f ](t,u)du

+

∫

Du

u2 P[ f ](t,u)du = 0,

(5)

and by observing that

∫

Du

u2 J[ f ](t,u)du = 0,
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one has:

∫

Du

u2 ∂u ((F −αF u) f (t,u)) du =

=−2

∫

Du

u (F −αF u) f (t,u)du

=−2FE1[ f ](t)+ 2αF .

(6)

By using the (5) and the (6), the thermostat term reads:

αF [ f ,P](t) = F E1[ f ](t)+
1

2

∫

Du

u2 P[ f ](t,u)du. (7)

By using the (7), the nonconservative-thermostat

framework of the thermostatted kinetic theory for active
particles reads:

∂t f (t,u)

+ ∂u












F −







2FE1[ f ]+

∫

Du

u2 P[ f ]du

2






u






f (t,u)







= J[ f ](t,u)+P[ f ](t,u).
(8)

The new framework (8) constitutes a new paradigm
for the derivation of specific models for the modeling of
complex biologcal systems once the conservative
interaction rate η , the nonconservative interaction rate µ
and the transition probability function A are selected. In
particular the following main assumptions are required
for the function A :

A1:

∫

Du

A (u,u∗,u
∗)du = 1, for all u∗,u

∗
∈ Du;

A2:

∫

Du

uA (u,u∗,u
∗)du = 0, for all u∗,u

∗
∈ Du;

A3:

∫

Du

u2
A (u,u∗,u

∗)du = u2
∗
, for all u∗,u

∗
∈ Du.

It is worth stressing that the conservative and
nonconservative interaction rates η and µ are not
assumed constants.
The mathematical analysis (existence and uniqueness of
the solution of the related initial-boundary value problem)
requires a particular attention considering the
nonconservative operator. The results will be presented in
due course.
The next section is concerned with the main result of this
paper.

3 Density and linear-momentum evolution

This section deals with the derivation of the evolution
equations for the density (p = 0) and the

linear-momentum (p = 1) of the system, defined as
follows:

E0[ f ](t) =

∫

Du

f (t,u)du := ρ(t),

E1[ f ](t) =

∫

Du

u f (t,u)du := m(t).

Let

Ξ [ f ](t) := u






F −







2F E1[ f ]+

∫

Du

u2 P[ f ]du

2












,

Ψ [ f ](t) :=

∫

Du

u2 P[ f ]du.

In order to derive the evolution equations for the
nonconservative-thermostat framework (8), by multipling
the equation (8) by a test function ϕ(u) and then by
integrating with respect the variable u ∈ Du, one has:

∫

Du

ϕ(u)∂t f (t,u)du

+

∫

Du

ϕ(u)∂u (Ξ [ f ](t) f (t,u)) du

=

∫

Du

ϕ(u)J[ f ](t,u)du+

∫

Du

ϕ(u)P[ f ](t,u)du

=
∫

Du

ϕ(u)

(

∫

D2
u

η A f (t,u∗) f (t,u∗)du∗ du∗
)

du

−

∫

Du

ϕ(u) f (t,u)

(

∫

Du

η f (t,u∗)du∗
)

du

+

∫

Du

ϕ(u) f (t,u)

(

∫

Du

η µ f (t,u∗)du∗
)

du.

(9)

Since

∫

Du

ϕ(u)∂t f (t,u)du = ∂t

∫

Du

ϕ(u) f (t,u)du,

the (9) rewrites:

∂t

∫

Du

ϕ(u) f (t,u)du

+

∫

Du

ϕ(u)∂u (Ξ [ f ](t) f (t,u)) du

=

∫

Du

∫

D2
u

η ϕ(u)A f (t,u∗) f (t,u∗)du∗du∗ du

−

∫

Du

∫

Du

ηϕ(u) f (t,u) f (t,u∗)du∗du

+

∫

Du

∫

Du

η µ ϕ(u) f (t,u) f (t,u∗)du∗ du.

(10)
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• Let ϕ(u) = 1. Then the (10) rewrites:

∂t

∫

Du

f (t,u)du+

∫

Du

∂u (Ξ [ f ](t) f (t,u)) du

=

∫

D3
u

η A f (t,u∗) f (t,u∗)du∗ du∗du

−

∫

Du

(

∫

Du

η f (t,u) f (t,u∗)du∗
)

du

+

∫

Du

(

∫

Du

η µ f (t,u) f (t,u∗)du∗
)

du.

(11)

The second term on the left hand side of the (11) vanishes
since f (t,u) = 0 on the boundary. Moreover, the property
A1 of the operator J[ f ](t,u) implies the following identity:

∫

Du

∫

D2
u

η A f (t,u∗) f (t,u∗)du∗ du∗du

−

∫

Du

∫

Du

η f (t,u) f (t,u∗)du∗ du = 0.

Bearing all above in mind, the (11) writes:

∂tρ(t) =

∫

D2
u

η(u,u∗)µ(u,u∗) f (t,u) f (t,u∗)dudu∗. (12)

Remark.If the system is subjected to conservative
interactions only (µ = 0), the (12) reads:

∂tρ(t) = 0,

which means that the density is conserved and f (t,u)
acquires the structure of a probability distribution
function.

• Let ϕ(u) = u. The (10) rewrites:

∂t

∫

Du

u f (t,u)du+
∫

Du

u∂u (Ξ [ f ](t) f (t,u)) du

=
∫

D3
u

η uA f (t,u∗) f (t,u∗)du∗ du∗du

−

∫

Du

∫

Du

η u f (t,u) f (t,u∗)du∗ du

+
∫

Du

∫

Du

η µ u f (t,u) f (t,u∗)du∗ du.

(13)

The assumption A2 on the transition probability function
A (u,u∗,u

∗) ensures that the first term on the right hand

side of the (13) vanishes. Then straightforward
calculations show:

∫

Du

u∂u

((

F −

(

2FE1[ f ]+Ψ [ f ](t)

2

)

u

)

f

)

du

=−

∫

Du

((

F −

(

2FE1[ f ]+Ψ [ f ](t)

2

)

u

)

f

)

du

=−

∫

Du

F f du+

∫

Du

(

2F E1[ f ]+Ψ [ f ](t)

2

)

u f du

=−Fρ(t)+

∫

Du

F E1[ f ](t)u f (t,u)du

+
1

2

(

∫

Du

u2 P[ f ](t,u)du

)

∫

Du

u f (t,u)du

=−Fρ(t)+Fm2(t)+
1

2

(

∫

Du

u2 P[ f ]du

)

m(t).

(14)

The second and the third terms on the right hand side of
the (13) writes:

−

∫

Du

∫

Du

η u f (t,u) f (t,u∗)du∗ du

+

∫

Du

∫

Du

η µ u f (t,u) f (t,u∗)du∗ du

=

∫

Du×Du

η(µ − 1)u f (t,u) f (t,u∗)du∗ du.

(15)

By using the (14) and the (15), the (13) furnishes the
second equation of the system:

∂tm = Fρ −Fm2
−

1

2

(

∫

Du

u2 P[ f ](t,u)du

)

m

+

∫

Du×Du

η(µ − 1)u f (t,u) f (t,u∗)du∗ du.

(16)

The system of evolution equations reads:



































∂tρ =
∫

D2
u

η µ f (t,u) f (t,u∗)du∗ du,

∂tm = Fρ −Fm2
−

1

2

(

∫

Du

u2 P[ f ]du

)

m

+
∫

D2
u

η(µ − 1)u f (t,u) f (t,u∗)du∗du.

(17)

According to [28], the following assumption of separation
of variables on the distribution function f is added:

f (t,u) = ρ(t)l(u),

where l(u) is a suitable function defined on Du, e.g. a
Dirac delta function, such that:

∫

Du

l(u)du = 1.
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Accordingly the integral term in the equation (17)1

rewrites:

∫

Du

∫

Du

η µ f (t,u) f (t,u∗)du∗ du =

=

∫

Du×Du

η µ ρ2(t)l(u)l(u∗)du∗ du

= ρ2(t)

(

∫

Du×Du

η µ l(u)l(u∗)du∗ du

)

= kρ2(t),

(18)

where

k :=

∫

Du×Du

η(u,u∗)µ(u,u∗) l(u)l(u∗)du∗ du.

The integral term in the equation (17)2 rewrites:
∫

D2
u

η(µ − 1)u f (t,u) f (t,u∗)du∗ du =

=

∫

D2
u

η(µ − 1)uρ2(t)l(u)l(u∗)du∗du

= ρ2(t)

(

∫

D2
u

η(µ − 1)ul(u)l(u∗)du∗ du

)

= hρ2(t),

(19)

where

h :=

∫

Du×Du

η(u,u∗)(µ(u,u∗)− 1)ul(u)l(u∗)du∗ du.

Finally:
∫

Du

u2 P[ f ](t,u)du =

=

∫

Du

u2 f (t,u)

(

∫

Du

η µ f (t,u∗)du∗
)

du

=

∫

D2
u

η µ u2ρ2(t)l(u)l(u∗)du∗ du

= ρ2(t)

(

∫

D2
u

η µ u2 l(u)l(u∗)du∗ du

)

= θρ2(t),

(20)

where

θ :=

∫

Du×Du

η(u,u∗)µ(u,u∗)u2l(u)l(u∗)du∗ du.

By using the (18), (19) and (20), the system (17) rewrites:







∂tρ(t) = kρ2(t),

∂tm(t) =−Fm2(t)−
θ

2
ρ2(t)m(t)+ hρ2(t)+Fρ(t).

(21)

It is worth stressing that the solutions of the above
system will help in the investigation of the existence and
uniqueness of the solution of the initial-boundary value
problem related to the mathematical framework (8).

4 Conclusions and research perspectives

The new mathematical framework proposed in this paper
allows the modeling of complex biological systems and in
particular a control is introduced for the time evolution of
the activity-energy moment. The control is based on the
definition of a new thermostat term (7), which also
includes the role of the nonconservative interactions.
The paper has been also devoted to the derivation of the
evolution equation for the density of the system and for
the linear-momentum. As shown in the last section (see
(21)), the evolution equations are ordinary differential
equations with quadratic nonlinearities. Specifically the
equation for the density of the system is a separable
differential equation whereas the equation fulfilled by the
linear-momentum is a Riccati differential equation.

The new framework (8) opens to future research
perspectives from the theoretical and applied point of
views. Firstly the existence and uniqueness of solutions of
the related initial boundary value problem needs to be
investigated. The main difficulty is the introduction of the
nonconservative interactions which can affect the global
existence of solutions; a future investigation could be
addressed to the question if the conservation of the
activity-energy moment could allow the existence of the
global solution or if the control of the density evolution
needs to be required by further modifing the thermostat
term. In this context the topology of the domain Du is an
important step of investigation in particular in the case of
the unbounded domain.

The generalization of the framework (8) to the
complex systems composed by different functional
subsystems is straightforward. Indeed as shown in [26],
the modification of the general framework consists in
introducing the summation over the number of functional
subsystems. In this context, the mutative events can be
also taken into account.

New inverse problems based on the information
theory could be also investigated as in the paper [29]. The
result should be again straightforward but the proof of the
existence of solutions could be affected by the new
thermostat term and a new technique should be employed.

From the application viewpoint, the target complex
living systems are of biological fashion considering the
role of proliferation and mutation of the particles
composing the system. Some systems can be mentioned:
immune system [25], tumor growth [30], cancer immune
system competition [31], virus infection [32].
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