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Abstract: Applying a new fractional derivative, the Λ - fractional derivative, with the corresponding Λ -fractional space, fractional

differential geometry is discussed. The Λ -fractional derivative satisfies the conditions for the existence of a differential, demanded

by the differential topology, in the Λ -fractional space, where the Λ -derivatives behave like the conventional ones. Thus, fractional

differential geometry is established in that Λ -space in the conventional way. The results are pulled back to the initial space. The present

work concerns the geometry of fractional curves and surfaces.
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1 Introduction

Fractional analysis has recently been considered as an indispensable tool in describing real life models. The origins of
fractional calculus go back to Leibnitz [1], Liouville [2] and Riemann [3]. Fractional calculus has been employed to
describe more intricate real world models ever since. While conventional mathematical analysis is almost restricted to a
local description of a function and fractional analysis is inherently a global one, the latter is considered as more suitable
for describing the real world. In fact various viscoelastic responses have been described by fractional differential analysis
[4], as well as other physical problems, dependent upon time derivatives [5]. Moreover problems described by fractals
are better expressed through fractional analysis [6]. Also various control problems have been analyzed through
Fractional calculus. Extensive information about fractional analysis and fractional differential equations are explicated in
[7,8,9,10]. Lazopoulos [11] has introduced an elastic uniaxial model based upon fractional derivatives. This model
succeeded in lifting Noll’s axiom of local-action. Hence fractional analysis from the solely time dependent problems,
extended to space dependent ones, just for considering inhomogeneous space fields. Nevertheless, Carpinteri et al. [12]
have also introduced a fractional approach considering non-local mechanics. Let us point out that many researchers
suggested Fractional Calculus for solving problems in mechanics, [13,14], Jumarie [15,16]. Drapaca and Sivaloganathan
[17], Sumelka [18] have adopted fractional analysis in problems of continuum mechanics with microstructure,where
non-local elasticity is necessary. Another favorite field of fractional continuum mechanics is hydrodynamics [13,19].
Moreover, another application of fractional calculus was the description of peridynamic theory [20,21,22]. Nevertheless
in mechanics, viscoelasticity is the main area for fractional calculus applications [4,5]. In addition fractional differential
geometry describes successfully rigid body dynamics, in holonomic and non-holonomic systems [23,24,25,26].
Differential geometry which is revisited by fractional calculus might be found in quantum mechanics, physics and
relativity [27,28]. Theory, along with applications in various physical areas, may also be found in various books [8,9,10,
29]. Different aspects concerning fractional geometry of manifolds [13,15,16,23,30] have been presented. Further,
researchers attempted to apply fractional differential geometry to various fields of mechanics, quantum mechanics,
physics, relativity, finance, probabilities etc. Moreover, fractal functions exhibiting self-similarity are non-differentiable
functions but they exhibit fractional differentiability of order 0 < γ < 1. See Ref.[6,37,38,39]. However, mathematicians
are doubting about the basis of fractional geometry, since the various and many fractional derivatives do not satisfy the
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requirements of differential topology for forming differentials and able to formulate geometry. Adda [7,31] has proposed
for the fractional differential instead of the classical one, where g(x) is the fractional derivative of a function f(x). In the
first attempt to establish fractional differential, Lazopoulos [32,33] introduced the L-fractional derivative. Nevertheless,
even that fractional derivative failed to satisfy the differential topology conditions for existence of a fractional
differential. Lazopoulos then [34] introduced the Λ -fractional derivative that conforms with the conditions required by
differential topology in the Λ -fractional space conjugate to the original one. Then the various results are pulled back to
the original space. No differential geometry is valid in the original space. Hence development of fractional differential
geometry is possible only in the Λ -space and the various results may be transfer may be transferred to the original space.
Lazopoulos [40] has already presented the Λ -fractional beam theory, using the proposed Λ -fractional curvature of the
elastic curves of the beams. Further, the fractional deformation of a bar based upon the Λ - fractional derivative has also
been presented [41]. Recently, the fractional plane elasticity theory with biharmonic functions has been presented [42],
along with the discussion of Fractional Taylor’s Series and the Variational Euler-Lagrange equations[43]. In the present
work, fractional differential geometry is formulated in the Λ -fractional space for curves and surfaces. Furthermore the
various results may be transferred back to the original space. Specifically, the fractional differential geometry of curves
with their tangent spaces, their normals, the curvature vectors and the curves of curvature centers is established. In
addition the fractional Serret-Frenet equations will be discussed in the Λ -fractional space. Further, the present work
studies the tangent space on a surface, helping in the accurate description of the fractional differentials of surfaces,
defining the fractional first and second fundamental fractional differential forms and the fractional normal plane.
Moreover, the fractional normal curvature of the curves on a manifold is also discussed. In addition, the covariant
Λ -fractional derivative, the fractional Christofell’s coefficients, the Λ -fractional covariant derivative, the extremals of
fractional functions and functionals and the geodesics of fractional manifolds are formulated. In fact those topics enclose
the basic principles of the fractional differential geometry. Lazopoulos [40] has already presented the Λ -fractional beam
theory, using the proposed Λ -fractional curvature of the elastic curves of the beams.

2 Basic properties of fractional calculus

With many applications in engineering and physics, fractional calculus has been considered as one of the most active
fields in applied mathematics. Fractional calculus has lately become a branch of pure mathematics with many
applications in physics and engineering. There are many definitions of fractional derivatives. In fact, Fractional Calculus

was stemmed by Leibniz, looking for the possibility of defining the derivative
dγ g

dxγ when n = 1
2
.The various types of the

fractional derivatives exhibit some advantages over the others. Nevertheless they all are non local. On the other hand, the
conventional derivatives express strictly locality. Information about fractional analysis and its applications may be found
in the classical books of Kilbas et al. [29], Podlubny [9], Samko et al. [8]. Recalling the n-fold integral of a function f(x):

aIn
x f (x) =

1

Γ (n)

∫ x

a

f (s)

(x− s)1−n
ds (1)

Leibniz defined the γ-multiple integral with 0 < γ ≤ 1 by,

aIγ
x f (x) =

1

Γ (γ)

∫ x

a

f (s)

(x− s)1−γ
ds (2)

with Γ (γ) Euler’s Gamma function. Further, the left Riemann-Liouville (R-L) derivatives are defined by:

RL
a Dγ

x f (x) =
d

dx
(aI1−γ

x ( f (x))) =
1

Γ (1− γ)

d

dx

∫ x

a

f (s)

(x− s)γ
ds (3)

with corresponding definitions for the right fractional integrals and derivatives Podlubny [9].

3 The Λ -fractional derivative

The L-fractional derivative was introduced by the authors, in an attempt to devise a fractional derivative satisfying the
properties of a derivative demanded by the differential topology, for the existence of the corresponding differential. Indeed,
the differential topology requirements for the existence of a differential are, see [31,35,36]:
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Linearity: D(af(x)+bg(x))=aDf(x)+bDg(x).

Leibniz rule: D( f (x) ·g(x)) = D f (x) ·g(x)+ f (x) ·Dg(x).

Chain rule: D(g(f))(x)=Dg(f(x))·Df(x).

Although the various fractional derivatives satisfy the linearity property, they fail to satisfy the composition and
Leibniz’s rules. Lazopoulos [32] introduced the L-fractional derivative in an attempt for the fractional derivative to
satisfy the differential topology requirements for the existence of differential and hence the existence of fractional
differential geometry. Nevertheless the initial definition of the L-fractional derivative failed to satisfy all the requirements
for the existence of differential. The revision of the L-fractional derivative is targeting to that purpose. The Λ−fractional
derivative has been introduced as:

Λ
a Dγ

x f (x) =
RL
a D

γ
x f (x)

RL
a D

γ
xx

(4)

Considering the definition of the fractional derivative, Eq.(3), the Λ -FD is expressed by:

Λ
a Dγ

x f (x) =
daI

1−γ
x f (x)

dx

daI
1−γ
x x

dx

=
daI

1−γ
x f (x)

daI
1−γ
x x

(5)

Defining as X=aI
1−γ
x x and F(X)=aI

1−γ
x f (x), the Λ -FD is defined as a conventional derivative in the fractional space (X,

F(X)). In fact, the fractional differential geometry is defined as a conventional differential geometry in the Λ -fractional
space, (X, F(X)), where the derivative,

Λ
a Dγ

x f (x) =
dF(X)

dX
(6)

Further the relation,
RL
a Dγ

x(aIγ
x f (x)) = f (x) (7)

is quite important for the pulling back of the various functions from the fractional Λ -space to the original one. It is
evident that, in the just presented Λ -fractional derivatives, only left fractional integrals and RL fractional derivatives were
considered. If we were to involve the right fractional integrals and RL derivatives, then the Λ -fractional derivatives should
be defined by

Λ
a Dγ

x f (x) =
daI

1−γ
x f (x)− dxI

1−γ
b f (x)

2daI
1−γ
x x

=
dF(X)

dX
(8)

with

F(x) =a I1−γ
x f (x) = aI

1−γ
x f (x)−x I

1−γ
b f (x)

2
=

1

Γ (1− γ)
(
∫ x

a

f (s)

(x− s)γ
ds−

∫ b

x

f (s)

(x− s)γ
ds) = F(x(X)) (9)

It will be clarified in the application, how from the initial space (x, f(x)) the fractional Λ -space (X, F(X)) is defined.
Further the pull back of the results in the initial space will also be demonstrated. For simplicity reasons only the left
fractional integrals and derivatives will be taken into consideration. Nevertheless, applications with symmetric space may
be found in [20]. Just to clarify the ideas, let us work as an example on the function,

f (x) = x2 (10)

Then the Λ -fractional plane (X, F(X)) is defined (with a=0) by

X =
x2−γ

(2− 3γ + γ2)Γ (1− γ)
(11)

F(X) =a I1−γ
x f (x(X)) =a Iγ

x f (x) =
1

Γ (1− γ)

∫ x

a

s2

(x− s)γ
ds =

2

(−6+ 11γ− 6γ2 + γ3)Γ (1− γ)
x(3−γ) (12)

Further considering from Eq.(7),

x = ((2− 3γ + γ2)Γ (1− γ)X)
1

2−γ (13)

Eq.(8) yields

F(X) =−
2(((2− 3γ + γ2)Γ (1− γ)X)

1
2−γ )3−γ

Γ (1− γ)(−6+ 11γ− 6γ2 + γ3)
(14)
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Fig. 1: The function f (x) = x5 in the initial space.

Fig. 2: The function f (x) = x5 in the initial space.

Therefore, the curve in the original plane (x, f(x)) is shown in Fig.1
corresponds to the Λ -fractional plane (space) shown in Fig.2, for γ = 0.6. Thus, the derivative

dF(X)

dX
=

(24(5− γ)(2− 3γ+ γ2)Γ (1− γ)(2− 3γ+ γ2)XΓ (1− γ))
3

2−γ

(2− γ)Γ (6− γ)
(15)

For X0=0.6 and γ=0.6, the derivative in the Λ -fractional plane is equal to D(F(X0)) = 1.1580. Since the Λ -derivative
behaves in the conventional way in the Λ -fractional space, the tangent Y(X) of the curve at a point X0 is defined by the
line,

Y (X) = F(X0)+
d

dX
(F(X0)(X −X0) (16)

In the original plane (x, f(x)) the corresponding tangent space is defined by the curve that will be built as follows:
Recalling Eq.(9), the x0=0.81 in the initial plane, corresponding to X0=0.60 is defined. Then substituting in the derivative
dF(X)

dX
in the fractional plane the X as a function of x, the Λ

a D
γ
x f (x) is defined. Hence the corresponding function in the real

space (x, f(x)) may be pulled back by the relation RL
a D

1−γ
x (Λ

a D
γ
x f (x)).Indeed

RL
a D1−γ

x (Λ
a Dγ

x f (x)) =
1

Γ (γ)

d

dx

∫ x

a

Λ
a D

γ
x f (x)

(x− s)1−γ
ds (17)
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Fig. 3: The function f (x) = x5 in the initial space.

In the present case for the function f (x) = x2

RL
a D1−γ

x (Λ
a Dγ

xx2) = 1.41 (18)

Thus, the fractional tangent space g(x) in the original space (x,f(x)) is defined by

g(x) = f (x)x0
+RL

a D1−γ
x (RL

a Dγ
x f (x)(

dF(X0)

dX
)x=x0

)(
x2−γ

Γ (1− γ)(2− 3γ+ γ2)
−X0) (19)

In the present case at X0 = 0.6 for γ=0.6, x0 = 0.81 the tangent space is defined by

g(x) = (x2)x=0.81 + 1.41(
1.79x1.4

Γ (0.4)
− 0.6) (20)

Fig. 4: The function f (x) = x5 in the initial space.
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4 The fractional arc-length

Let y=f(x) be a function, with fractional derivative of order 0 < γ < 1. The fractional differential in the Λ -fractional plane
(X, Y(X)) is defined by:

dY (X) =
dY (X)

dX
dX (21)

where X and Y(X) are defined by X =a I
1−γ
x x and F(X) =a I

1−γ
x f (x). Then the arc-length in the Λ -Fractional Plane is

defined by:

S(X) = (
dF(X)2

dX2
+ 1)

1/2

dX (22)

Furthermore, the arc-length s(x) in the original plane is defined by,

s(x) =RL
a D1−γ

x (S(X)) =RL
a D1−γ

x (S(
x2−γ

(2− 3γ + γ2)Γ (1− γ)
)) (23)

Nevertheless, for the parametric curves of the type:

x = g(t), y = f (t) (24)

The fractional differential of the arc-length in the Λ - fractional plane is expressed by:

dS(T ) =

√

dY (T )

dT

2

+
dX(T )

dT

2

(25)

and the arc-length

S(T ) =

∫ T

0
dS(T) (26)

The arc-length s(t) in the original plane is defined by the integral equation,

s(t) =RL
a D

1−γ
t (S(T )) =RL

a D
1−γ
t (S(

t2−γ

(2− 3γ + γ2)Γ (1− γ)
)) (27)

5 The fractional tangent space of a space curve

Let a representation of a space curve C be r=r(s) in the initial space, where s is the fractional length of the curve. Then,
the fractional tangent space of the curve in the Λ -space is defined by the first order derivative:

R1 =
dγr

dγ s
=

dI1−γr

dI1−γs
=

dR(S)

dS
(28)

Since,

d|R(S)|= |dS| (29)

The length |R1| of the tangent vector in the Λ -Fractional Space is unity. Further, the corresponding tangent vector
expressed in variables of the original plane is defined through the equation,

R1(s) = R1(S) = R1(
s2−γ

(2− 3γ + γ2)Γ (1− γ)
) (30)

In addition, that tangent vector may be pulled back to the original space through the equation,

rt(s0) =
RL
a D

1−γ
t R1(

s
2−γ
0

(2− 3γ + γ2)Γ (1− γ)
) (31)

The tangent space of the curve r1 = r(s) at the point r0 = r(s0) is defined through the Fractional Space with,

Rt = R(S0)+ kR1(S0) 0 < k (32)
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and the corresponding tangent space in the original space may be defined with,

rt(s) = r(s0)+ (RL
a D

1−γ
t R1(

s
2−γ
0

(2− 3γ + γ2)Γ (1− γ)
))(

s2−γ

(2− 3γ + γ2)Γ (1− γ)
− S0) (33)

The study may go on for the definition of the Fractional curvature and fractional radius of curvature in the fractional space,
following conventional approaches in the Λ -fractional space and then, the results may be pulled back to the original space.
The plane through R0 =R(S0), orthogonal to the tangent line at R0 defines the normal plane to the curve at S0. That normal
plane in the Λ -fractional space is defined by:

(Y−R(S0)) ·T(S0) = (Y−R(S0)) ·R1(S0) = 0 (34)

The corresponding normal space γ in the original space is defined by,

y(s) =RL
a D

1−γ
t Y(S(s)) (35)

6 Fractional curvature of curves

Considering the fractional tangent vector in the Λ -fractional space:

T = R1(S) =
dR(S)

dS
=Λ

a D
γ
t (r(s)) (36)

The fractional derivative:

R2(S) =
dT

dS
=Λ

a Dγ
s (

Λ
a Dγ

s T) = T1(S) (37)

The fractional curvature vector K on the curve C at the point R(S) is defined by

K = K(S) = T1 (38)

In fact, the fractional curvature vector T1 on the curve C in the Λ -fractional space is orthogonal to T and parallel to the
fractional normal plane. The fractional curvature of C at R(S) in the Λ -fractional space is the magnitude of the Fractional
curvature vector:

K = |K(S)| (39)

Likewise, the fractional radius of curvature in the fractional space is defined as the reciprocal of the curvature K at R(S):

P =
1

K
= |

1

K(S)
| (40)

7 The fractional Serret-Frenet equations

Let r(s) be a curve with its conjugate in the Λ -fractional space R(S) with unit speed, where the fractional velocity vector,

T(S) = R1(S) =
dT

dS
=Λ

a Dγ
s r(S) =

dR(S)

dS
(41)

is of unit length. Then, the vector

T1(S) = R2(S) =
dT

dS
=Λ

a Dγ
s (

Λ
a Dγ

s r(S)) =
dR2(S)

dS2
(42)

is normal to the curve R=R(S) since T(S)T(S) = 1 and

T1(S) ·T(S) = 0 (43)
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since for Liouville-Riemann’s derivative RL
a D

γ
s β = 0 for any constant β . Consider T1(S) = K(S)N(S), where N(S) is the

unit principal normal to R at S. Consequently, there is a possibility for the definition of the equations for the fractional
focal curve C(S) by:

(C(S)−R(S)) ·R1(S) = 0 (44)

(C(S)−R(S)) ·K(S)N(S) = 1 (45)

Hence, the centre of curvature C(S) is defined by the point R(S)+P(S)N(S) with P(S) = 1
K(S) .In addition the principal

normal vector N(S), that is orthogonal to the tangent line, is pointing towards the locus of the curvature centers that is
called the focal line in the Λ -fractional space. In that fractional space, the binormal unit vector B(S) = T(S)×N(S) forms
a right oriented orthonormal basis T(S),N(S),B(S) for the tangent vector space of the fractional mapping R(S) of the
initial curve r(s). Also, the derivatives of the aforementioned orthonormal basis with respect to S, i.e T1(S),N1(S),B1(S),
depend linearly upon the vectors, T(S),N(S),B(S). Yet, from the evident equations:

T1 ·T = 0 with T1 ·N = 0 and T1 ·N+N1 ·T = 0 (46)

the Serret-Frenet equations are formulated for the conjugate Λ -fractional space:

T1 = kN (47)

N1 =−kT+ τB (48)

B1 =−τN (49)

The coefficient τ is the torsion of the curve R(S) in the fractional space conjugate of the curve r(s). These equations are
the Fractional Equations for the fractional Serret-Frenet system in the fractional Λ -space.

8 The fractional radius of curvature of a plane curve

For a plane curve r(s), we study the fractional curvature or the conjugate R(s) in the Λ -fractional space. In fact,
according to Porteous [18], we study at each point of the fractional curve R(S), how closely the neighbourhood of the
curve approximates to a parameterized circle. In the Λ -fractional tangent space at a point R(T 0), the circle with centre C

and radius P is described by all R(T ) in the differential space such that:

(R(T )−C(T )) · (R(T )−C(T )) = P2 (50)

Further Eq.(46) yields:

C ·R−
1

2
R ·R =

1

2
(C ·C−P2) (51)

with the right-hand side between constant. Therefore, the differentiation of the function:

V (C) : T → C ·R(T )−
1

2
R(T ) ·R(T ) (52)

Yields,
dV (C)

dT
= (C−R(T )) ·R1(T ) = 0 (53)

d2V (C)

dT 2
= (C−R(T)) ·R2(T )−R1(T ) ·R1(T) = 0 (54)

Suppose thatR is a parametric curve with R(t) in the virtual tangent space of the Λ -fractional space. Then Eq.53 indicates
that:

dV (T)

dT
= 0 or

dV (T )

dT
= 0 (55)
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when the tangent vector R1(T ) in the Λ -fractional space vector is orthogonal to the vector - R(T ), that is the normal line.
When R2(T ) is not linearly dependent upon R1(T ), there will be a unique point C−R(T ) on the normal line such that

also d2V
dT 2 = 0.Specifically, for plane curves

r(x) = xe1 + y(x)e2 (56)

In addition, the corresponding Λ -fractional space with a=0 is defined by

X =
1

Γ (1− γ)

∫ x

0

s

(x− s)γ
ds , Y (X) =

1

Γ (1− γ)

∫ x

0

y(s)− y(0)

(x− s)γ
ds (57)

Then, the equation defining in the Λ -fractional space the fractional centres of curvature C =C1e1 +C2e2 become,

(C1 −X)+ (C2−Y(X)))
dY (X)

dX
= 0 (58)

(C2 −Y(X))
d2Y (X)

dX2
− (1+(

dY(X)

dX
)2) = 0 (59)

Further, in the Λ -fractional space, the fractional radius of curvature is defined by,

Pγ = P
γ
1 e1 +P

γ
2 e2 = (C1 −X)e1 +(C2 −Y(X))e2 (60)

Hence, the fractional curvature in the Λ -fractional space is defined by its components,

P
γ
1 =−

1+(
dY(X)

dX
)2

dY 2(X)

dX2

dY (X)

dX
(61)

P
γ
2 =

1+( dY(X)
dX

)2

dY 2(X)
dX2

(62)

9 Applications

a.The fractional geometry of a parabola.
Let r be a parabola t →(t, t2). Then its vector equation in the original space is defined by,

r(t) = te1 + t2e2 (63)

Hence the fractional Λ -space is defined by,

R(T ) =a I1−γ
x te1 +a I1−γ

x t2e2 =
t2−γ

(2− 3γ + γ2)Γ (1− γ)
e1 −

2t3−γ

(−6+ 11γ − 6γ2 + γ3)Γ (1− γ)
e2 (64)

Consequently,

T =
t2−γ

(2− 3γ + γ2)Γ (1− γ)
(65)

and

Y (T ) =−
2t3−γ

(−6+ 11γ− 6γ2 + γ3)Γ (1− γ)
=−

2((2− 3γ+ γ2)T )
3−γ
2−γ Γ (1− γ)

1
2−γ

(−6+ 11γ− 6γ2 + γ3)
(66)

The functions y(t) = t2 in the original space and (T,Y(T)) in the fractional Λ -space are represented in the Figs.(5,6)
Therefore,

R(T ) = T e1 +Y (T )e2 (67)

and

R1(T ) = e1 +
dY(T)

dT
e2 = e1 −

2((2− 3γ + γ2)TΓ (1− γ))
1

2−γ

−2+ γ
e2 (68)
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Fig. 5: The curve in the original space.

Fig. 6: The conjugate curve in the fractional Λ - space.

Fig. 7: The curve and its tangent in the fractional Λ - space for γ = 0.6 and Y=0.6.
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Hence the tangent G(T) line at a point T0 in the fractional Λ -space is defined by:

G(T ) = Y (T0)+
dY (T )

dT
|T0

(T −T0) (69)

Let us remind that the relation between t and T is,

T =
t2−γ

(2− 3γ + γ2)Γ (1− γ)
(70)

The corresponding tangent space in the original space in the original space (t, t2) is defined by the curve,

f (t) = t2
0 +

C
0 D

1−γ
t0

(
dY (T )

dT
)(

t2−γ

(2− 3γ + γ2)Γ (1− γ)
−T0) (71)

For the specific case of γ = 0.6 and T0 = 0.6 in the Λ - fractional space, the corresponding point in the original space is
t0=0.81. Therefore the fractional tangent space g(t) in the original plane is defined by:

g(t) = 0.6561+ 1.4083(0.8051t1.4− 0.6) (72)

Fig 8. shows the original curve and the fractional tangent space of the curve. Furthermore, the curvature centers of the

Fig. 8: The curve y(t) and the fractional tangent space in the initial space at the point t=0.81 and γ = 0.6

parabola in the Λ -space describe a curve,

r(x) =C1(T )e1 +C2(T )e2 (73)

become

(C1 −T )+ (C2 −Y(T )))
dY (T )

dT
= 0 (74)

(C2 −Y (T ))
d2Y (T )

dT 2
− (1+(

dY(T )

dT
)2) = 0 (75)

Simce,

Y (T ) =−
2((2− 3γ+ γ2)T )

3−γ
2−γ Γ (1− γ)

1
2−γ

(−6+ 11γ − 6γ2 + γ3)
(76)

and

dY (T )

dT
=−

2((2− 3γ+ γ2)TΓ (1− γ))
1

2−γ

(−2+ γ)
(77)
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d2Y (T )

dT 2
=

2((2− 3γ + γ2)TΓ (1− γ))
1

2−γ

(−2+ γ)2T
(78)

Hence, solving the system, the curve of curvature centers is defined in the Λ -space with

C1 = T + 1.6710.71(−T + 0.84T0.29(1+ 2.78T1.43) (79)

C2 = 0.84T0.29(1+ 2.78T1.43) (80)

Recalling the equation for the curve G(T) , the curve of the centers of curvature and the corresponding conjugate curve
Y(T) in the Λ -space is shown in Fig.9 . Proceeding to the definition of the curve c(t) of the image of the curve C(T ) in

Fig. 9: The conjugate curve Y(T) and the fractional tangent space in the Λ -space for γ = 0.6

the initial plane (t,y(t)), where
c(t) = c1e1 + c2e2 (81)

Indeed,

ci(t) =
C
a D

1−γ
t0

(Ci(T )) (82)

With

T =
t2−γ

(2− 3γ + γ2)Γ (1− γ)
(83)

Performing the algebra,

c1 = 2.4t − 1.72+ 3.93 (84)

c2 = 0.7t − 3.2t3 (85)

The image of the curve of curvature centers in the original space is shown in Fig.10

10 On the Λ -fractional differential geometry of surfaces.

Let us consider a manifold with points M(u,v) defined by the vectors

M(u,v) = x(u,v) (86)

with,

xi = xi(u,v), u1 6 u 6 u2, v1 6 v 6 v2, i = 1,2,3. (87)
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Fig. 10: The original space with the curve y(t) and the image of curve centers c(t) for γ = 0.6

in the initial space xi. Transferring the surface in the fractional Λ -space (X, Y, Z) the manifold is defined by,

X =
x2−γ

(2− 3γ + γ2)Γ (1− γ)
, (88)

Y =
y2−γ

(2− 3γ + γ2)Γ (1− γ)
, (89)

Z = aIx
1−γ

aI1−γ
x z(x,y) =

1

Γ (1− γ)2

∫ y

b
(
∫ x

a

z(s, t)

(x− s)γ
ds)

dt

(y− t)γ
, (90)

z = x4y2 0 < x < 1, 0 < y < 1 (91)

in the initial space, the corresponding manifold in the Λ -fractional space (X,Y,Z) is defined

Fig. 11: The surface z in the initial space.

By Eqs.(88,89) and Eq.(90) with a=b=0,

Z =−
48 · ((X · (2− 3γ + γ2) ·Γ (1− γ))

1
2−γ )5−γ · ((Y · (2− 3γ+ γ2) ·Γ (1− γ))

1
2−γ )3−γ

(−6+ 11γ − 6γ2 + γ3) ·Γ (1− γ) ·Γ (6− γ)
. (92)
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For γ=0.8, the surface Z in the Λ -fractional space is defined by

Z = 1.0391933.5Y 1.83333 (93)

and it is shown in Fig.12

Fig. 12: The surface Z in the Λ -fractional space.

Further, the tangent space of the surface in the Λ -fractional space with γ=0.8, at the point X=Y=0.4 is defined by,

Z = (1.03923.5Y 1.8333)(X=Y=0.4)+
dZ(X=Y=0.4)

dX
(X − 0.4)+

dZ(X=Y=0.4)

dY
(Y − 0.4). (94)

Simplifying Eq.(??, the surface Z becomes:

Z = 0.00769123+ 0.0673(X− 0.4)+ 0.035251(Y − 0.4), (95)

Fig. 13: The surface with the tangent space in the Λ -fractional space at the point X=Y=0.4.

The corresponding surface in the initial space to the tangent plane in the Λ -fractional space is defined by,

z = (x4y2)(x=y=0.5052)+(RL
a D

1−γ
y=0.5052

RL
a D

γ
x=0.5052(

dZ

dX
))(X(x)− 0.4))+ (RL

a D
1−γ
y=0.5052

RL
a D

γ
x=0.5052(

dZ

dY
))(Y (y)− 0.4).

(96)
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The surface defined by Eq.(96) is shown in Fig.14 in the initial space.

Fig. 14: The surface with its tangent surface at the point x=y=0.5052.

11 Fundamental differential forms on fractional differential manifolds

a.The first fractional fundamental form in the Λ -space.
Following formal procedure [17], the first fractional fundamental form in the fractional Λ -space is defined by the

quantity,

I = dX ·dX = (
dX

dU
dU +

dX

dV
dV ) · (

dX

dγU
dU +

dX

dγV
dV ) = EdU2 + 2FdUdV +GdV 2 (97)

with,

E =
dX

dU
·

dX

dU
, F =

dX

dU
·

dX

dV
, G =

dX

dV
·

dX

dV
, (98)

Since the first fractional fundamental form in the Λ space should be positive definite, it should apply that

EG−F2 > 0. (99)

a.The second fractional fundamental form in the Λ -space.
Consider the manifold M(u,v) = x(u,v). Then, the fractional manifold MΛ in the fractional Λ -space is defined by,

MΛ (U,V ) = X(U,V )> 0, (100)

where, U,V are defined by similar Eqs.(24,25) Further, there is a fractional unit normal N at each point of the fractional
manifold to the fractional tangent plane, in the Λ -space,

N =
dX
dU

× dX
dV

| dX
dU

× dX
dV

|
(101)

that is a function of U and V with the fractional differential,

dN =
dN

dU
dU +

dN

dV
dV. (102)

Recalling that in the Λ -fractional space the derivatives are local and follow the rules of the common ones, they become
zero for constants and taking into consideration that N ·N = 1, we get

dN ·N = 0. (103)
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Indicating that the vector dN is parallel to the fractional tangent space in the Λ -space.The second fractional fundamental
form is defined by [17],

II =−dX ·dN =−(
dX

dU
dU +

dX

dV
dV ) · (

dN

dγU
dU +

dN

dγV
dV,) = LdU2 + 2MdUdV +NdV 2 (104)

where,

L =−
dX

dU
·

dN

dU
, F =−

1

2
(

dX

dU
·

dN

dV
+

dN

dU
·

dX

dV
), N =−

dX

dV
·

dN

dV
. (105)

12 The fractional normal curvature

Let p be a point on a surface x = x(u,v) and x(t) = x(u(t),v(t)) a regular curve c at p in the original space. Then, the
corresponding surface in Λ -fractional space is defined by X = X(U,V ). Further the corresponding curve C in the Λ -space
is defined by X(T ) = X(U(T ),V (T )), V(T) passing through the corresponding to p, P point in the Λ -space. The normal
curvature KN vector of C at P is the vector projection of the curvature vector K onto the normal vector N at P. The
component of K in the direction of the normal N is called the normal fractional curvature of C at P and is denoted by
KN.Therefore,

KN = (K ·N)N. (106)

Since the unit tangent to C at P is the vector,

T =
dX

dS
=

dX
dT

| dX
dT

|
, (107)

where S denotes the fractional arc length of the curve in the fractional λ -space, and T is the unit perpendicular to the
normal N along the curve, see Lazopoulos [16], we get,

0 =
(T ·N)

dT
= (

dT

dT
·N+T ·

dN

dT
). (108)

Therefore, the normal curvature of a curve in the fractional Λ -space is equal to:

KN =K ·N=
dT
dT

·N

| dX
dT

|
=−T·

dN
dT

| dX
dT

|
=−

dX

dT
·

dN
dT

| dX
dT

|
2
=−

( dX
dU

dU
dT

+ dX
dV

dV
dT

) · ( dN
dU

dU
dT

+ dX
dV

dV
dT

)

( dX
dU

dU
dT

+ dX
dV

dV
dT

) · ( dN
dU

dU
dT

+ dX
dV

dV
dT

)
=

L( dU
dT

)2 + 2M dU
dT

dV
dT

+N( dV
dT

)2

E( dU
dT

)2 + 2F dU
dT

dV
dT

+G( dV
dT

)2
.

(109)
Recalling Eqs.(97,104), the normal curvature is defined by,

KN =
II

I
(110)

13 Definition of Christoffel coefficients of fractional order

The idea of covariant derivative is a generalization of the directional derivative of a scalar function to the vector and
general tensor fields. If vx ∈ Rn

x and F is a vector field, then

∇vx F = lim
t→0

F(x+ tvx)−F(x)

t
=

d

dt
F(x+ tvx|t=0. (111)

If F=(u1,.................,u”(x)), then the covariant derivative of the vector F with respect to vector field v is given by,

∇vx F = (∇vx u1, .................,∇vx u′′(x)) (112)

Hence,

(∇vF)x = ∇vx F (113)

A generic point M ∈Rn is defined by the coordinates,

x j = f j(ui,u2, ......un) = f j(u) (114)
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Recalling Einstein’s contraction convention, we have

dM = ∂iMdui = eidui (115)

with

ei = ∂iMdui = Dui
M (116)

Furthermore,

dei = ∂keiduk (117)

Likewise, we may write,
∂ke j = Γ i

jkei (118)

where, Γ i
jk is the Christoffel coefficient. Hence,

dei = Γ i
jk(duk)ei (119)

Further, differentiating the fundamental tensor, gi j= eie j

dgi j = eide j + deie j = gihΓ i
jk(duk)+ g jhΓ h

jk(duk). (120)

Consequently,

∂kgi j = gihΓ i
jk + g jhΓ h

jk. (121)

The contravariant tensor gi j of the tensor gi j is defined by,

gkgh j = δ i
j. (122)

14 The Λ -fractional covariant derivative

For the vector in the Λ -fractional space

V(t) =Vi(t)Ei(t). (123)

Its covariant fractional derivative DcvV is defined by

dV

dT
= ∂cvViEi. (124)

Therefore,
dV

dT
= ∂TViEi +Vi∂T Ei = ∂TViEi +ViΓ

i
jk∂TUkE j = ∂TViEi +V jΓ

i
jk∂TUkEi. (125)

Hence,
∂ a

cvvi = ∂ a
t vi +Γ i

jk∂ a
cvv j. (126)

Discussing, further, the fractional velocity and acceleration on a manifold M ∈ Rn in the Λ - fractional space,the tangent
space is defined by

dM = ∂iMdUi = Eid
aUi. (127)

Hence the Λ -velocity is defined by,
Λ
V =

dM

dT
. (128)

Furthermore, if

Λ
V =

Λ
ViEi (129)

then,

Λ
Vi =

dUi

dT
= ∂TUi. (130)
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In addition, the Λ -fractional acceleration is defined as the covariant derivative of the Λ -fractional velocity

Λ
G =

dV

dT
=

Λ
GiEi (131)

with

Λ
Gi = ∂cvVi = ∂TViEi +Γ i

jkVkV j. (132)

If F(X) is a function in the Λ - fractional space, possibly non-differentiable, with finite Λ -fractional derivative of order
0< γ ≤ 1 at a point X̃ in the Λ -fractional space, then is extremal if

dF(X̃) = 0 (133)

and specifically, it is a local maximum if d2F(X̃) < 0 , whereas it is a local minimum if d2F(X̃) > 0. Recalling that
the action integral in the Λ -fractional space,

A(T ) =

∫ T0

0
L(Q,∂T Q,T )dT. (134)

The necessary condition for the extremum of the action integral is,

∂L

∂Q
− ∂T (

∂L

∂ (∂T Q)
) = 0. (135)

With the boundary conditions
∂L

∂ (∂T Q)
= 0, or δQ = 0 at T = 0 or T0. (136)

Proceeding to the discussion of the geodesics of a surface M(Ui) = X(Ui) in the Λ -fractional space, the arc-length S from
a point T=0 to any T is defined by,

S =
∫ T0

0

√

(∂T S)2dT =
∫ T0

0

√

Gi j∂TUi∂ a
TU jdT. (137)

The minimum length S defined between the points T=0 and T is expressed by,

∂T (
1

G
Gi j∂TU j)−

1

2G
(∂T G jk)∂TU j∂

a
TUk = 0 (138)

with

G =
√

Gi j∂TUi∂ a
TU j. (139)

Considering further,

∂T G jk = ∂T (E jEk) = (∂cvE j)Ek +E j(∂cvEk) = (∂T E j +Γ
j

im(∂TUmEi)Ek +E j(∂T Ek +Γ
j

in(∂tUn)Ei). (140)

The Eq.140 defines the geodesics on the manifold M in the Λ - fractional space. Then through the well-known
transferring rule,

f (x) = RL
0 D1−γ

x (F(X(x))) (141)

the various results may be transferred to the initial space from the Λ -fractional space.

15 Conclusion

Since the well-known fractional derivatives fail to satisfy the necessary conditions for corresponding to a fractional
differential, direct fractional differential geometry is not possible. Adopting the new definition of fractional derivative,
the Λ -fractional derivative, along with a new fractional space, the Λ -fractional space, where the Λ -fractional derivative
behaves as a conventional one, fractional differential geometry is formulated in the Λ -fractional space. Then the results
are transferred into the initial space. The fractional geometry of curves is first discussed. Some further results concerning
fractional manifolds, that are of major importance for various applications in mechanics and generally in physics, are
summarized in the present work. The fractional Christoffel’s coefficients, the Λ -covariant derivative, The fractional
velocity and acceleration on a manifold, and the geodesics of a fractional manifold. All those results are necessary for
applying fractional calculus in physics.
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