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Abstract: The presence of non-response and measurement error in a study cause bias on the estimate. To reduce this, we have studied

the effect of non-response (NR) and measurement error (ME) on the estimation of the population mean of the study variable using

auxiliary information by proposing a general class of estimators. The proposed class of estimators studied in the various situations of

NR and ME. The expressions of bias and MSE of the estimators are derived and their optimum conditions have been obtained. Various

well-known estimators from literature are the members of the proposed estimator. A simulation study is performed which support the

theoretical findings in all situations.
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1 Introduction

In a sample survey, a high level of response rate is normally viewed as a good survey. But the participation of respondents
in surveys has been deteriorating over time in almost all types of surveys (Leeuw and Heer [1], Goyder [2] and for all
survey modes (Hox and Leeuw [3]). In the last few decades survey researchers have more concentrated to counteract the
downward trend in response rates (e.g. Dillman [4], Goyder [2], Groves and Couper [5]). The quality of survey data can
be dying out to sample composition bias, due to non-response and self-selection of respondents, and response bias from
several sources. Increasing the response rate minimizes the impact of selection bias. For example, research has shown that
callback and increased fieldwork effort not only bring in more respondents but also can bring in those respondents that are
underrepresented such as the elderly, lower educated, and lower-income groups (e.g. Dillman [4]). However, this could be
purely decorative. As non-response error is a function of the non-response rate and the difference between respondents and
non-respondents on a particular variable of interest (Couper and Leeuw [6]). Non-response error will only be reduced by
drawing in those specific respondents that tapered this gap. The effect of non-response error is described in Cochran [7].
Kalton and Karsprzyk [8], Meng [9], Rubin [10], Carpenter and Kenward [11], etc. presents several approaches to handle
non-response in sample surveys. To avoid non-response and control it in estimation, the problem of non-response was
studied. Hansen and Hurwitz [12] developed the technique to estimate the population mean when non-response occurs in
surveys. He simply drew a simple random sample and mailed a questionnaire to sampled units then re-contacted some of
the non-responding units by drawing a subsample from the non-responding units in the initial first attempt. Cochran [7]
uses Hansen and Hurwitz technique to formulate a ratio estimator of the population mean. Similarly, Rao [13], Okafor
and Lee [14], Tabasum and Khan [15], [16], Sodipo and Obisesan [17], Singh and Kumar [18], [19], Singh et al. [20],
Chaudhary et al. [21], Khare and Sinha [22], Bhushan and Pandey [23], Unal and Kadilar [24] and Sharma and Kumar
[25] considered the problem of estimating population mean in the presence of non-response.

But, even if increasing the response rate does reduce non-response errors, by a convincing special respondent to
respond, the question remains whether it decreases the total survey error. Increasing the response rate by callback and with
more efforts, only bringing non-respondent to the respondent group may increase another source of error i.e. measurement
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error (Groves and Couper [5]). Non-response is caused by situational (e.g., time, opportunity, at-home patterns) and
motivational (e.g., altruism, low cost compared to benefits, high saliency) factors. Measurement error, on the other hand, is
largely cognitive and related to the question-answer process (e.g., poor comprehension of questions, memory, and retrieval
difficulties). Measurement errors include observational error, instrument error, respondent error, etc. Many sources of
measurement errors like bias in the interviewer, bias in the respondent, or an error occur in recording and processing the
data. Many researchers worked on the estimation in the presence of measurement error like Fuller [26], Biemer and Stokes
[27], Shalabh [28], Singh and Karpe [29], Kumar et al. [30], Gregoire and Salas [31], Diane and Giordan [32], Shukla et
al. [33], Shalabh and Tsai [34] and Tiwari et al. [35].

Measurement error and non-response error may creep into the survey at the same time. If these errors are minute then
they can be ignored but if these errors are significant, inferences may lead to adverse consequences. Tiwari et al. [36]
studied the combined and separate effects of NR and ME to show their relative effect. Very few studies have been done
so far like Jackman [37], Biemer [38], Hox et al. [39], Kumar et al. [40], Singh and Sharma [41], Azeem and Hanif [42],
Kumar [43], Kumar and Bhougal [44], Kumar et al. [45], and Singh et al. [46].

Usually the study on the estimation is specific to a particular sampling strategy or method but in real-life any type of
situation can be there. So the motive of this paper is to propose and study estimators in a different situations to see their
effect. In this paper, we study how NR and ME affect the efficiency of the estimators using auxiliary information.

2 Sampling Procedure and Notations

Let a population of size N and a sample of size n be taken by using the simple random sampling without replacement
(SRSWOR) method. Let Y be the study and X be the auxiliary variable. Let µY = 1

N ∑N
i=1 yi, µX = 1

N ∑N
i=1 xi, σ2

Y =
1

N−1 ∑N
i=1(yi − µY )

2 and σ2
X = 1

N−1 ∑N
i=1(xi − µX)

2 denote the population mean and variance of study variable Y and

auxiliary variable X , respectively. Let (xi,yi) be the observed and (Xi,Yi) be the true values on the characteristics (X ,Y )
associated with the ith unit in the sample.

Let the measurement error present on Y and X are Ui = yi −Yi and Vi = xi −Xi.
The usual unbiased estimator for the population mean of the study variable in the presence of measurement error is

given as

t0 = µ̂Y =
1

n

n

∑
i=1

yi

The variance in the presence of measurement error of the usual estimator is given as

Var(t0) = λ2(σ
2
Y +σ2

U) (1)

where λ2 =
1
n
− 1

N

Let the measurement errors on Y and X be random and uncorrelated with mean zero and variances σ2
U and σ2

V

respectively, with an assumption that the measurement errors for variable Y and X are independent. Let Cy and Cx be the
coefficient of variations of variable Y and X respectively for the population and ρyx be the coefficient of correlation
between Y and X .

Now, let the non-response present on the study and auxiliary variables, it is assumed that the population of size N

is composed of two mutually exclusive groups, the N1 respondents and the N2 non-respondents, though their sizes are

unknown. Let µY1
= 1

N1
∑

N1
i=1 yi and σ2

Y (1) =
1

N1−1 ∑
N1
i=1(yi − µY1

)2 denote the mean and variance of the response group.

Similarly, let µY2
= 1

N2
∑

N2
i=1 yi and σ2

Y (2) =
1

N2−1 ∑
N2
i=1(yi −µY2

)2 denote the mean and variance of the non-response group.

The population mean can be written as µY = W1µY1
+W2µY2

, where W1 = N1
N

and W2 = N2
N

. Let µ̂Y1
= 1

n1
∑

n1
i=1 yi and

µ̂Y2r
= 1

r ∑r
i=1 yi denote the means of the n1 responding units and the r sub-sampled units. Thus, an unbiased estimator of

the population mean µY due to Hansen and Hurwitz [12] is given by

µ̂∗
Y = w1µ̂Y1

+w2µ̂Y2r

where w1 =
n1
n

and w2 =
n2
n

are responding and non-responding proportions in the sample.

The variance of µ̂∗
Y up to the terms of order n−1, is given by

Var(µ̂∗
Y ) = λ2σ2

Y +θσ2
Y(2) (2)

where θ = W2(k−1)
n

, Cy =
σy

µY
and Cy(2) =

σy(2)

µY
, (see Cochran [7], p. 371).
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Similarly one can define for auxiliary variable i.e. µ̂X1
= 1

n1
∑

n1
i=1 xi and µ̂X2r

= 1
r ∑r

i=1 xi denotes the means of

responding and r sub-sampled units. Under such a situation, an unbiased estimator for the population mean µ̂X of the
auxiliary variable as

µ̂∗
X = w1µ̂X1

+w2µ̂X2r

The variance of µ̂∗
X is

Var(µ̂∗
X) = λ2σ2

X +θσ2
X(2) (3)

Many times, the above-mentioned situations occur together i.e. non-response and measurement error present
simultaneously. So, let (x∗i ,y

∗
i ) be the observed values and (X∗

i ,Y
∗
i ) be the true values of (X ,Y ) respectively associated

with the ith sample unit. Let the measurement error associated with the study variable in the presence of non-response be

U∗
i = y∗i −Y∗

i

When there is some non-response on the auxiliary variable, let the measurement error associated with the auxiliary variable
be

V ∗
i = x∗i −X∗

i

The measurement errors on Y and X are random with mean zero and variances σ2
U and σ2

V respectively for the

responding units and σ2
U(2) and σ2

V (2) respectively for the group of non-respondents. Let σ2
X(2) and σ2

Y (2) be the variances

of variables X and Y respectively for the non-respondents and ρyx(2) be the correlation coefficient between the variables
Y and X for the non-respondents of the population. Let Cx(2) and Cy(2) be the coefficient of variations for variable X and
Y respectively for the group of non-respondents.

In situations where the population mean of the auxiliary variable X is not known, a two-phase sampling scheme
is adopted. A large sample of size n′ is taken from the population at the first phase by the SRSWOR method and the
information on the auxiliary variable is obtained. In the second phase, a sub-sample of size n is taken from the first-phase
sample using the SRSWOR method and data on the variable of interest are collected. In the first phase, we assume that
there is a complete response without measurement error. Let x1i be the observed values and X1i be the true values on an
auxiliary characteristic associated with the ith unit in the first-phase sample. Since we have assumed that there are no
measurement errors in the first-phase sample, therefore x1i = X1i. Let (x1i,yi) be the observed values and (Xi,Yi) be the
true values on two characteristics (X ,Y ) respectively associated with the ith unit on the second-phase sample.

We use the following terms to derive the Bias and mean square error (MSE) of the estimators.
Let ω∗

Y = 1√
n ∑n

i=1(Y
∗
i − µY ) and ω∗

U = 1√
n ∑n

i=1 U∗
i . Add ω∗

Y and ω∗
U and divide both side by

√
n, we have

ω∗
Y+ω∗

U√
n

= 1
n ∑n

i=1[(Yi − µY )+U∗
i ] that is

ω∗
Y+ω∗

U√
n

= 1
n ∑n

i=1 y∗i − µY

So,

µ̂∗
Y = µY + ε∗Y ; where ε∗Y =

ω∗
Y +ω∗

U√
n

(4)

Similarly, for ωX = 1√
n ∑n

i=1(Xi − µX) and ωV = 1√
n ∑n

i=1 Vi

µ̂X = µX + εX ; where εX =
ωX +ωV√

n
(5)

Again, for ω∗
X = 1√

n ∑n
i=1(X

∗
i − µX) and ω∗

V = 1√
n ∑n

i=1 V ∗
i

µ̂∗
X = µX + ε∗X ; where ε∗X =

ω∗
X +ω∗

V√
n

(6)

We assumed that non-response doesn’t occur on first phase, so for

ωX ′ = 1√
n′

∑n′

i=1(x
′
i − µX), we have

µ̂ ′
X = µX + εX ′ ; where εX ′ =

ωX ′
√

n′
(7)

Then, we have

E(ε∗Y ) = E(εX) = E(ε∗X ) = E(εX ′) = E(εU ) = E(εV ) = 0 (8)

and

E(ε∗2
Y ) = λ2σ2

Y +θσ2
Y(2)+λ2σ2

U +θσ2
U(2) =V1(Say) (9)
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E(ε2
X ) = λ2σ2

X +λ2σ2
V =V2(Say) (10)

E(ε∗Y εX ) = λ2ρyxσY σX =V3(Say) (11)

E(ε∗2
X ) = λ2σ2

X +θσ2
X(2)+λ2σ2

V +θσ2
V(2) =V4(Say) (12)

E(ε∗Y ε∗X ) = λ2ρyxσY σX +θρyx(2)σY (2)σX(2) =V5(Say) (13)

E(ε2
X ′) = λ ′σ2

X =V6(Say) (14)

E(εX εX ′) = λ ′σ2
X =V6 (15)

E(ε∗Y εX ′) = λ ′ρyxσY σX =V ′
3(Say) (16)

where λ ′ = 1
n′
− 1

N
.

3 Literature survey

In this section, we consider the following estimators

Searl [47]

In simple random sampling, Searl proposed an estimator for estimating the population mean of Y as t1 = kµ̂Y , where k is
suitable constant.

The mean square error (MSE) of t1 is

MSE(t1) = (k− 1)2µ2
Y + k2λ2µ2

YC2
y

The minimum MSE of t1 for optimum value of k = 1
1+λ2C2

y
= ko is

MSEmin(t1) =
λ2µ2

YC2
y

1+λ2C
2
y

Cochran [7]

Cochran (1977) proposes the ratio estimator as t2 = µ̂Y (
µX

µ̂X
) with mean squared error i.e. MSE of t2 as

MSE(t2) = λ2µ2
Y (C

2
y +C2

x − 2ρyxCyCx)

Murthy [48]

Murthy (1964) suggested an product estimator for µY as t3 = µ̂Y (
µ̂X

µX
) with MSE of t3 as

MSE(t3) = λ2µ2
Y (C

2
y +C2

x + 2ρyxCyCx)
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Cochran [7]

The usual regression estimator proposed by Cochran [7] as t4 = µ̂Y + b(µX − µ̂X) with

MSE(t4) = λ2µ2
YC2

y (1−ρ2
yx)

where b is regression coefficient.

Rao [49]

A difference estimator is proposed by Rao [49] as t5 = k1µ̂Y + k2(µX − µ̂X), where k1, k2 are constant.

The MSE of t5 is

MSE(t5) = (k1 − 1)2µ2
Y +λ2µ2

YC2
y k2

1 +λ2µ2
XC2

x k2
2 − 2λ2µY µX ρyxCyCxk1k2

The MSE(t5) is optimum, when k1 =
1

1+λ2C2
y (1−ρ2

yx)
= ko

1; k2 =
ρyxRCy

Cx[1+λ2C2
y (1−ρ2

yx)]
= ko

2. The minimum MSE(t5) is given as

MSEmin(t5) =
λ2µ2

YC2
y (1−ρ2

yx)

1+λ2C
2
y (1−ρ2

yx)

Bahl and Tuteja [50]

The ratio and product type exponential estimators defined by Bahl and Tuteja [50] as t6 = µ̂Y exp( µX−µ̂X

µX+µ̂X
) and t7 =

µ̂Y exp( µ̂X−µX

µ̂X+µX
).

The MSE of t6 and t7 are given as

MSE(t6) = λ2µ2
Y (C

2
y +

1

4
C2

x −ρyxCyCx)

MSE(t7) = λ2µ2
Y (C

2
y +

1

4
C2

x +ρyxCyCx)

Kadilar and Cingi [51]

Kadilar and Cingi [51] proposed a combined ratio cum regression estimator as t8 = [µ̂Y + b(µX − µ̂X)](
µX

µ̂X
). The MSE of

t8 to the first degree of approximation is

MSE(t8) = λ2µ2
Y [C

2
x +C2

y (1−ρ2
yx)]

Grover and Kour [52]

Grover and Kour [52] proposes a difference-cum-exponential type estimator as t9 = [d1µ̂Y + d2(µX − µ̂X)]exp( µX−µ̂X

µX+µ̂X
),

where d1, d2 are constant. To the first degree of approximation, one can obtain the optimum MSE of t9 as

MSEmin(t9) =
λ2µ2

Y [16(1−ρ2)(4−λ2C
2
x )C

2
y −λ2C

4
x ]

64[1+λ2C
2
y (1−ρ2

yx)]

Some basic estimators of population mean in two-phase sampling from literature are given as
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Ratio Estimator

The classical ratio estimator and their MSE in two-phase sampling is given as

tr = µ̂Y (
µ̂ ′

X

µ̂X

)

MSE(tr) = µ2
Y

[(

1

n
−

1

N

)

C2
y +

(

1

n
−

1

n′

)

(C2
x − 2ρyxCyCx)

]

Product Estimator

The classical product estimator in two-phase sampling is given as

tp = µ̂Y (
µ̂X

µ̂ ′
X

)

and their MSE is

MSE(tp) = µ2
Y

[(

1

n
−

1

N

)

C2
y +

(

1

n
−

1

n′

)

(C2
x + 2ρyxCyCx)

]

Regression Estimator

The regression estimator in two-phase sampling is given as

treg = µ̂Y + byx(µ̂
′
X − µ̂X)

where byx is regression coefficient. The optimum MSE of treg is

MSE(treg) = µ2
YC2

y

[(

1

n
−

1

N

)

−

(

1

n
−

1

n′

)

ρyx

]

In this study, we revisited the above t1, t2,..,t9 estimators in different situations of non-response and measurement error
by defining a general class of estimators for estimating the population mean µY of Y .

4 Proposed class of estimators

To estimate the population mean in the different situations of non-response and measurement error, we define a general
class of estimators as

T = [k1µ̂Y + k2(µX − µ̂X)]

(

µX

µ̂X

)δ [

exp

(

µX − µ̂X

µX + µ̂X

)]α

(17)

where k1, k2, δ and α are constant.

For different values of k1, k2, δ and α , one can obtain various estimators. Table 1 shows the estimators considered in
Section 3 as the member of the general class of estimators.

We study these estimators in various situations of non-response and measurement error in the following sections.

5 Situation-1

When non-response and measurement error are present on the study variable Y with known population mean µX of
auxiliary variable X .
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Table 1: Members of the proposed class of estimator

k1 k2 δ α Estimator

1 0 0 0 T (1) = µ̂Y , Usual estimator

k1 0 0 0 T (2) = kµ̂Y , Searl [47]

1 0 1 0 T (3) = µ̂Y

( µX

µ̂X

)

, Cochran [53]

1 0 -1 0 T (4) = µ̂Y

( µ̂X

µX

)

, Murthy [48]

1 k2 0 0 T (5) = µ̂Y +k2(µX − µ̂X ), Cochran [7]

k1 k2 0 0 T (6) = k1µ̂Y +k2(µX − µ̂X ), Rao [49]

1 0 0 1 T (7) = µ̂Y exp
( µX−µ̂X

µX+µ̂X

)

, Bahl and Tuteja [50]

1 0 0 -1 T (8) = µ̂Y exp
( µ̂X−µX

µ̂X+µX

)

, Bahl and Tuteja [50]

1 k2 1 0 T (9) = [µ̂Y +k2(µX − µ̂X )]
( µX

µ̂X

)

, Kadilar and Cingi [51]

k1 k2 0 1 T (10) = [k1µ̂Y +k2(µX − µ̂X )]exp
( µX−µ̂X

µX+µ̂X

)

, Grover and Kaur [52]

5.1 Estimator

Redefine the general class of estimators defined in equation (17) as

T1 = [k11µ̂∗
Y + k21(µX − µ̂X)]

(

µX

µ̂X

)δ1
[

exp

(

µX − µ̂X

µX + µ̂X

)]α1

(18)

where k11, k21, δ1 and α1 are constant.

The member estimators can be written as

1T
(1)

1 = µ̂∗
Y

2T
(2)

1 = k11µ̂∗
Y

3T
(3)

1 = µ̂∗
Y (

µX

µ̂X
)

4T
(4)

1 = µ̂∗
Y (

µ̂X

µX
)

5T
(5)

1 = µ̂∗
Y + k21(µX − µ̂X),

6T
(6)

1 = k11µ̂∗
Y + k21(µX − µ̂X)

7T
(7)

1 = µ̂∗
Y exp( µX−µ̂X

µX+µ̂X
)

8T
(8)

1 = µ̂∗
Y exp( µ̂X−µX

µ̂X+µX
)

9T
(9)

1 = [µ̂∗
Y + k21(µX − µ̂X)](

µX

µ̂X
)

10T
(10)

1 = [k11µ̂∗
Y + k21(µX − µ̂X)]exp

( µX−µ̂X

µX+µ̂X

)

where k11, k21 are suitable constant for respective estimator.

5.2 Bias and MSE

To get the bias and MSE of T1 to the first order of approxmation, express T1 given in equation (18) in terms of ε’s using
equations (4) and (5). We have

T1 = (k11µY + k11ε∗Y − k21εX )

(

1+
εX

µX

)−δ1
[

1+

(

3

8

ε2
X

µX

−
εX

2µX

)]α1

(19)

Expand and simplify above equation by ignoring the higher terms, we get

T1 = k11µY + k11ε∗Y − [k21 + k11Rδα1
]εX +

[

k21δα1
+

Rk11

2
δα1

+
Rk11

2
δ 2

α1

]

ε2
X

µX

−
k11

µX

δα1
ε∗Y εX (20)
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where δα1
= δ1 +

α1
2

. Substract µY from both sides, we have

T1 − µY = (k11 − 1)µY + k11ε∗Y − [k21 + k11Rδα1
]εX +

[

k21δα1
+

Rk11

2
δα1

+
Rk11

2
δ 2

α1

]

ε2
X

µX

−

[

k21δα1
+

Rk11

2
δα1

+
Rk11

2
δ 2

α1

]

ε2
X

k11

µX

δα1
ε∗Y εX (21)

Taking expectation on both sides of equation (21) and using expected values from equation (8), (9), (10) & (11), we get
the bias of T1 as

Bias(T1) = (k11 − 1)µY +

[

δα1

(

k21 +
Rk11

2

)

+
Rk11

2
δ 2

α1

]

V2

µX

−
k11

µX

δα1
V3 (22)

Squaring equation (21) on both sides and terminate the higher order terms, we have

(T1 − µY )
2 = (k11 − 1)2µ2

Y + k2
11ε∗Y

2 +(k21 + k11Rδα1
)2 ε2

X + 2(k11 − 1)k11µY ε∗Y

− 2µY (k11 − 1)(k21 + k11Rδα1
)εX + 2R(k11− 1)

[

k21δα1
+

Rk11

2
δα1

+
Rk11

2
δ 2

α1

]

ε2
X

− 2Rk11δα1
(k11 − 1)ε∗Y εX − 2k11 (k21 + k11Rδα1

)ε∗Y εX (23)

Taking expectation on both sides of equation (23) and using expected values from equation (8), (9), (10) & (11), we get
the MSE of T1 as

MSE(T1) = µ2
Y + k11

[

2RV3δα1
− 2µ2

Y −R2V2δα1
−R2V2δ 2

α1

]

+ k2
11[µ

2
Y +V1 − 4RV3δα1

+R2V2δα1
+ 2R2V2δ 2

α1
]− 2k21RV2δα1

+ k2
21V2 + k11k21 [4RV2δα1

− 2V3] (24)

or
MSE(T1) = µ2

Y + k11ϕ11 + k2
11ϕ21 + k21ϕ31 + k2

21ϕ41 + k11k21ϕ51 (25)

where ϕ11 = 2RV3δα1
− 2µ2

Y −R2V2δα1
−R2V2δ 2

α1
, ϕ21 = µ2

Y +V1 − 4RV3δα1
+R2V2δα1

+ 2R2V2δ 2
α1

, ϕ31 = −2RV2δα1
,

ϕ41 =V2, ϕ51 = 4RV2δα1
− 2V3.

For the optimum values of k11 and k21 which is ko
11 =

ϕ31ϕ51−2ϕ11ϕ41

4ϕ21ϕ41−ϕ2
51

; ko
21 =

ϕ11ϕ51−2ϕ21ϕ31

4ϕ21ϕ41−ϕ2
51

, the minimum MSE of T1

can be obtained as

MSEmin(T1) = µ2
Y −

ϕ2
11ϕ41 +ϕ21ϕ2

31 −ϕ11ϕ31ϕ51

4ϕ21ϕ41 −ϕ2
51

(26)

or
MSEmin(T1) = µ2

Y −ϒ1 (27)

where ϒ1 =
ϕ2

11ϕ41+ϕ21ϕ2
31−ϕ11ϕ31ϕ51

4ϕ21ϕ41−ϕ2
51

.

The bias and MSE of the estimators T
(i)

1 ; i = 1,2, ..,10 upto the first order of approxmation given in Table 2.

5.3 Efficiency Comparison

An estimator t1 of population mean µY is said to be more efficient than estimaor t2 if MSE(t1)< MSE(t2). Here we have

developed the conditions under which the general class of estimator T1 is better than the estimators T
(i)

1 , i = 1,2, ..,10.

•MSE(T1)< MSE(T
(1)

1 ) if µ2
Y <ϒ1 +V1

•MSE(T1)< MSE(T
(2)

1 ) if
µ4

Y

µ2
Y+V1

<ϒ1

•MSE(T1)< MSE(T
(3)

1 ) if µ2
Y + 2RV3 <ϒ1 +V1 +R2V2

•MSE(T1)< MSE(T
(4)

1 ) if µ2
Y <ϒ1 +V1+R2V2 + 2RV3

•MSE(T1)< MSE(T
(5)

1 ) if µ2
Y +

V 2
3

V2
<ϒ1 +V1

•MSE(T1)< MSE(T
(6)

1 ) if
V2µ4

Y

V2µ2
Y+V1V2−V 2

3

<ϒ1
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Table 2: Expressions for bias and MSE of T
(i)

1 ; i = 1,2, ..,10

Estimator Bias MSE/MSEmin and respective optimum value of constants

T
(1)

1 0 V1

T
(2)

1 (k11 −1)µY µ2
Y − µ4

Y

µ2
Y +V1

; ko
11 =

µ2
Y

µ2
Y +V1

T
(3)

1
RV2−V3

µX
V1 +R2V2 −2RV3

T
(4)

1
V3

µX
V1 +R2V2 +2RV3

T
(5)

1 0 V1 −
V 2

3

V2
; ko

21 =
V3

V2

T
(6)

1 (k11 −1)µY µ2
Y − V2µ4

Y

V2µ2
Y +V1V2−V 2

3

; ko
11 =

V2µ2
Y

V2µ2
Y +V1V2−V 2

3

, ko
21 =

V3µ2
Y

V2µ2
Y +V1V2−V 2

3

T
(7)

1
3RV2−4V3

8µX
V1 +

1
4 R2V2 −RV3

T
(8)

1
4V3−RV2

8µX
V1 +

1
4 R2V2 +RV3

T
(9)

1
(R+k21)V2−V3

µX
V1 −

V 2
3

V2
; k21 =

V3

V2
−R

T
(10)

1 (k11 −1)µY +
(4k21+3Rk11)V2−4k11V3

8µX
µ2

Y − P2
11P41+P21P2

31−P11P31P51

4P21P41−P2
51

; ko
11 =

P31P51−2P11P41

4P21P41−P2
51

; ko
11 =

P11P51−2P21P31

4P21P41−P2
51

where P11 = RV3 −2µ2
Y − 3

4 R2V2, P21 = µ2
Y +V1 −2RV3 +R2V2, P31 =−RV2, P41 =V2, P51 = 2RV2 −2V3.

•MSE(T1)< MSE(T
(7)

1 ) if µ2
Y +RV3 <ϒ1 +V1 +

1
4
R2V2

•MSE(T1)< MSE(T
(8)

1 ) if µ2
Y <ϒ1 +V1+

1
4
R2V2 +RV3

•MSE(T1)< MSE(T
(9)

1 ) if µ2
Y +

V 2
3

V2
<ϒ1 +V1

•MSE(T1)< MSE(T
(10)

1 ) if
P2

11P41+P21P2
31−P11P31P51

4P21P41−P2
51

<ϒ1

5.4 Simulation

We have executed a simulation study to see the performance of the estimators. We have used R software for simulation.
Population size N = 5000 and sample size n = 500 is taken. The other essential information in the process are X =
rnorm(N,10,5), Y = 1+ 3 ∗X + rnorm(N,0,1), y = Y + rnorm(N,0,5), x = X + rnorm(N,0,5), U = y−Y , V = x−X .
For different response rates, the result of the simulation is given in Table 3. For a better approximation, we have averaged
the result over 25000 iterations.

The percent relative efficiency (PRE) of estimators with respect to T
(1)

1 are calculated using

PRE(.,T
(1)

1 ) =
MSE(T

(1)
1 )

MSE(.)
× 100 (28)

The MSE of the proposed estimator T1 depends on δα1
. When other terms are fixed, we can find the value of δα1

for which the proposed estimator performs better than other estimators. To get that, we can try different values of δα1
or

plot MSE(T1) against δα1
and see where it gets minimum. If δα1

= c(constant), then we write the particular estimator as

T
δα1

=c

1 . The terms δα1
= c or δ1 +

α1
2
= c represents that δ1 and α1 in the estimator T1 are taken from anywhere on the

line δ1 +
α1
2
= c.
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Table 3: PREs of estimators for different values of W2 and k in Situation 1

W2 Estimator

PRE of estimators with respect to T
(1)

1
1/k

1/2 1/3 1/4 1/5

T
(1)

1 100 100 100 100

T
(2)

1 100.0522 100.0575 100.0627 100.0679

T
(3)

1 94.72534 95.18166 95.56531 95.89238

T
(4)

1 22.77699 24.49637 26.14086 27.71523

T
(5)

1 167.6075 157.9043 150.6369 144.9902

0.1 T
(6)

1 167.6597 157.9618 150.6995 145.0581

T
(7)

1 167.4812 157.8024 150.5518 144.9175

T
(8)

1 44.16107 46.52221 48.69176 50.69215

T
(9)

1 167.6075 157.9043 150.6369 144.9902

T
(10)

1 167.7043 158.0028 150.7380 145.0947

T
(δα1

=6.6)

1 2127.2342 730.7340 472.3493 363.5797

T
(1)

1 100 100 100 100

T
(2)

1 100.0627 100.0784 100.0940 100.1097

T
(3)

1 95.56566 96.42083 96.99949 97.41708

T
(4)

1 26.14244 30.67365 34.68101 38.25040

T
(5)

1 150.6306 136.7794 128.8789 123.7724

0.3 T
(6)

1 150.6933 136.8578 128.9729 123.8821

T
(7)

1 150.5456 136.7233 128.8374 123.7396

T
(8)

1 48.69381 54.26207 58.74002 62.41934

T
(9)

1 150.6306 136.7794 128.8789 123.7724

T
(10)

1 150.7318 136.8916 129.0042 123.9117

T
(δα1

=6.6)

1 472.1990 265.6426 205.6914 177.1525

T
(1)

1 100 100 100 100

T
(2)

1 100.0731 100.0993 100.1254 100.1515

T
(3)

1 96.17496 97.15294 97.73266 98.11623

T
(4)

1 29.22643 35.91599 41.45016 46.10447

T
(5)

1 140.4696 126.9490 120.2002 116.1546

0.5 T
(6)

1 140.5427 127.0482 120.3256 116.3061

T
(7)

1 140.4062 126.9108 120.1731 116.1337

T
(8)

1 52.54547 60.04419 65.49642 69.63932

T
(9)

1 140.4696 126.9490 120.2002 116.1546

T
(10)

1 140.5777 127.0789 120.3541 116.3334

T
(δα1

=6.6)

1 303.5731 194.1631 160.4659 144.1040

It is envisaged from Table 3 that for δα1
= 6.6, the proposed estimator T1 perform efficiently than other considered

estimators T
(i)

1 ; i = 1,2, ..,10 in terms of having high PRE with respect to the usual unbiased estimator T
(1)

1 for different
levels of W2. Also, it is observed that for different values of k and W2 the PRE of the estimators decreases but the PRE of

T
(2)

1 , T
(3)

1 , T
(4)

1 and T
(8)

1 increases.

6 Situation-2

When non-response and measurement error are present on both the study and auxiliary variable with a known population
mean µX of auxiliary variable X .
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6.1 Estimator

Redefine the general class of estimators defined in the equation (17) as

T2 = [k12µ̂∗
Y + k22(µX − µ̂∗

X)]

(

µX

µ̂∗
X

)δ2
[

exp

(

µX − µ̂∗
X

µX + µ̂∗
X

)]α2

(29)

where k12, k22, δ2 and α2 are constant.

The member estimators can be written as

1T
(1)

2 = µ̂∗
Y

2T
(2)

2 = k12µ̂∗
Y

3T
(3)

2 = µ̂∗
Y (

µX

µ̂∗
X
)

4T
(4)

2 = µ̂∗
Y (

µ̂∗
X

µX
)

5T
(5)

2 = µ̂∗
Y + k22(µX − µ̂∗

X)

6T
(6)

2 = k12µ̂∗
Y + k22(µX − µ̂∗

X)

7T
(7)

2 = µ̂∗
Y exp(

µX−µ̂∗
X

µX+µ̂∗
X
)

8T
(8)

2 = µ̂∗
Y exp(

µ̂∗
X−µX

µ̂∗
X+µX

)

9T
(9)

2 = [µ̂∗
Y + k22(µX − µ̂∗

X)](
µX

µ̂∗
X
)

10T
(10)

2 = [k12µ̂∗
Y + k22(µX − µ̂∗

X)]exp
( µX−µ̂∗

X
µX+µ̂∗

X

)

where k12, k22 are suitable constant for respective estimator.

6.2 Bias and MSE

The bias and MSE of the general class of estimators defined in equation (29) can be derived as

Bias(T2) = (k12 − 1)µY +

[

δα2

(

k22 +
Rk12

2

)

+
Rk12

2
δ 2

α2

]

V4

µX

−
k12

µX

δα2
V5 (30)

MSE(T2) = µ2
Y + k12

[

2RV5δα2
− 2µ2

Y −R2V4δα2
−R2V4δ 2

α2

]

+ k2
12[µ

2
Y +V1 − 4RV5δα2

+R2V4δα2
+ 2R2V4δ 2

α2
]− 2k22RV4δα2

+ k2
22V4 + k12k22 [4RV4δα2

− 2V5] (31)

where δα2
= δ2 +

α2
2

.

For the optimum values of k12 and k22 which is ko
12 =

ϕ32ϕ52−2ϕ12ϕ42

4ϕ22ϕ42−ϕ2
52

; ko
22 =

ϕ12ϕ52−2ϕ22ϕ32

4ϕ22ϕ42−ϕ2
52

, the minimum MSE of T2

can be obtained as

MSEmin(T2) = µ2
Y −

ϕ2
12ϕ42 +ϕ22ϕ2

32 −ϕ12ϕ32ϕ52

4ϕ22ϕ42 −ϕ2
52

(32)

where ϕ12 = 2RV5δα2
− 2µ2

Y −R2V4δα2
−R2V4δ 2

α2
, ϕ22 = µ2

Y +V1 − 4RV5δα2
+R2V4δα2

+ 2R2V4δ 2
α2

, ϕ32 = −2RV4δα2
,

ϕ42 =V4, ϕ52 = 4RV4δα2
− 2V5.

Minimum MSE of T2 can also be written as

MSEmin(T2) = µ2
Y −ϒ2 (33)

where ϒ2 =
ϕ2

12ϕ42+ϕ22ϕ2
32−ϕ12ϕ22ϕ32

4ϕ22ϕ42−ϕ2
52

.

The bias and MSE of estimators T
(i)

2 ; i = 1,2, ..,10 upto the first order of approxmation given in Table 4.
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Table 4: Expressions for bias and MSE of T
(i)

2 ; i = 1,2, ..,10

Estimator Bias MSE/MSEmin and respective optimum value of constants

T
(1)

2 0 V1

T
(2)

2 (k12 −1)µY µ2
Y − µ4

Y

µ2
Y +V1

; ko
12 =

µ2
Y

µ2
Y +V1

T
(3)

2
RV4−V5

µX
V1 +R2V4 −2RV5

T
(4)

2
V5

µX
V1 +R2V4 +2RV5

T
(5)

2 0 V1 −
V 2

5

V4
; ko

22 =
V5

V4

T
(6)

2 (k12 −1)µY µ2
Y − V4µ4

Y

V4µ2
Y +V1V4−V 2

5

; ko
12 =

V4µ2
Y

V4µ2
Y +V1V4−V 2

5

, ko
22 =

V5µ2
Y

V4µ2
Y +V1V4−V 2

5

T
(7)

2
3RV4−4V5

8µX
V1 +

1
4 R2V4 −RV5

T
(8)

2
4V5−RV4

8µX
V1 +

1
4 R2V4 +RV5

T
(9)

2
(R+k22)V4−V5

µX
V1 −

V 2
5

V4
; k22 =

V5

V4
−R

T
(10)

2 (k12 −1)µY + (4k22+3Rk12)V4−4k12V5

8µX
µ2

Y − P2
12P42+P22P2

32−P12P32P52

4P22P42−P2
52

; ko
12 =

P32P52−2P12P42

4P22P42−P2
52

; ko
12 =

P12P52−2P22P32

4P22P42−P2
52

where P12 = RV5 −2µ2
Y − 3

4 R2V4, P22 = µ2
Y +V1 −2RV5 +R2V4, P32 =−RV4, P42 =V4, P52 = 2RV4 −2V5 .

6.3 Efficiency Comparison

An estimator t1 of population mean µY is said to be more efficient than estimaor t2 if MSE(t1)< MSE(t2). Here we have

developed the conditions under which the general class of estimator T2 works better than the estimators T
(i)

2 , i = 1,2, ..,10.

•MSE(T2)< MSE(T
(1)

2 ) if µ2
Y <ϒ2 +V1

•MSE(T2)< MSE(T
(2)

2 ) if
µ4

Y

µ2
Y+V1

<ϒ2

•MSE(T2)< MSE(T
(3)

2 ) if µ2
Y + 2RV5 <ϒ2 +V1 +R2V4

•MSE(T2)< MSE(T
(4)

2 ) if µ2
Y <ϒ2 +V1+R2V4 + 2RV5

•MSE(T2)< MSE(T
(5)

2 ) if µ2
Y +

V 2
5

V4
<ϒ2 +V1

•MSE(T2)< MSE(T
(6)

2 ) if
V4µ4

Y

V4µ2
Y+V1V4−V 2

5

<ϒ2

•MSE(T2)< MSE(T
(7)

2 ) if µ2
Y +RV5 <ϒ2 +V1 +

1
4
R2V4

•MSE(T2)< MSE(T
(8)

2 ) if µ2
Y <ϒ2 +V1+

1
4
R2V4 +RV5

•MSE(T2)< MSE(T
(9)

2 ) if µ2
Y +

V 2
5

V4
<ϒ2 +V1

•MSE(T2)< MSE(T
(10)

2 ) if
P2

12P42+P22P2
32−P12P32P52

4P22P42−P2
52

<ϒ2

6.4 Simulation

The same data used for simulation as in the Situation 1.
The percent relative efficiency (PRE) of estimators with respect to T

(1)
2 are calculated using

PRE(.,T
(1)

2 ) =
MSE(T

(1)
2 )

MSE(.)
× 100 (34)

The result of simulation is given in Table 5.
It is noted from Table 5 that the PRE of proposed estimator T2 when δα2

= 4.2 is maximum as compared to the PREs
of other considered estimators. For different values of W2 and k, the PREs of the estimators showed an increasing trend.
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Table 5: PREs of estimators for different values of W2 and k in Situation 2

W2 Estimator

PRE of estimators with respect to T
(1)

2
1/k

1/2 1/3 1/4 1/5

T
(1)

2 100 100 100 100

T
(2)

2 100.0522 100.0575 100.0627 100.0679

T
(3)

2 94.17814 94.18191 94.18505 94.18770

T
(4)

2 20.97770 20.97788 20.97803 20.97815

T
(5)

2 181.2213 181.2246 181.2274 181.2297

0.1 T
(6)

2 181.2735 181.2821 181.2901 181.2976

T
(7)

2 181.0575 181.0611 181.0640 181.0665

T
(8)

2 41.58202 41.58219 41.58234 41.58246

T
(9)

2 181.2213 181.2246 181.2274 181.2297

T
(10)

2 181.3287 181.3427 181.3563 181.3694

T
(δα2

=4.2)

2 212.7201 216.6192 220.6895 224.9426

T
(1)

2 100 100 100 100

T
(2)

2 100.0627 100.0784 100.0940 100.1097

T
(3)

2 94.18596 94.19342 94.19839 94.20194

T
(4)

2 20.97786 20.97809 20.97825 20.97836

T
(5)

2 181.2301 181.2379 181.2431 181.2467

0.3 T
(6)

2 181.2928 181.3162 181.3371 181.3565

T
(7)

2 181.0668 181.0750 181.0805 181.0844

T
(8)

2 41.58207 41.58223 41.58234 41.58241

T
(9)

2 181.2301 181.2379 181.2431 181.2467

T
(10)

2 181.3590 181.3990 181.4364 181.4724

T
(δα2

=4.2)

2 220.6984 234.0678 249.4709 267.4126

T
(1)

2 100 100 100 100

T
(2)

2 100.0731 100.0993 100.1254 100.1515

T
(3)

2 94.18420 94.18926 94.19220 94.19413

T
(4)

2 20.97777 20.97791 20.97799 20.97805

T
(5)

2 181.2286 181.2340 181.2372 181.2393

0.5 T
(6)

2 181.3018 181.3333 181.3626 181.3908

T
(7)

2 181.0652 181.0709 181.0742 181.0764

T
(8)

2 41.58198 41.58207 41.58212 41.58215

T
(9)

2 181.2286 181.2340 181.2372 181.2393

T
(10)

2 181.3790 181.4382 181.4951 181.5509

T
(δα2

=4.2)

2 229.3999 255.1317 288.5715 333.7979
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7 Situation-3

When non-response and measurement error present only on study variable with unknown µX . Following are the estimators
obtained:

7.1 Estimator

Redefine the general class of estimators defined in equation (17) as

T3 = [k13µ̂∗
Y + k23(µ̂

′
X − µ̂X)]

(

µ̂ ′
X

µ̂X

)δ3
[

exp

(

µ̂ ′
X − µ̂X

µ̂ ′
X + µ̂X

)]α3

(35)

where k13, k23, δ3 and α3 are constant.
The member estimators can be written as

1T
(1)

3 = µ̂∗
Y

2T
(2)

3 = k13µ̂∗
Y

3T
(3)

3 = µ̂∗
Y (

µ̂ ′
X

µ̂X
)

4T
(4)

3 = µ̂∗
Y (

µ̂X

µ̂ ′
X
)

5T
(5)

3 = µ̂∗
Y + k23(µ̂

′
X − µ̂X),

6T
(6)

3 = k13µ̂∗
Y + k23(µ̂

′
X − µ̂X)

7T
(7)

3 = µ̂∗
Y exp(

µ̂ ′
X−µ̂X

µ̂ ′
X+µ̂X

)

8T
(8)

3 = µ̂∗
Y exp(

µ̂X−µ̂ ′
X

µ̂X+µ̂ ′
X
)

9T
(9)

3 = [µ̂∗
Y + k23(µ̂

′
X − µ̂X)](

µ̂ ′
X

µ̂X
)

10T
(10)

3 = [k13µ̂∗
Y + k23(µ̂

′
X − µ̂X)]exp

( µ̂ ′
X−µ̂X

µ̂ ′
X+µ̂X

)

where k13, k23 are suitable constant for respective estimator.

7.2 Bias and MSE

The bias and MSE of the general class of estimators defined in equation (35) can be derived as

Bias(T3) = (k13 − 1)µY +

[

δα3

(

k23 +
Rk13

2

)

+
Rk13

2
δ 2

α3

]

(V2 −V6)

µX

−
k13

µX

δα3
(V3 −V ′

3) (36)

MSE(T3) = µ2
Y + k13

[

2R(V3 −V ′
3)δα3

− 2µ2
Y −R2(V2 −V6)δ

2
α3

−R2(V2 −V6)δα3

]

+ k2
13

[

µ2
Y +V1 +R2(V2 −V6)δα3

− 4R(V3−V ′
3)δα3

+ 2R2(V2 −V6)δ
2
α3

]

− 2k23R(V2 −V6)δα3
+ k2

23(V2 −V6)+ k13k23

[

4R(V2 −V6)δα3
− 2(V3−V ′

3)
]

(37)

where δα3
= δ3 +

α3
2

.

For the optimum values of k13 and k23 which is ko
13 =

ϕ33ϕ53−2ϕ13ϕ43

4ϕ23ϕ43−ϕ2
53

; ko
23 =

ϕ13ϕ53−2ϕ23ϕ33

4ϕ23ϕ43−ϕ2
53

, the minimum MSE of T3

can be obtained as

MSEmin(T3) = µ2
Y −

ϕ2
13ϕ43 +ϕ23ϕ2

33 −ϕ13ϕ33ϕ53

4ϕ23ϕ43 −ϕ2
53

(38)

where ϕ13 = 2R(V3−V ′
3)δα3

−2µ2
Y −R2(V2−V6)δα3

−R2(V2−V6)δ
2
α3

, ϕ23 = µ2
Y +V1−4R(V3−V ′

3)δα3
+R2(V2−V6)δα3

+

2R2(V2 −V6)δ
2
α3

, ϕ33 =−2R(V2 −V6)δα3
, ϕ43 = (V2 −V6), ϕ53 = 4R(V2 −V6)δα3

− 2(V3−V ′
3).

Minimum MSE of T3 can also be written as

MSEmin(T3) = µ2
Y −ϒ3 (39)

where ϒ3 =
ϕ2

13ϕ43+ϕ23ϕ2
33−ϕ13ϕ33ϕ53

4ϕ23ϕ43−ϕ2
53

.

The bias and MSE of the estimators T
(i)

3 ; i = 1,2, ..,10 upto the first order of approxmation given in Table 5.
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Table 6: Expressions for bias and MSE of T
(i)

3 ; i = 1,2, ..,10

Estimator Bias MSE/MSEmin and respective optimum value of constants

T
(1)

3 0 V1

T
(2)

3 (k13 −1)µY µ2
Y − µ4

Y

µ2
Y +V1

; ko
13 =

µ2
Y

µ2
Y +V1

T
(3)

3
R(V2−V6)−(V3−V ′

3)
µX

V1 +R2(V2 −V6)−2R(V3 −V ′
3)

T
(4)

3
(V3−V ′

3)
µX

V1 +R2(V2 −V6)+2R(V3 −V ′
3)

T
(5)

3 0 V1 −
(V3−V ′

3)
2

(V2−V6)
; ko

23 =
(V3−V ′

3)
(V2−V6)

T
(6)

3 (k13 −1)µY µ2
Y − (V2−V6)µ

4
Y

(V2−V6)(µ2
Y+V1)−(V3−V ′

3)
2 ; ko

13 =
(V2−V6)µ

2
Y

(V2−V6)(µ2
Y+V1)−(V3−V ′

3)
2 ,

ko
23 =

(V3−V ′
3)µ

2
Y

(V2−V6)(µ2
Y+V1)−(V3−V ′

3)
2

T
(7)

3
3R(V2−V6)−4(V3−V ′

3)
8µX

V1 +
1
4 R2(V2 −V6)−R(V3 −V ′

3)

T
(8)

3
4(V3−V ′

3)−R(V2−V6)
8µX

V1 +
1
4 R2(V2 −V6)+R(V3 −V ′

3)

T
(9)

3
(R+k23)(V2−V6)−(V3−V ′

3)
µX

V1 −
(V3−V ′

3)
2

(V2−V6)
; k23 =

(V3−V ′
3)

(V2−V6)
−R

T
(10)

3 (k13 −1)µY +
(4k23+3Rk13)(V2−V6)−4k13(V3−V ′

3)
8µX

µ2
Y − P2

13P43+P23P2
33−P13P33P53

4P23P43−P2
53

; ko
13 =

P33P53−2P13P43

4P23P43−P2
53

; ko
13 =

P13P53−2P23P33

4P23P43−P2
53

where P13 = R(V3 −V ′
3)−2µ2

Y − 3
4 R2(V2 −V6), P23 = µ2

Y +V1 −2R(V3 −V ′
3)+R2(V2 −V6), P33 =−R(V2 −V6), P43 = (V2 −V6),

P53 = 2R(V2 −V6)−2(V3 −V ′
3).

7.3 Efficiency Comparison

An estimator t1 of population mean µY is said to be more efficient than estimaor t2 if MSE(t1) < MSE(t2). Here we

have developed the conditions under which the proposed general class of estimator T3 is better than the estimators T
(i)

3 ,
i = 1,2, ..,10.

•MSE(T3)< MSE(T
(1)

3 ) if µ2
Y <ϒ3 +V1

•MSE(T3)< MSE(T
(2)

3 ) if
µ4

Y

µ2
Y+V1

<ϒ3

•MSE(T3)< MSE(T
(3)

3 ) if µ2
Y + 2R(V3 −V ′

3)<ϒ3 +V1 +R2(V2 −V6)

•MSE(T3)< MSE(T
(4)

3 ) if µ2
Y <ϒ3 +V1+R2(V2 −V6)+ 2R(V3 −V ′

3)

•MSE(T3)< MSE(T
(5)

3 ) if µ2
Y +

(V3−V ′
3)

2

(V2−V6)
<ϒ3 +V1

•MSE(T3)< MSE(T
(6)

3 ) if
(V2−V6)µ

4
Y

(V2−V6)µ
2
Y+V1(V2−V6)−(V3−V ′

3)
2 <ϒ3

•MSE(T3)< MSE(T
(7)

3 ) if µ2
Y +R(V3 −V ′

3)<ϒ3 +V1 +
1
4
R2(V2 −V6)

•MSE(T3)< MSE(T
(8)

3 ) if µ2
Y <ϒ3 +V1+

1
4
R2(V2 −V6)+R(V3 −V ′

3)

•MSE(T3)< MSE(T
(9)

3 ) if µ2
Y +

(V3−V ′
3)

2

(V2−V6)
<ϒ3 +V1

•MSE(T3)< MSE(T
(10)

3 ) if
P2

13P43+P23P2
33−P13P33P53

4P23P43−P2
53

<ϒ3

7.4 Simulation

The data used to perform simulation are: N = 5000, n = 500 n′ = 1000, X = rnorm(N,10,5),
Y = 1+ 3 ∗X + rnorm(N,0,1), y = Y + rnorm(N,0,5), x = X + rnorm(N,0,5), U = y−Y , V = x−X . For different
response rate, the result of the simulation is given in Table 7. For a better approximation, we have averaged the result
over 25000 iterations.

The percent relative efficiency (PRE) of estimators with respect to T
(1)

3 are calculated using

PRE(.,T
(1)

3 ) =
MSE(T

(1)
3 )

MSE(.)
× 100 (40)
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Table 7: PREs of estimators for different values of W2 and k in Situation 3

W2 Estimator

PRE of estimators with respect to T
(1)

3
1/k

1/2 1/3 1/4 1/5

T
(1)

3 100 100 100 100

T
(2)

3 100.0522 100.0575 100.0627 100.0679

T
(3)

3 70.72865 72.66183 74.35548 75.85153

T
(4)

3 30.61407 32.67473 34.61653 36.44945

T
(5)

3 119.0567 117.0296 115.3924 114.0423

0.1 T
(6)

3 119.1089 117.0871 115.4550 114.1102

T
(7)

3 114.6938 113.1822 111.9526 110.9329

T
(8)

3 55.61132 57.94931 60.05335 61.95686

T
(9)

3 119.0567 117.0296 115.3924 114.0423

T
(10)

3 119.1319 117.1094 115.4769 114.1316

T
(δα3

=8.1)

3 3568.4635 831.1187 507.0318 381.2519

T
(1)

3 100 100 100 100

T
(2)

3 100.0627 100.0784 100.0940 100.1097

T
(3)

3 74.35704 78.37690 81.30722 83.53811

T
(4)

3 34.61838 39.82651 44.26613 48.09564

T
(5)

3 115.3909 111.9448 109.7596 108.2503

0.3 T
(6)

3 115.4536 112.0232 109.8537 108.3600

T
(7)

3 111.9515 109.3379 107.6622 106.4965

T
(8)

3 60.05531 65.26997 69.28034 72.46040

T
(9)

3 115.3909 111.9448 109.7596 108.2503

T
(10)

3 115.4754 112.0440 109.8739 108.3798

T
(δα3

=8.1)

3 506.8538 272.8734 208.6849 178.6818

T
(1)

3 100 100 100 100

T
(2)

3 100.0731 100.0993 100.1254 100.1515

T
(3)

3 77.18481 82.11526 85.29341 87.51246

T
(4)

3 38.18531 45.60413 51.43299 56.13356

T
(5)

3 112.9082 109.1986 107.1452 105.8413

0.5 T
(6)

3 112.9813 109.2979 107.2706 105.9928

T
(7)

3 110.0720 107.2297 105.6385 104.6214

T
(8)

3 63.69005 70.41912 75.04403 78.41829

T
(9)

3 112.9082 109.1986 107.1452 105.8413

T
(10)

3 113.0024 109.3179 107.2901 106.0119

T
(δα3

=8.1)

3 314.3192 196.5229 161.3007 144.3721

From Table 7, it is clear that the PRE of the proposed estimator T3 at δα3
= 8.1 is maximum among the other estimators

with respect to T 1
3 = µ̂∗

Y . For increasing values of W2 and k, the estimators T 2
3 , T 3

3 , T 4
3 and T 8

3 increases while the estimators

T 5
3 , T 6

3 , T 7
3 , T 9

3 , T 10
3 and T

(δα3
=8.1)

3 decreases.
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8 Situation-4

When non-response and measurement error present in study as well as auxiliary variable with unknown µX . Following
are the estimators:

8.1 Estimator

Redefine the general class of estimators defined in equation (17) as

T4 = [k14µ̂∗
Y + k24(µ̂

′
X − µ̂∗

X)]

(

µ̂ ′
X

µ̂∗
X

)δ4
[

exp

(

µ̂ ′
X − µ̂∗

X

µ̂ ′
X + µ̂∗

X

)]α4

(41)

where k14, k24, δ4 and α4 are constant.
The member estimators can be written as

1T
(1)

4 = µ̂∗
Y

2T
(2)

4 = k14µ̂∗
Y

3T
(3)

4 = µ̂∗
Y (

µ̂ ′
X

µ̂∗
X
)

4T
(4)

4 = µ̂∗
Y (

µ̂∗
X

µ̂ ′
X
)

5T
(5)

4 = µ̂∗
Y + k24(µ̂

′
X − µ̂∗

X),

6T
(6)

4 = k14µ̂∗
Y + k24(µ̂

′
X − µ̂∗

X)

7T
(7)

4 = µ̂∗
Y exp(

µ̂ ′
X−µ̂∗

X

µ̂ ′
X+µ̂∗

X
)

8T
(8)

4 = µ̂∗
Y exp(

µ̂∗
X−µ̂ ′

X

µ̂∗
X+µ̂ ′

X
)

9T
(9)

4 = [µ̂∗
Y + k24(µ̂

′
X − µ̂∗

X)](
µ̂ ′

X
µ̂∗

X
)

10T
(10)

4 = [k14µ̂∗
Y + k24(µ̂

′
X − µ̂∗

X)]exp
( µ̂ ′

X−µ̂∗
X

µ̂ ′
X+µ̂∗

X

)

where k14, k24 are suitable constant for respective estimator.

8.2 Bias and MSE

The bias and MSE of the general class of estimators defined in equation (41) can be derived as

Bias(T4) = (k14 − 1)µY +

[

δα4

(

k24 +
Rk14

2

)

+
Rk14

2
δ 2

α4

]

(V4 −V6)

µX

−
k14

µX

δα4
(V5 −V ′

3) (42)

MSE(T4) = µ2
Y + k14

[

2R(V5 −V ′
3)δα4

− 2µ2
Y −R2(V4 −V6)δ

2
α4

−R2(V4 −V6)δα4

]

+ k2
14

[

R2(V4 −V6)δα4
− 4R(V5−V ′

3)δα4
+ 2R2(V4 −V6)δ

2
α4

+ µ2
Y +V1

]

− 2k24R(V4 −V6)δα4
+ k2

24(V4 −V6)+ k14k24

[

4R(V4 −V6)δα4
− 2(V5−V ′

3)
]

(43)

where δα4
= δ4 +

α4
2

.

For the optimum values of k14 and k24 which is ko
14 =

ϕ34ϕ54−2ϕ14ϕ44

4ϕ24ϕ44−ϕ2
54

; ko
24 =

ϕ14ϕ54−2ϕ24ϕ34

4ϕ24ϕ44−ϕ2
54

, the minimum MSE of T4

can be obtained as

MSEmin(T4) = µ2
Y −

ϕ2
14ϕ44 +ϕ24ϕ2

34 −ϕ14ϕ34ϕ54

4ϕ24ϕ44 −ϕ2
54

(44)

where ϕ14 = 2R(V5−V ′
3)δα4

−2µ2
Y −R2(V4−V6)δα4

−R2(V4−V6)δ
2
α4

, ϕ24 = µ2
Y +V1−4R(V5−V ′

3)δα4
+R2(V4−V6)δα4

+

2R2(V4 −V6)δ
2
α4

, ϕ34 =−2R(V4 −V6)δα4
, ϕ44 = (V4 −V6), ϕ54 = 4R(V4 −V6)δα4

− 2(V5−V ′
3).

Minimum MSE of T4 can also be written as

MSEmin(T4) = µ2
Y −ϒ4 (45)

where ϒ4 =
ϕ2

14ϕ44+ϕ24ϕ2
34−ϕ14ϕ34ϕ54

4ϕ24ϕ44−ϕ2
54

.

The bias and MSE of the estimators T
(i)

4 ; i = 1,2, ..,10 upto the first order of approxmation given in Table 6.
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Table 8: Expressions for bias and MSE of T
(i)

4 ; i = 1,2, ..,10

Estimator Bias MSE/MSEmin and respective optimum value of constants

T
(1)

4 0 V1

T
(2)

4 (k14 −1)µY µ2
Y − µ4

Y

µ2
Y +V1

; ko
14 =

µ2
Y

µ2
Y +V1

T
(3)

4
R(V4−V6)−(V5−V ′

3)
µX

V1 +R2(V4 −V6)−2R(V5 −V ′
3)

T
(4)

4
(V5−V ′

3)
µX

V1 +R2(V4 −V6)+2R(V5 −V ′
3)

T
(5)

4 0 V1 −
(V5−V ′

3)
2

(V4−V6)
; ko

24 =
(V5−V ′

3)
(V4−V6)

T
(6)

4 (k14 −1)µY µ2
Y − (V4−V6)µ

4
Y

(V4−V6)(µ2
Y +V1)−(V5−V ′

3)
2 ; ko

14 =
(V4−V6)µ

2
Y

(V4−V6)(µ2
Y+V1)−(V5−V ′

3)
2 ,

ko
24 =

(V5−V ′
3)µ

2
Y

(V4−V6)(µ2
Y+V1)−(V5−V ′

3)
2

T
(7)

4
3R(V4−V6)−4(V5−V ′

3)
8µX

V1 +
1
4 R2(V4 −V6)−R(V5 −V ′

3)

T
(8)

4
4(V5−V ′

3)−R(V4−V6)
8µX

V1 +
1
4 R2(V4 −V6)+R(V5 −V ′

3)

T
(9)

4
(R+k24)(V4−V6)−(V5−V ′

3)
µX

V1 −
(V5−V ′

3)
2

(V4−V6)
; k24 =

(V5−V ′
3)

(V4−V6)
−R

T
(10)

4 (k14 −1)µY +
(4k24+3Rk14)(V4−V6)−4k14(V5−V ′

3)
8µX

µ2
Y − P2

14P44+P24P2
34−P14P34P54

4P24P44−P2
54

; ko
14 =

P34P54−2P14P44

4P24P44−P2
54

; ko
14 =

P14P54−2P24P34

4P24P44−P2
54

where P14 = R(V5 −V ′
3)−2µ2

Y − 3
4 R2(V4 −V6), P24 = µ2

Y +V1 −2R(V5 −V ′
3)+R2(V4 −V6), P34 =−R(V4 −V6), P44 = (V4 −V6),

P54 = 2R(V4 −V6)−2(V5 −V ′
3).

8.3 Efficiency Comparison

An estimator t1 of population mean µY is said to be more efficient than estimaor t2 if MSE(t1) < MSE(t2). Here we

have developed the conditions under which the proposed general class of estimator T4 is better than the estimators T
(i)

4 ,
i = 1,2, ..,10.

•MSE(T4)< MSE(T
(1)

4 ) if µ2
Y <ϒ4 +V1

•MSE(T4)< MSE(T
(2)

4 ) if
µ4

Y

µ2
Y+V1

<ϒ4

•MSE(T4)< MSE(T
(3)

4 ) if µ2
Y + 2R(V5 −V ′

3)<ϒ4 +V1 +R2(V4 −V6)

•MSE(T4)< MSE(T
(4)

4 ) if µ2
Y <ϒ4 +V1+R2(V4 −V6)+ 2R(V5−V ′

3)

•MSE(T4)< MSE(T
(5)

4 ) if µ2
Y +

(V5−V ′
3)

2

(V4−V6)
<ϒ4 +V1

•MSE(T4)< MSE(T
(6)

4 ) if
(V4−V6)µ

4
Y

(V4−V6)µ
2
Y+V1(V4−V6)−(V5−V ′

3)
2 <ϒ4

•MSE(T4)< MSE(T
(7)

4 ) if µ2
Y +R(V5 −V ′

3)<ϒ4 +V1 +
1
4
R2(V4 −V6)

•MSE(T4)< MSE(T
(8)

4 ) if µ2
Y <ϒ4 +V1+

1
4
R2(V4 −V6)+R(V5 −V ′

3)

•MSE(T4)< MSE(T
(9)

4 ) if µ2
Y +

(V5−V ′
3)

2

(V4−V6)
<ϒ4 +V1

•MSE(T4)< MSE(T
(10)

4 ) if
P2

14P44+P24P2
34−P14P34P54

4P24P44−P2
54

<ϒ4

8.4 Simulation

The same data used for simulation as in the Situation 3.
The percent relative efficiency (PRE) of estimators with respect to T

(1)
4 are calculated using

PRE(.,T
(1)

4 ) =
MSE(T

(1)
4 )

MSE(.)
× 100 (46)

The result of simulation is given in Table 9.
It is envisaged from Table 9 that the proposed estimator T4 at δα4

=−3.4 is the maximum among the other considered

estimators. The estimators T
(4)

4 and T
(8)

4 showed decreasing trend with the increase in the value of W2 and k, while other
estimators increased, respectively.

From the simulation study on all four situations, it is clear that the proposed estimator T performs efficiently in terms
of having maximum PRE among the other considered estimators.
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Table 9: PREs of estimators for different values of W2 and k in Situation 4

W2 Estimator

PRE of estimators with respect to T
(1)

4
1/k

1/2 1/3 1/4 1/5

T
(1)

4 100 100 100 100

T
(2)

4 100.0522 100.0575 100.0627 100.0679

T
(3)

4 70.42313 72.07774 73.51722 74.78095

T
(4)

4 27.44957 26.70114 26.10791 25.62614

T
(5)

4 125.2628 128.5061 131.4118 134.0253

0.1 T
(6)

4 125.3150 128.5636 131.4745 134.0932

T
(7)

4 120.9022 124.6686 127.9914 130.9446

T
(8)

4 51.58248 50.47929 49.59535 48.87121

T
(9)

4 125.2628 128.5061 131.4118 134.0253

T
(10)

4 125.3431 128.5961 131.5117 134.1351

T
(δα4

=−3.4)

4 135.5507 141.2855 146.9188 152.4949

T
(1)

4 100 100 100 100

T
(2)

4 100.0627 100.0784 100.0940 100.1097

T
(3)

4 73.51909 76.89875 79.32988 81.16266

T
(4)

4 26.10714 24.89023 24.14011 23.63141

T
(5)

4 131.4157 138.5330 143.9006 148.0818

0.3 T
(6)

4 131.4784 138.6113 143.9946 148.1916

T
(7)

4 127.9959 135.9713 141.8643 146.3961

T
(8)

4 49.59420 47.75404 46.60133 45.81147

T
(9)

4 131.4157 138.5330 143.9006 148.0818

T
(10)

4 131.5156 138.6629 144.0611 148.2733

T
(δα4

=−3.4)

4 146.9262 163.6520 180.8812 199.5004

T
(1)

4 100 100 100 100

T
(2)

4 100.0731 100.0993 100.1254 100.1515

T
(3)

4 75.89734 79.98798 82.58436 84.37877

T
(4)

4 25.22579 23.94965 23.26317 22.83436

T
(5)

4 136.3887 145.4004 151.4199 155.7157

0.5 T
(6)

4 136.4618 145.4997 151.5453 155.8672

T
(7)

4 133.5891 143.4943 149.9810 154.5586

T
(8)

4 48.26539 46.30676 45.23597 44.56088

T
(9)

4 136.3887 145.4004 151.4199 155.7157

T
(10)

4 136.5085 145.5712 151.6425 155.9907

T
(δα4

=−3.4)

4 158.0662 186.8893 220.4046 263.3491
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9 Conclusion

In the present study, we have suggested a general class of estimators for estimating the population mean of the study
variable by using the auxiliary variable in four different situations viz Situation 1 and 3: When non-response and
measurement errors are present only on the study variable with known and unknown µX , respectively; Situation 2 and 4:
When non-response and measurement errors are present on both the study as well as auxiliary variable with known and
unknown µX , respectively. Some members of the proposed estimators in all situations have been obtained which are the

well established estimators like Searl’s (T (2)), Cochran’s (T (3)), Murthy’s (T (4)), Cochran’s (T (5)), Rao’s (T (6)), Bahl

and Tuteja’s (T (7) and T (8)), Kadilar and Cingi’s (T (9)) and Grover and Kour’s (T (10)) estimators. The expressions of the
bias and MSE of the proposed estimators have been obtained along with all other estimators in all situations. Also, the
conditions have been obtained under which the proposed estimators are efficient as compared to the other considered
estimators. Further, the theoretical results have been verified through a simulation study. The simulation results show that
the proposed class of estimators perform efficiently as compared to the usual estimator, Searl estimator, Cochran’s
estimator, Murthy’s estimator, Rao’s estimator, Bahl and Tuteja’ estimator, Kadilar and Cingi and Grover and Kour’s
estimator in terms of having maximum PRE with respect to usual unbiased estimator in all the situations and for different
values to W2 and k.

Overall, we recommend our proposed class of estimators which are efficient as compared to the well-known existing
estimators in different situations in the simultaneous presence of non-response and measurement error on both the study
as well as auxiliary variables.
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