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Abstract: Based on an exact integral expression for the risk, an asymptotic evaluation of the conditional risk is derived for distributions
with have unbounded supports, which, using Laplace’s method. Then, by integrating these asymptotic expansions, we evaluate the
asymptotic evaluation of the finite sample risk (the unconditional probability error). The finite sample risk for the Pareto and exponential

distributions are discussed as typical.
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1 Introduction

The nearest neighbor rule is one of the nonparametric
classification methods, the first study of this method was
suggested by Fix and Hodges [1], [2], and continued by
Cover and Hart [3] which they gave upper bounds for the
infinite sample risk R.. of the nearest-neighbor classifiers
such that, they proved R* < R.. < 2R*(1 — R*), where R*
indicates to the Bayes error, Cover [4] has shown that
Ry = R + O(m™?), where R, indicates to the finite
sample risk, and m is the sample size, Wagner [5] and
Fritz [6] treated convergence of the conditional error rate
for the nearest neighbor rule, Fukunaga and Hummels [7]

evaluated R, ~ R + B% , where I refers to
the gamma function and B is a constant. Psaltis et al. [8]
generalized the results of Cover [4] to d-dimensional
which, they proved that R, ~ Re + Y3 ,com /4 as
m — oo, where the coefficients c¢; are constants
independent of the sample size m, this was extended to
the case of multiple classes by Snapp and Venkatesh [9].
Irle and Rizk [10] found an asymptotic evaluation of the
conditional risk R, (x) (the probability of error
conditioned on the event that X = x) by using partial
integration and Laplace’s method.

There are many studies in different directions are
available for nearest neighbor rules, in addition, several
results on the convergence rates, e.g., Dasarathy [11],

Devroye et al. [12], Fukunaga [13], Biau and Devroye
[14], Déring et al. [15], and Zhao and Lai [16].

2 The finite sample risk

Let (X1,61),(X2,602), -+, (X, 0,) be a sequence of m
independent identically distributed random variables
(i.i.d.), where X; takes values in RY, and its corresponding
class 6; in a finite set T = {1,2,...,C}. After reordering
the data according to the increasing values of the
Euclidean distance || X; —x|| for fixed x, we obtain the
reordered data sequence in the form

(Xm,g(l)) , (x<2>,9<2>) e (X<m>,9<m>)_

Suppose that & is a mapping from R? to {1,2,...,C}, it is
called a classifier. The probability of misclassification is
P(6(X) # 6). Given an iid. training sequence
D,, = ((X(l),g(l)) , (x<2>,9<2>) e (X<m>,9<m>)) and
a new independent random variable (X, 0) with the same
distribution as D,,, which X € R? is an observed pattern,
and we wish to predict its corresponding class 6. The
nearest neighbor rule predicts 6 by the label of the nearest
neighbor X, i.e., by using a suitable tie-breaking, the
nearest neighbor rule assigns X to a class 0 with the

property HX_X(i) < "X—X(j)" forall i # j.
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In the following, suppose that f = pfi; + p2f> denotes
the mixture density, where )i, p; = 1, and the densities
fi are those of the class-conditional distributions F; which
are assumed absolutely continuous for each i € {1,2}. Let
S be its support in RY, B(p,x) = {¥ €R?: |x—x'| < p}
is the closed ball of radius p at x, and C = 2, i.e.
T ={1,2}.

The finite sample risk R, can be written in integral form
as follows, compare Irle and Rizk [10], and Snapp and
Venkatesh [8]. Assume that X’ is the nearest neighbor
feature vector in the training sequence D,, to the random
test vector X, and 6’ indicates the corresponding class
label to X'. Suppose P (6 # 0'|X = x,X’ = x) denotes the
probability of misclassification 8 by 6’ given X and its
nearest neighbor X’. Then

( #0|X =x, X' =X)

(9 =1,/ =2|Xx =x,X :x')
+P(9 =20/ =1|X=x,X'=X)
=P(0=1X=x)P(6 =2[X"=X)
+P(0=2|X=x)P (0 =1]X'=YX)
= % (A@AK)+AE)AE) )
By averaging P (0 # 6'|X = x,X’ = x') over X/, we obtain
Rn(X)=P(60+#6'|X =x)

P(G #£0'|X =x,X :x/) fn (x’|x) ax', ()

where R, (X) indicates to the conditional risk, and
fm (X'|x) indicates to the conditional density of X’ given
X = x. Thus, with p = |x’ — x| we obtain

fm(¥'|x) = P(one of the X;’s € B(p,x), and all others
¢ B(p,x) /(). that s

S (x/|x) =m (1 fP(X €B (|x’—x|,x))) fi&)
=m(P(|X—x|> |x/—x|))m71f(x/). 3)

Hence, by taking the expectation of P (6 # 6'|X = x) with
respect to X = x, we obtain

m—1

Rn=P(0+#6 :/P(9¢9'|X:x)f(x)dx, @)
s

After substituting (1) and (3) in (2), substitute (2) in (4),

thus

———

)+ fild) falx)) x
(P (|X—x|> |x/—x|)) ~dxdx. 5)

In this paper, an asymptotic evaluation of the finite
sample risk R,, was derived for support S = (f3,0), 3 > 0,
which, considering this in two cases for § > 0 and § =0,
respectively, i.e. for different supports S = (§,%),3 >0
and S = (0,00), and using asymptotic expansion by
Laplace’s method, we find the upper bounds of R, in
these cases. We look at the error estimates, and give some
contributions for which we compute upper bounds for the
Pareto and exponential distributions as typical.

3 Methods

We start to evaluate the finite-sample risk R, for a
two-class pattern recognition problem for support

§=(B,),p >0.

3.1 Support S = (B,0),>0:

From (5), the finite-sample risk R,, can be written in the
following form:

Rus = (m+ Dppa [ [ (@0 + () f2)
(P(IX —x| > |¥' —x|))" dx'dx
(m+1P1P2/ / (fi(x)
(P(]x - x|>|x —x|))mdxdx
= ( +1P1P2// (fi(x)

x|))" dx'dx
+ ( +1P1P2//(f1
)

(P(]X —x| > |« —x| )mdxdx
—I+J, (6)

)+ i) f2(x) x
)+ fi(X) fr(x)) x

X)+Ai()f(x) x

where the constants 31,8, > 0, and k = k(m) is a constant
depending on m,

e [

)+ fild) f2(x)) x

( (|X x| > [ fx|)) dx'dx, (7
and
J=(m+ 1)P1pz/km/ﬁm (A L)+ A1) ) x
(P(|1X —x[> [ —x|))mdx’dx. )

Firstly, we evaluate the asymptotic expansions for / and J.
From (7)

I = m+1 p]pzx

/ﬁ [/fz

er] )P1P2%

A fz(x) [/[32 ];1(x ) (P(|X—x| > |x'—x|)) dx'] dx
:@Hnmmévwmm+ﬁ@mmm, ©)

11—/ fax
x)=h= /fl

P(|X—x|> ¥ —x])"4d ]dx

where
P(|X —x| > [x' —x[))"dx', (10)
and

P(IX —x|> X' —x|))"dx. (11)
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For evaluating I} and I»:
I = /[;fz(x') (P(IX —x| > | —x]))" ax’

= [ ) (P(X 51> ¥ —x)))"a¥

+ /wfz(x/) (P(]X —x| > |« —x| )mdx/
)" dy

+ | LOPE>y)+PX <x—(y—x))]"dy

= LOMPX<y)+P(X>x+(x—

x—P
= [T h=p)P(X <x—p)+ P(X > x+p)]"dp
« [0 fzx+P)[ (X >x+p)+P(X <x—p)|"dp
7/ (fa(x—=p)+ falx+p)) x
PX<x—p)+P(X>x+p)]"dp
+/ | Pt p) (P(X > x4.p)"dp

X=pP2

= [ (o) + e o)
[1—(F(x+p)=F(x—p))|"dp
+ [, Pl Pt p)"dp

=1I+1, (12)

where

/ =P
= [ (ale=p)+ fala+p)) x
(1= (F(x-+p) = Flx—p))]" dp. (3

and

ncO

I = , el

xX—

—F(x+p)|"dp.

Similarly

Iz—/ fix

= [ )+ e o) x
1o (Fletp)—Flx—p))"dp

|X x| > | fx|)) X

+ [, Al p) = F(p)"dp

= I+, (14)
where

! xjﬁz
B[ (i=p)+hilr+p) x

[1—(F(x+p)—F(x—p))|"dp, (15)
and
54—x7~ﬂ@+pﬂ —F(x+p)]"dp.

Evaluating I , and I2
i [ plep)i=Fletp)"dp

1 oo
< —

—F(x+p)|"d
S (x+p)"dp

f@+pﬂ

- - - ]—F + m-+ d
pz(mﬂ)/x% oo 1=l p)" dp

o 1 o X — m+1
= P )

1
< - *(I’VhL])F(Z)Cfﬁz) 1
1)’ ; (16)

similarly

" 1
L < —
27 pim+1)

o~ (Mt DF(2x—ps) 17)

In (13) and (15), we put

P(vp) = —log(1—(F(x+p)~F(x=p)))  (I8)
— e PP = (1 — (F(x+p)—F(x—p))".

Then
=2
= [ (=) +fales p))e " Pdp

x—P>
- /0 O(x,p)e PP dp, (19)

By
B= [ (i=p)+filep)e T Pdp

7/):7[}2_
—Jo

where  Q(x,p) = falx — p) + falx + p) and
O(x,p) = filx—p) + filx+p).

We now estimate the asymptotic expansions of the
integrals of /] and 7} in (19) and (20), respectively, by
using Laplace’s method for fixed x.

)€7n1P(x7p)dp , (20)

Lemma 3.1.1 Suppose that the functions P(x,p),Q(x,p)
and Q(x,p) are defined as above, and the following two
conditions (1) and (ii) are held:

(i) The probability density functions f;, for each
i € {1,2}, have a power series expansion.

(i) For all sufficiently large m, the integrals of | and I}
converge absolutely throughout its range. Then

x—f
= [ e
N C(s+1a
 »—mP(x,0) LT )4Us —(N+1)
¢ Eg) e 0 (m ) '

and
x—P2
k= [ atepre e

o o mP(x0) il I'(s+1)d, ‘o (mf(NH)) 7

ms+1

where a; and @ are defined through the proof, and I’
refers to the gamma function such that
I'(x)= [y e 't 1dt.
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Proof: We evaluate the asymptotic expansions of I, such
that the evaluation method proceeds in several steps:
First, we estimate the asymptotic expansion of the
functions Q(x,p) and P(x,p), respectively, which, by
using the Taylor expansion for the functions f>(x+ p)
and f>(x — p), respectively, as p — 0, we obtain'

4
fZ(x+p)+f2(x_p):2f2()+2f2() +2f2 ()4|
p !
2008+
thus
s (2s) )
2077(x) o 5
okx.p)=Y, 27(.)92‘ =Y L)', (p—0),
5s=0 (ZS) s=0
(21
where
2147 (x)
IZH:W and b,+1 =0, for n=0,1,2,...,

similarly, use the Taylor expansion for the functions F (x+
p) and F(x — p), respectively, as p — 0, to obtain the
asymptotic expansion of the function P(x,p) as follows:

2f(x 21" (x)p?
F(x+p) —F(x—p)= i!)p—i— g!)P
2@ (x)pS =
A S(f)p +oo= Y Bpt (22)
' s=0
where o
Po(x) = Fi5t and Py, (x) = 0, forn =0,1,2, ..

Since —log(l —1) =Y, % fort € (—1,1), and by using
(22), we can evaluate the asymptotic expansion for the
function P(x,p), then

P(xap) -

=0
where Py(x) = 2f( ), Pi(x)=
Po(x) = § 17 (x) + 3./ (), ..
Note that P(x,0) = 0, and the differentiation of the
equation (23) takes the form

=)

Y (s+1)P(x)p*, (p—0).

s=0

P(x,p) = (24)

Second, we change the variable of integration.

Suppose that a number « can be found close enough to 0
to ensure that in (0,u], P'(x,p) is continuous and
nonnegative, and Q(x, p) is continuous.

Note that, P(x,p) is an increasing function in (0,u), so
we may take the function v = P(x,p) — P(x,0) as new

integration variable in this interval. Thus, the two
functions v and p are continuous of each other and

u A
emP(x,O)/ Q(X7P)e mP(x,p)dp = / g*”“’f(v)dv
0 0

where Z = P(x,u) —

P0). f(v) = (P} = Fie)

In the following, we do not discard the term P(x,0)
(recall that P(x,0) = 0) in order to show that the
argument is also valid for P(x,0) > 0.

since

By Lagrange inversion formula [17], and

v = P(x,p) — P(x,0) = Y2 ,P(x)p**!, we have an
expansion of the form:
p=)Y) Cv' (v—0),
s=1

W“maﬁﬂ%slwmw] ,

p
h(p) = (Lo Ps(x)p*) !
Note that

c 4P} —2PyP;
3= T 555 -
2P

After substituting this result in (21) and (24), and use

f(v)= 19,((;‘;)) we obtain

()= Y bp* (p—0),
s=0

where
ly 1Py — 2lyP
bp=—, bj=———
0 PO ) 1= P2 )
P lh —3PyPly — 2POP1]1 + 4P210
by = p ...
Then

v=%o (z)

—Zb (CV+Cv* + G0 )’
=0
—bo+blclv+(blcz+b2c2)v +.

—Zas (v—0),
where ay = by, ay =b|Cy, ar =b,C, +b2C,2,--- , hence
a(): f—‘z alz—é
f’ I f’ I I I
g = 22 LI h) _ALL AL b
27 of 8f4 8f ’
_ B@APHAf-AF)
8f v

Third, we compute the asymptotic evaluation on the range
of integration (0,x — ;). We start to compute the
asymptotic evaluation on the range (0,u).
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Let the remainder term fy(v) be defined by fiy(0) = ay,
for each positive integer N, and

N—1
v) =Y a0’ + 0V fy(v) (v>0). (25)

Then

[ e sy
_/ <Zasv + o fy (v ))dv
:/ e MY Z asvsdv+/o e "N fy(v)dv

- Z as (/ "y ‘dv—/z ) ‘dv)

Z
+/em1)N )dv
0

fZFSle)mHI ZFs+1Zm) +l
z
+/ e*ml) NfN( )
N lo ( )
— I'(s+1)a
- Z?) —7 —Ava(m) +Axa(m)
=
where
N—1 a,
AN,l(m) = Z F(S+17Zm)m, (26)
s=0
’ oV
Awa(m) = /0 e """ fy(v)dv @7
Since Tlan) ~ eV S o
fixed o and large m, then
e*Zm
An1(m) =0 ( ) . (28)
m

Also, since Z is finite and fy(v) is continuous in [0,Z],
then |fy| is bounded, as v — 0, that is fy(v) = O(1), it
follows that

Z 1
AN,Z(m) _ /0 efm‘l)vNO(l)dD =0 <W) . (29)

We now derive the asymptotic evaluation on the range
(H,X - ﬁZ) :

For the range (u,x — f3;), Suppose M is a value of m such
that I{(m) is absolutely convergent and define
n= inf[u,xfﬁz) {P()C,p) - P()C,O)}

Since P(x,0) = 0, and P(x,p) strictly increasing in p
from (23), we thus obtain (P(x,p)— P(x,0)) > 0 for all
p > 0, so n is positive. For restricting m > M, we have

mP(x,0) = (m—M) (P(x,p) — P(x,0))

+M (P(x,p) — P(x,0))
> (m— M)+ MP(x.p) — MP(x,0).

mP(xvp) -

then, we obtain

x—p
emP(x,O)/ 2 Q(X,P) —mP(x,p dp’

x—Pa
Q(x,p)[e M P)dp. (30)

ef(me)TH»MP(x,O) /
u

The proof of lemma 3.1.1 is completed, if we take m large

enough to guarantee that the right-hand sides of (28) and

(30) are both bounded em ™! for an arbitrary number € > 0

and this is always possible since Z and 7 are positive. Thus

s
I = / Q(x,p)e ""*Pdp
0

N—-1 r 1)ag
om0y Lot las (m ™), e
5s=0 m

similarly

—pr
/ O(x.p)e ""Pdp
0

N-1 F(SJF 1)0/
 »—MmP(x,0) s —(N+1)
e E TS +0 (m ) , 32)

L
§=

Hr=nr" _anfrr-nr"
az_ 2f+ 1 8f41 — 1 8]4 1 )

SBEALH R
e o
Now we evaluate J, from (8)

1=+ [ [ (AEAE) T AE)AE)
(P(1X — x| > |x' —x[))" dx'dx
S(m+1plpz/ filx [/ f(x dx}dx
+(m+1)p|pgé Hx [/[32 fil dx]dxw
< (m—i—l)plpz/k fl(x)dx—l-(m—i—l)plpz/k Sfr(x)dx
= (m+ Dpipa | A0+ o) d, (33)
since P(|X —x| > [¥ —x|) < 1, and f1(x') and f>(x') are
density functions.
Theorem 3.1.2 Assume that the conditions for lemma

3.1.1 are satisfied for all N, that the expansions (21), (23)
and (24) are held. Then

kT, 2f1f2
Ry < PIPZ/B |:€ nP(x0) ( ff
J By

_ I
a3 = —3a, =

f
L (AL 2L f S
m? 414
1 (26 (AL =200 +f AT
m>\ f 454

N-1 L
+(m+1)23 ST+ o(m” ))]dx
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U I
+ f( ) (m+1) (2x7[32)dx +L ﬁ+f1f_f1f
m3 f 4 f4

<m+1>p1p2 / (A () + A ) d

where Ly = pipal (s + 1) (M%fzaé), and ay,d), as in 1

lemma 3.1.1.
Proof: From (31) we have

—! (54 1)ay

N—1 a )
+(m+1)§3 D(s+1) -2 (m )]
+_e*(m+])F(2X7ﬁ2). (37)

P1

Substituting (36) and (37) in (9) we obtain

N
1 = 1 —mP(x,0) X " /"
(m+ D = (m+1) e sg?) ms I§p1pz/ filx) l o (fz +i (fo 4fo )
B f 4f
+0(m )| L (h Rr-hf
2 —f
= (m+ ])eme(x,O) [% + % % Jr% 7 + ZT
N—1 a, v N—1
+§3F(s+1)m+, (m ) +(m+1)s:z‘§r(s+1) s+1+0( )
= eme(x,O) |:(m+ 1) f_‘Z — (m+ ])é +ie(m+1)F(2xﬂz):| dx
m f m2 f )2
2m+1 " ! -k 1 "o "
+ (’1,1713 ) <g—;+f72f8f{2f ) +P1P2./ f(x) l —mP(x0) (J; JrW <f_1f4f{]f )
N—1 I U
- h  HhIf-hf
+(m+1) S;FSnLl) S+l+0(m N) +_<7'+%>
R W e Ve N d
= ¢ MP(x0) 7+ﬁ %) +(M+1)SZZ3F(S+1) SJrl-f—O( ))
L (fh BB 1 <m+l>F<2sz)} dx. 38
T <7+ 414 ) e ) oY
N—1 Then, substituting (38) and (33) in (6) we obtain
+m+1) Y W+0(nﬂv) . (34) )
5= m R < / [ —mP(x,0) (2f1f2
’ m+1 > P1P2 e
similarly, from (32) we have By B { .,
L (AL =200 +H A
!/ —m. x f f f ff +—
] v ) m2< v L
" 1 (2 -2
(5 S L ( f}fz . (flfzf f;ﬁf +4; fzf))
m\ f 474 N
N-1 / - L -N
+m+1) Y F(;;ll)as +o(m™)|. 35) Hm+1) §3 ot O )ﬂ &
s=3 k
Using (34) and (16) with (12) we obtain ), Flx)em (mtDF@h) gy
1
o mP0) [ 2 HE-hf B
(m+ 1)l < PO T +— 2 4f42 ) +(m+ 1)P1P2/k (f1(x) + f2(x)) dx (39)
1 (5 fzf—fzf” where Ly = pipal (s +1) (f%la“}fza;).
Jr% 7 + T
v 11"( N In the following corollary, the upper bounds of the risk
— 1 (s+41)a N are given in the case P(x,0) = 0.
Hm+1) ; mstHl +O(m ) Corollary 3.1.3 Under the conditions in Theorem 3.1.2
1 ‘ and for P(x,0) =0, i.e., e ""*0) = 1, we have
_i__e*("H‘l)F(ZX*ﬂz)’ (36) , ., .,
. P . , “12fifs | fifaf —2fif +hHAS
similarly, using (35) and (17) with (14) we obtain Rpt1 < pip2 I + Aml
(mt 1) I < e mPw0) [ 1 +_ WI=hf" BAAP RG2S
f 4f4 m3f4
@© 2022 NSP
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N-1

+(m+1) Y €+l+0( )] dx

s=3

+ f( ) (m+1)F (foﬂz)dx

+(m+ 1)pips / (i) +fE)dx,  (40)

where Ly = p1poI' (s + 1) (%fﬂ’s)

Since R = [g; %dx, then the upper bound of R, |
can be written in the form

pip2 /k <f1f;’f— 26 +flAf

R <R
m+1 = + mz 4f4

pip (K (8ARLS A+ Ahf=205f + 1 Af
L /]< = )d

m
k N—1 L
+P1P2/ﬁ (m+1) ) SH"‘O( ) | dx
1 s=3 M
k

+. A F(x)e™

o+ Dpipa [ (A0 + ) de
Error Estimates 3.1.4
We can see from the proof of the lemma 3.1.1, compare

Irle and Rizk [10], and Olver [18], that the Nth truncation
error of the expansion (31) can be expressed as

P2 —mP(x,p) ﬂnP(x.O) S r as
| ot pre P dp — e 0 Y (s 1)

Ozl
x,p)e PPl dp. (41)

(m+1)F(2x-B2)

mP(x,O)AN | (m) + eme

=e
+./:7ﬁ2Q(

where u is a number in (0,x — f3,] that satisfies the criteria
of lemma 3.1.1, and the terms Ay ;(m) and Ay, (m) are
defined by (26) and (27), with Z = P(x,u) — P(x,0). Then
if u=x— P, and P(x,x — ) = o, we obtain Z = oo.
Therefore the first error term e~ WO)ANJ (m) in (41) is
absent (If the requirement in the proof of the lemma 3.1.1
that # and Z be finite does not apply in (41)). In other
cases, we have

efmmot
I'(a,m) <
( ’m)_m—max(oc—l,O)’

(m > max(o — 1,0)),

(42)
where I'(a,m) refers to the complementally incomplete
gamma function, and can be taken the form:

I'(o,m) = e ™m*" 1(1+( n:])+(a—1’7)1(2a_2)
+...+(O‘—U(Oﬂ—ni)v--l-(a—NJr]))
+An(m),

where N is an arbitrary nonnegative integer, and

Av(m)=(oc—1)(¢—2)---(at—N) /me—tta—NHdt'

Jm

Then
(¢—1)(—2)---(at—N)e "m*N

m—o+N+1
(m>a—-N—-1>0).

[An(m)| <

)

For the case N = 0, we have
I'(a,m) < <= aﬂ,((x > 1,m > oo — 1), and therefore
I'(1,m) < e ™ for the special case o = 1, m > 0. Then
we obtain (42).

Substituting (42) in (26), we obtain

Plr0 6me()cu)N 1 . ay
e Oy n)| < 2o Bz (m> ).
: o

where Z = P(x,u) — P(x,0), and oy = max{(N —1),0}.
By the following method, we show that the second error
term e P9 Ay 5(m) is bounded. Let oy is a number

such that the function vVfy(v) is majorized by
|VV v (0)| < |an|vNe¥?. Then

Z A
/ eimv‘l)NfN(‘U)d’U < ‘/ |aN|e*(mfGN)vadv
0 0

jan |
SF(N—H)W, (m > oy). (43)
Note that, the best value of oy is given by
ON = SUP(g) { YN (V)}, Where yy(v) = Lin %]Z)gv) ’

and the bounded (43) has the property of being
asymptotic to the absolute value of the actual error when
m — oo. But the previous approach fails when oy is
infinite. This happens when ay = 0, so we would proceed
to a higher value of N at this case. If ay # 0, then the
failure occurs when yy (V) tends to +ooas v — 0.
But for small v, we have from (25) that:
UNfN(U) _ aNDN+1 +aN+IDN+2 4.

2
Therefore yy(v) ~ Gt 4 <2 — aZI\Zz—JENI V-
For the tail, the inequality (30) can be used, the integral
on the right-hand side being found numerically for a
suitably chosen value of M.

Now we evaluate the finite sample risk for support
S =(0,0).

3.2 Support S = (0,00) :
Since

Ruir = (m+ Dpipa [ [ (@A) + () f2()
(P(1X —x| > |« —x|))" dx'dx.

Then Ry, for support § = (O o) takes the form:

=t 0pp [ [ (AW AR 0)
(P(IX =] > ¥ —Xl)) dx'dx

Rm+1
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(m+1P1P2// (fi(x)
(P(IX —x| > |¥' —x|))" dx'dx

)
+<m+1p,p2/ / (@A) +i(X)fAE) x
)

(P(IX —x| > |¥' —x|))" dx'dx.

Then, by using the same method in subsection 3.1 with
B1 = B> = 0 we obtain the following theorem:

Theorem 3.2.1

Let the conditions of lemma 3.1.1 be satisfied for all N,
that the expansions (21), (23) and (24) are held. Then

k
Ry < Ple/O |:6me0 <2f}f2

il <f1fz”f 2 faf + ot
2
m

474

L (20h  (ABF 20+ f S
my\ f 44

n / —(m+)F(2x) g

+(m+ 1)P1P2/k (fi(x) + fo(x))dx

where Ly = p1pal(s + 1) (f‘a%fﬂé), k = k(m) is a

constant depending on m and as,a} are defined as in
lemma 3.1.1.
Proof: This is immediate from theorem 3.1.2 with

Bi=pB=

Corollary 3.2.2 Under the conditions in Theorem 3.2.1
and for P(x,0) = 0, we have

k
Ryt1 < PIPZ/O KZf}fz

s <f1fz”f 2f L f
2
m

474

L (2f1fz N (flf;f— 2fifof! +f{’fzf>>

m>\ f 4f

¥ )] dx

+(m+1)z3 LY+1+0(

n / —(m+)F(2x) g

Hom+Dpipa [ AW+ @)

where Ly = pip2l'(s+ 1) (f‘a%fﬂé), k=k(m) is a

constant depending on m and ay,a) are defined as in
lemma 3.1.1.

X)+ () f(x)) x

4 Results and discussion

In preceding section, an asymptotic evaluation of the
finite sample risk R,, for distributions having unbounded
supports S = (f,0),8 > 0 and S = (0,%) are derived
((40) and (44), respectively) by using the Laplace’s
method, such that we found an exact integral expression
for I} and 7} in the form [¢Qe ™", where Q and P are
nonnegative functions, we then applied Laplace’s method
for large m. We discussed the error bounds for this case.
Some of the problems that came to us are related to find
an upper bounded of the risk R, for distributions having
unbounded, such that the integration at the boundary of
the domain of the integration (at infinity in our cases) is
not easy to handle, so we divided the integrals /; and I,
into two parts I{, I{ and I5, IJ, respectively, and
appropriate values of k(m) were chosen to obtain a good
approximation of the upper bounds.
In the following examples, we find upper bounds of the
risk R, of the Pareto and exponential distributions as
typical for distributions having unbounded supports
= (B,0),B > 0 and S = (0,0), respectively to explain
the theoretical results for our work, and evaluate some
values of R, numerically for those in tables 1-3, for
which we use the first three terms in the expansion of the
risk R,, to calculate. For the Pareto distribution, we
choose k(m) = ma, where a > 0 denotes a shape
parameter, also, choose k(m) = m for the exponential
distribution.

Example 4.1: (Pareto distribution)

We will derive the upper bounds on the finite sample risk
of the Pareto distribution as typical, i.e., the case
S=(B,),B > 0, so that it can often be used as a modal
for heavy-tailed data.

Assume that fi(x) = jgf i]l for x > B;,i = 1,2 respectively,
such that the shape parameters o; > 0 and the scale
parameters 3; > 0 for i = 1,2. Define k = k(m) be a
constant depending on m and without loss of generality
f1(x) = max {fi(x), f2(x)}.

We evaluate the risk R, of Pareto distribution for: (i)
Same shapes and different scales, (ii) Same shapes and
scales, (iii) Different shapes and scales, and (iv) Same
scales and different shapes.

(1) Same shapes and different scales.

Taking oy = ap = « say, in equation (40), we get

fnfé'f*anfzf” + f1 fof =0, then

Rpy1 < 2P1P2/k de—k% /‘k #dx
+/ —(m+1)
o+ Dpipn [ () + o) d

N-1
+(m+1)171172/[: <Z fﬂ +0(m~ )) dx

s=3

JE(2x=B2) gy
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_P1paBiBY <2+ L) [L _ L}
= (p1BE+ p2BY) m? ) [ B ke
|:ef(m+1)F([31) _ ef(m+1)F(k):|
+

(m+1)
(m+1)p1p2 [BY + By
k(x

N L
+(m+1)P1P2/B] =

s=3

+

+0 (mN)> dx,

fif2 gy —  OBEBT [L,L}
where fﬁl dx = (BB |BE T FE

/.kf(x)ef(mH)F(Zx*Bz)dx < /kf(x)e,(mH)F(x)dx
! 1
k

Bi
(m+1)F(k):|

3

[e—<m+1>F</31> e

(m+1)

(Since f; = max{fi,f>»} = B > Ba, hence we have
F(ZX* ﬁz) Z F(x) > giF(xfﬂZ) S e*F(x))

i a+ o
I (0 + ) ax = L
Here, we can choose a suitable k = k(m) =m

(i) Same shapes and scales.
The result of this case is immediate from (i) by substituting

Bi = B> = B, say.
(iii) Different shapes and scales.
Let oo > o, we obtain

k
1J2
Rpus1 < 2P1P2/ de

P1P2/ (flfzf 2f1fof + 11 fof

Z/a.

+

A2 Iz
L P /k 2111, flfzf 2f1f + 1 Af
m g\ S 4t

_|_/ —(m+DF(2x=P2) 4,
+(m+1)pipa / (i () + fa(x)) dx

ok [N—1 LS N
+(m+1)p1p2./ﬁ W—FO(m ) | dx

1 1 1
< pZﬁ ( ﬁ) —2 ka2:|
Ple(Ml M) 1+ l 1200 —00) (2061*062)}
4m2(2061 ) m !
p1p2M3 1 (Bay—2ap) _ p(Bon—2m)
— e (1+= 1—20
m2(3a1 72062) ( m) {k ﬁ }

|:ef(m+1)F([31) (m+1)F(k)}

+ (m+1)

o %0
1 2
+(m+1)p1p2 [W + k72]

k(NS
+(m+1)p1p2/ Z H]JrO( ) dx,
B \ =3 M
where

kdeg ‘kflfzdxzﬁ {L_L]’
B f JB P11 P

BE i
() ()"

(m+DF(2x=B2) gy evaluate as in part (i), and

| A+ ) dr=

f[sl f(x)e”
kK fifsf— 2f1f2f +f1f2f

flfz fl
JBi f3 N +/

/fzd +/ de

_ap /fzfld /fzfzd

M, (k(Zoq o) _ ﬁl(Zal )
- (zal - az)
M, (k(2a1—a2) _ [3](20‘1*&2))
R (zal - 062)
M3 (k(3a172a2) _ ﬁ](3a]72(x2))
(3o —20m) ’

where f = p1fi + p2fa > p1fi =
77] S }l (ZX*BQ) > F( ) 7F(2)C7ﬁ2) S e*F(x)
x — B > 0 from (12), and

such  that
o - a0
M, = 0‘2(0‘2“2)# M = a zpl)“2(‘zlt(lx)l(“l+2)ﬁz
ai B, ai B,

2[12062(&24»1)3(2(124»2) Here we can choose a

i B,

3

suitable k = k(m) = m?™ .
(iv) Same scales and different shapes.
The result of this case is immediate from (iii) by
substituting B; = B, = B, say.
Example 4.2. (Exponential distribution)
Assume that fj(x) = Ae %" for x,A; > 0,i = 1,2, and let
k = k(m) be a constant depending on m and without loss
of generality fj(x) = max {fj(x), f>(x)} for every point x
such that A, > A,. From (44) R, takes the form:

k
Ript1 SZPIPQ/ de

ﬁl
flfzf
[31 1 -

Lol f<fi—

E} E}

2a2

and M3 =

P2 / <f|fzf 2115f +f1fzf>

4m? Jo f4

pipr [Y(2fifs  fifyf—2hhf 1 A
o3 /o < f " 4rt )

+/ f —(m+1)F d
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(1) + o)) dx
N—1
+(m+1)P1P2/Ok<Z €+1+0( ))dx

s=3

!
<pm <2+ —3) [1- 7]
m

Pip2A2 1 1 (1 —2171))
B 60 < S U TR Y e S 8 VA
+4m2p?(az_le)( +m) (,112 m )"

| — o~ (2h—3A)k

+(m+ 1)171172/1{

2p1p3As < 1 ) — (2320 )k

14— ) [1— e (@3
Y, )\ Tm 1 ]
{1 _ ef(mwtl)F(k)}

+(m+1 {eillk + eil?k}
(m+]) ( )PIPZ

k N—1 LS N
+(m+l)p1pz/0 Y — +0(m™") | dx,

s=3

where

kf1f2 k fifp
Jo dx < Jo 2 dx

=, fo doe M dx = p— (1—e

/ fifsf =2R5F + 1 hf
0 1

:/f1f2d+/f1 dfz/f'ﬁf dx
Jo

%(/ fzd+/f1f2d _ap /f2f1d

7lzk)

Jaf
-2 2 f—32dx>
LA g, ]k (a—241)x ]
= — | [ZZe R 2Mx| (1 -2p)) | Age” P20
ri (hlz 0 ( 1){ ’ }0
24 g
2 [_26(212311)X:| )
AP 0
A3 {1 (A QA])k}

p%llz (),2 — 23,1)
(1= 2p [1—e V2]
P} (A —2A4)
2paA [1 _ 67(21273A])k}
O PA A -34)

/kf(x)e*(mH)F(Zx)dx < /kf(x)ef(mH)F(x)dx
0 0
ef(erl)F(k)}

-l {e<m+1>F<x)}"{l
(m+1) 0 (m+1)

/k°° (filx)+ fa(x))dx = e Mk gk

Since f_Plfl +p2fa > pi1fi = jlf < ﬁ»f <fi=
7 < b (such that fi(x) = max {fi(x),/2(x)}), and

3

F(2x) > F(x) = e P20 < o= F)
3
Here we can choose a suitable k = k(m) = log (m e ) .

Note that, in the case A; = A, = A say, we have

fifs f=2f1faf" + fi fof =0, then equation (44) takes
the form:

k kD
Riut1 < 2p1p2 / deer’;l;z /0 f}fz dx
+/ f m+1 d

k N—1 LS N
+(m+1)l71172/0 Y o +0(m™) | dx.

s=3

We can choose a suitable k = k(m) = m.

5 Conclusions

We derived an asymptotic evaluation of the finite sample
risk R, for distributions having unbounded supports by
using Laplace methods, and evaluated upper bounds for
the risk R, of nearest neighbor of Pareto and exponential
distributions as typical.

The examples 4.1 and 4.2 presented in section 4 (see also
tables 1-3) indicate that the finite sample of the nearest
neighbor risk R, approaches its infinite-sample limit R,
and thus, the asymptotic series expansions presented in
the theorems 3.1.2 and 3.2.1, and corollaries 3.1.3 and
3.2.2 helps us to use the finite sample (for large m)
instead of the infinite sample.
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Tables

Table 1: Numerical values of R, 1) and R for some different

Table 2: Numerical values of R(,,, 1) and R, for some different

values of B, when @ = 1,8 = 1 and p; = 0.5 for Pareto
distribution in the cases (i) and (ii).
m ﬁz =02 ﬁz =0.5 ﬁz =1
1.0x 10> 0.169680083  0.3370876667  0.505000250
1.0x10%  0.166966801  0.3337083752  0.500500001
1.0x 10*  0.166696668  0.3333708338  0.500050000
1.0x 10°  0.166666967  0.3333337083  0.500000500
1.0x10°  0.166666667  0.3333333337  0.500000500
R 0.166666667  0.3333333333 0.5

Table 3: Numerical values of R, 1) and Re. for some different

values of pj, when A} = A, = 4 =1 for exponential distribution.

m p1 =02 p1 =03 p1=0.5

1.0x 107 0411372837 0.511468293  0.5915446569

1.0x 102 0.329901310  0.429901410  0.5099014901

1.0x10°  0.320999002  0.420999002  0.5009990015

1.0x 10*  0.320099990  0.420099990  0.5000999900

1.0x 10°  0.320001000  0.420001000  0.5000010000

1.0x 10°  0.320000001  0.420000001  0.5000000010
Ro 0.32 0.42 0.5

His current research

values of B, when @ = 1,8 = 1 and p; = 0.2 for Pareto
distribution in the cases (i) and (ii).

m ﬁz =0.2 Bz =0.5 ﬁz =1
1.0x 10> 0.1796992889  0.2690641333  0.32320116
1.0x10°  0.1779681930  0.2669068801  0.32032000
1.0x10*  0.1777969779  0.2666906664  0.32003200
1.0x 100 0.1777779700  0.2666669067  0.32000032
1.0x10°  0.1777777782  0.2666666668  0.32000000

Re 0.1777777778  0.2666666667 0.32
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