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Abstract: In this paper, we develop an effective method based on Lerch polynomials to provide an approximate solution of various
cases of Cauchy type singular integral equations. The method reduces the solution of given singular integral equation to the solution
of a matrix equation corresponding to linear system of algebraic equations with unknown Lerch coefficients. Error estimation of the

presented method is mentioned. Finally, several examples show the reliability and efficiently of the proposed method.
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1 Introduction

Integral equations play an important role in many
branches of modern mathematics and appear in various
applications, including fluid mechanics, engineering,
contact problems in the theory of elasticity, biology, etc.
Several researchers are interested in discussing different
types of integral equations [1-10].

Singular integral equations with Cauchy kernels have
many applications in a wide variety of physics and
enigneering fields like airfoils, fracture mechanics
elastodynamics, aerodynamics see [11-15]. Since it is
difficult to find analytical solutions of singular integral
equations with Cauchy kernels, so many researchers have
been developed several numerical methods for solving
these equations such as Homotopy perturbation method
[16,17], Bernisten method [18,19], Bessel polynomials
method [20], Reproducing kernel Hilbert space [21],
Differential transform method [22], iteration method [23],
Jacobi polynomial method [24], Cubic spline method
[25], rational function method [26], Chebyshev
polynomials method [27], Nystrém method [28] and
others.

where f(x) and k(x,t) are given real-valued continuous
functions, ¢(x) is the unknown function. When k(x,#) =0
equation (1) reduced to the following equation:

il

dt = -1 1. 2
=T, <x< (2)
The complete analytical solutions of equation (2) are

given by the following cases see [30,31]:

Case (I) The solution ¢(x) is bounded at both the end
points x = £1:

P(x) =

L 2

dt
—x)

the solution exist if and only if the following condition

satisfied: '
t
/ (O 4)
-1V1—1¢2

Case (II) The solution @(x) is unbounded at both the end
points x = +£1

equationl?s ggif\:lr;rzls [f209r]1T1 of Cauchy singular integral o0 /1 =2 f o) " A
: X) = v 7
Bz m_— =
5
—1t—x dt+/ kix.t)o =f(), —l<x<l, where A is an arbitrary constant.
(1)
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Case (III) The solution @(x) is bounded at the end point
x =1 but unbounded at the end point x = —1

_ \/1—x‘ L+ f(0)
) 1+x _ 1—tt—x

Case (IV) The solution ¢(x) is bounded at the end point
x = —1 but unbounded at the end point x = 1

1 1 1 1—
_ +x / _t&dt
2 1—x /o1

1+t t—x

In recent years, Sezer et al. [32] have introduced Lerch
matrix collocation method for solving two-dimensional
and three- dimensional Volterra type integral and partial
integro-differential equations. Also, in [33 ] Sezer et al.
introduced A new approximation based on residual error
estimation for the solution of a class of unsteady
convection-diffusion problem. In this paper, Lerch matrix
collocation method is developed to solve Cauchy singular
integral equations of the first kind of the form (2).

(6)

¢(x) = (7)

2 Lerch polynomials

The explicit formula of the Lerch polynomials are given as

[34-36]:
2 k! k+A—1
k;]ﬁ s(n,k)< L

La(x,A) = )x" (8)

where Ly(x,A) = 1 is the initial value, A is a parameter
and s(n, k) is Stirling numbers of the first kind.

Some properties about the Stirling numbers of the first
kind can be written as [37,38]:

s(n+1,0)=0, s(n,n) =1, s(n,1) = (=1)"" (n—1)1,

1):-(’;), n>0.

The Lerch polynomials are defined by the generating
functions as follows:

s(n,n—

(1 —xlog(1 ZL (x,A)t

n>0

From (8), the first six Lerch polynomials are computed as
follows:

LA DA+ 43)

24 o
A S5AA+1 TAA+1)(A+2
L5(x,),):§x— (12+ )x2—|— ( +24)( i )x3
—A(A+1>(l+2)(l+3)x4
12
AN+ A+
120

Lerch polynomials can be converted into matrix form by
using the relation (2.1):

Lo(x, 1)

Ll(x,),)

Lz(x,l)

Ly(x,A)
1 0 0 1
0 45, 0 x
0 Hs2,1)(%) 0 K2

Lo(x,A) =1,
L (x’;) :ja ) 3 Transformation of equation (2)
+1) ,
Ly(x,A) = ——x+ —=x",
2 2 The unknown function @(x) in equation (2) can be
Ly(xA) = 7L A+ 1)x2 N AA+1)(A+ 2)x3 represented by the following form:
3" 2 6 ’
’ O (x) P (x)
Liwd)=—2x LD AOHDALD) 90 (x) = == %xz( ) ic1234 ()
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where y()(x) is a well-behaved function of x in the
interval [—1,1] and

Y (x) =1-x2 for Case (I) ,
P (x) =1, for Case (II),
PO (x)=1-x, for Case (III),
Y (x) =144, for Case (IV).

(10)
Now, in order to remove the singular term of equation (2)
at t = x, we have convert equation (2) to the equivalent
transformation for cases [I,11,111,IV respectively as
follows:

Case (I): By using (9) and (10) the unknown function
@M (x) can be represented in the form:

Dix) =vV1-x2yD(x) —1<x<1. (11)
Substituting from (11) into (2), we have
1 1 —12
VT v id = f(x),  —1<x<1. (12)
Therefore,
1 /1-42 1 M () — w
! y/(l)(t)dt:/ \/1_t2wdt
-1 t—x —1 r—x
: v ()
+/ Viee ¥y (13)
—1 —
In the sense of Cauchy principle value,
1 1
/ V1I—12 —dt=—-nmx, —1<x<1. (14)
-1 r—x
Thus equation (12) can be converted into
1 M) = v
_x W(])(XH-/ V1-2 M dr = f(x),
J—1 —X
—1<x< 1. (15)

Case (II): By using (9) and (10) the unknown function
(p(z) (x) of equation (2) can be represented in the form:

1

@ (y) = (2) _
0\ (x) = ml]/ (x), I<x<l1. (16)
Substituting from (12) into (2), we have
S| 1 lI/(Z) (l)
= - 1 ]. ]
./71 = [ x dt = f(x), <x< (17)

Therefore,

1 2) 1 @) = w®
/ L v (t)d;:/ L v70) -y
Jo13/1—12 t—x “1v1—1¢2 t—x
@ [ 1
+ x/ — dt. 18
Vo) “1V1—12(r—x) (18)
In the sense of Cauchy principle value,
1 1
/ — dt =0. (19)
1 V1 —12(t—x)

Thus equation (17) can be converted into
t=f(x),-1<x<l.

I 1
/71 1—12
(20)

Case (III): From (9) and (10) the unknown function
@) (x) of equation (2) can be represented in the form:

v -y
t—x

o0 =T v, —1<xst @)
Substituting from (21) into (2), we have
/,/1*“” —f), —l<x<l. (22)
flx), — X .
]+t ) =
Therefore,
/ /1,,1,, v, lx/lft v
1+t t—x 71 1+t t—x

/lm yOn v

X 141 1+x
(3)
()
1+x)dt
IR 0w,
—X 1+1¢ 1+x
(x)/l Vlitzdt
I+x Jo1 t—x
/\/—tzw 0 -y
1+x —X
/—2‘1’ ETARIE)
/ ! 1+t I+x

and equation (22) can be converted into

I4+x —
1 —— @)y 1
/71 L= wl+(t) )= 1+x”x"’<3)(x):f( ), ml<xsl
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Case (IV): From (9) and (10) the unknown function
(p(4) (x) of equation (2) can be represented in the form:

1+x
1—x

o™ (x) = vWx), —1<x<l. (24)

Substituting from (24) into (2), we have

[ RO gy

Similarly, as in case (III) equation (25) can be converted
into

—1<x<1. (25)

/\/—ﬂ—w - ) et

1—x

/ ¢—_ﬁw> 07

—1<x<1.

L) = 1), (26)

In equations (15), (20), (23) and (26), Y=Y — /() if

t = x, then w € C([-1,1] x [=1,1]) for any case,
the singularity of equation (2) has been removed.

4 The method of solution

The approximate solution of equations (15), (20), (23) and
(26) is assumed to be in the truncated Lerch series form as:

) (x) =

Yo,

where i = 1,2,3,4 for case I, II, III and IV respectively,

a,(f) are the wunknown Lerch coefficients for
n=0,1,...,N, and L,(x,A) is Lerch polynomials which

is defined by (8).

IIIN XA, 1217273747 (27)

We rewrite equations (15), (20), (23) and (26) in the
following form:

FOx)+ G (x)

= f(x), i=1,2,34, (28)

where

N

Z

G (x) = —mxy(x), for case (I), (29)

I @) = w®@
FO(x) :/ 11 Y (13 Yy (x)dt,
—t —X

G?(x) =0, for case (II), (30)

() Vim0 vEe ,

1+x —X

,/ ‘/17t2udt)
1 1+

nxy) (x)

G(3>(x) BREE:

, for case (III), (31)

v

t

J i

1—x

[ Ve Y g

—X

~my(x)
1—
By using the collocation points

G (x) = ,for case (IV). (32)

2
x=—1+L1=01 N, (33)

into equation (28), we get

FO(x) + G (x) = f(x), (34)
i=1,2,3,4,1=0,1,....N

Substituting from (27) into (29), (30), (31) and (32) we
obtain

FO (x,A) ~
/ \/— n(t,A) — Ly(x;, 1) ar,
r—x
for case (I),
m(x;,),)z
(2)/ Ln(tvl)*Ln(xlv)L) dt
"V t—x 7
for case (I), (35)
FO (1) =~
i [ AL,
1+xl — t—xl

|
;3)/ V11— Mdt], for case (II),
-1 141
F® (x, 1) ~

/\/—th

X[,A/)

dt
r—x

i
+ Zz)as,“)[I V1 —tz%dt], for case (1V),
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and
G (x;,A) ~ —mx; Z alV n(x1,A), for case (I),
G (x;,A) =0, for case (II), (36)
N
G (x, A) ~ — 17:30 r;)af)Ln(xl,l), for case (III),

W (, A) = — M }:an (31, A

v
—x, - , forcase (IV).

Substituting from (35) and (36) into (34) we obtain
n(t,A) —
Yol V-

nx; Ly (x1,A)] = f(x1), for case (I),
Ly(t,A) — Ly(x;, 1)

r—x

)C[,A/) df—

t—Xx;

2)[/7] m dt]:f(xl)v

for case (II), (37)

/ Tl A) ~ (. A)

dt—

r—Xx;

—7tx; Lo (x1,4)] = f(x1),
for case (III),
t )L )C[,)L)

r—x;

dt—

— TTx; Ln()Cl,l)] :f(xl)7

for case (IV).

We can write equation (37) in the following form

Zan xla

)+ G (x,4)] = f(x), (38)

i=1,2,3,4.

Hence, the matrix form (38) corresponding to all cases of
equation (2) can be written in the form

AX;=F,i=1,2,3,4, (39)

[A] =F9(x,4) + GV (x,A), i=1,2734,

and

F=[f(x0), f(x1), ..., flaw)]".

After solving equations (39) for Cases (i), (i), (iii) and
(iv), the unknown coefficients af,') are determined and the
approximate solutions of (11), (16), (21) and (24) by using
(27) are given by

N

‘stll)(xal) =V1-x Zaf,') Ly,(x,A), forcasel,
n=0
(pNz)(x,),) | iaﬁz) Ly(x,A), for casell,
v - n=0
(40)
(3) _ jl=x (3)
oy (x,2) T x nZ:‘Oa (x,A), for caseIll,
@y - LY § @
oy (x,A) = T ngf)a (x,A), for caseIV.

5 Error estimation

In this section, we give an error estimation for the
approximate solutions of equation (2). Let ¢,(x) be
approximate solution for all cases [,I1,I11,IV and
en(x) = @(x) — @,(x) be the error function associated
with @, (x) where @(x) is the exact solution of (2) for all
cases I, IIIII,IV. Since @,(x) is the approximate
solution, it satisfies

L on(t)
1 t—x

dt = f(x)+ Hy(x) —l<x<1, (41)

where H, (x) is a perturbation term and it is obtained from:

L ou(t)

Hy,(x) = i—x

dr — f(x). (42)

Subtracting (2) from (41), we obtain

/‘l n®) 4y — 1, (v), (43)

1t—x

for the error function e, (x). To find an approximation é(x)
to e, (x) we can solve (43) by the same ways as we did for
(2). In this case, only the function f(x) will be replaced by
the perturbation term H, (x).

6 Numerical examples

In this section several numerical examples are given to
illustrate the effectiveness and relability of Lerch
polynomial method. These examples have been solved by
our method with N =5 and A = 1, all numerical

@© 2022 NSP
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computation were performed by using Maple 18.

Example 1. Consider the following Cauchy integral
equation of the first kind [18,21,27].

1Md

11
t=x 45 F 2 x——, —l<x<1. (44)
1t—x 8

The exact solution of equation (44) for all cases is given
by:

Case (I):
1
(p(x):—E\/l—xz(x3+5x2+§x+ 5) (45)
Case (II):
_ 1 5, cd4,33 32 5 7
¢(x) - 1ﬂcz(x +5xt+ ot = P = Za =),
(46)
Case (I1I):
I [1—x,4 3 15, 7
o(x) p- 1er(x +6x° + > X +6x+2) (47)
Case (IV):

R o P ST N S
(p(x)fn ]_x(x +4x 5% +x 2). (48)

Now applying Lerch polynomial method for equation
(44) and using the collocation points (33) when
N=5 A=1.

For case (I):we obtain the following matrix equation:

35

8

11027
5000

7667
5000

5267
5000

|-

5773
5000

o<>|2

Solving the above matrix equation we obtain the values of
the constants as:

m_ 7T wm_ 3 @ _ 6 q_ 1
[ao Y A 67r’a2 - 43 = T’
a&l) :agl) =0

Substituting from these constants into (40) we obtain the
approximate solution which is the same as the exact
solution (45).

For case (II):we obtain the following matrix equation:

1) (2)

1 3 _25 73 _ 1073 a _3 17 _ 128 a

I =3 3 % W 480 0 01 —5m Fn —Hr 57 0
3 7 77 4591 24017 370537 (1) 11 269 1303 . 2451 ()
5 50 500 15000 50000 500000 4 01 -5 1557 =300 % 65 7 4
1 23 161 5831 66467 817819 (1) 7 161 2027 3608 (2)
5 50 300 15000 150000 1500000 ay 01 —57 1557 — 15007 15757 ay

123 69 3071 _ 32563 415739 (1) 3101 1153 2173 @ | =
5 50 300 15000 150000 1500000 as 01 =367 1557 — 15507 5757 as
_3 1 1 2071 _ 5793 90057 1 1 89 - 237 536 2
5 30 300 15000 — 50000 3500000 ag) 01 {7 1557 —5007 57 ag)
11 1 7 47 1 5 1 13
=3 =7 - —® al!) 01 sm gn —p7 157 a?
© 2022 NSP
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35

8

11027
5000

7667
5000

5267
5000

5773
5000

|2

Solving the above matrix equation we obtain the values of
the constants as:

2 . 2 167 ) 19
[aé )arbltrary, aﬁ ) = ~%on’ aé ) =

2 _1
ay’ =—,as’ =—|.
4 b ﬂ]
Substituting from these constants into (40) we obtain the

approximate solution in the following form:

_ 19 o4
6r’ 3 4nm’

(2) _ 1 5 4,33 3, 5
95 (xvl)* ﬂm(x +5x +2x 2x 2x)+
(2)
9
—_. 49
T (49)

Comparing the exact solution (46) with the approximate

solution (49) it is clear that the approximate solution is

.. 2
the same as the exact solution if we take a( ) — —%.

For case (III): we obtain the following matrix equation:
(2)

0 0 0 0 0 0 dp
f%,r ;_gﬂ,%ﬂ %ﬂ*%ﬂ' 143698572537r 022)
“SxZx—Ulg Br —3Blg 323x ) -
—Sp Wop —Lm 2ig 3y L3238 a?
-2t 0 -m ®™ —3im In agz)

11027
12500

7667
6250

15801
12500

5773
3125

&2

Solving the above matrix equation we obtain the values of
the constants as:
&__T »__98 3_ 259
a5 = G185 T 24m

@ _ 13 @ 169 @3y 7 @ 15
T T T 20% T an
af) = Za?) -

a?) is arbitrary constant ].

If as) takes value close to zero, then the approximate
solution is the same as the exact solution which is given
by (47).

For case (IV): we obtain the matrix equation

2 0 T —T %n’ f%n- a,
Sp n Bn Pin—3B%n 30En a?
Sp g —Jdon Wn 2D 897 o2
g log Bg Bg Blg B3, agg)
00 0 0 0 0 )

ds

@© 2022 NSP
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Solving the above matrix equation we obtain the values of
the constants as:

(4) T @ 98 3, 11

T T TR T oan
@_ B e, 2 @w_T7 @3 1
D= T0% T B T % Top

1
a5‘4):2ag3)+—,

)

as’ is arbitrary constant ].
If a§4) takes value close to zero, then the approximate
solution is the same as the exact solution which is given
by (48).

Comparing the above results with the results of [21] for
N = 150, N = 200 and results of [27] for N = 20 it is
clear that our method gives the accurate results.

Example 2. Consider the following Cauchy integral
equation of the first kind [18].

1
oW, 4,32 3
71t—xdt7 xS & I<x<l. (50)

The exact solution of equation (6.7) for all cases is given
by:

Case (I) : (p(x):f%\/lfxz(xff). (51)

1
Case (I) : ¢(x) = m(ﬂﬂrbﬁ —x).  (52)
I /1—x 2 3 4
Case(III):(p(x):—; 1jo(x—f—x —x’=x"). (53)
1 /1+4+x

Case (IV) : 9(x) = —— (x—x? =2+, (54)

1—x

Applying Lerch polynomial method for equation (50) and
using the collocation points (33) when N =5, A = 1.
For case (I)we obtain the following matrix equation:

|1 3 s o5 _1mny [a"
2 4 24 = 430
3 7 71 4591 24017 370537 alV
5 50 ~ 500 15000 _ 50000 500000 1
1 23 _ 161 5831 _ 66467 817819 ah
5 50 ~ 500 15000 _ 150000 1500000 2
1 23 69 3071 _ 32563 415739 m | =
5 50 ~ 500 15000 _ 150000 1500000 a
3 7 7 2071 _ 5793 90057 (1)
5 50 3500 15000 _ 50000 300000 a,
-l 1 a1 47 )
2 T4 24 8 730 as
1
8
177
5000
1583
5000
1
Tl 18| (55)
5000
177
5000
1
8

Solving the matrix equation (55) we obtain the values of
the constants as:

1 1
0’ =0, a’=-2, o=

agl) = agl) =0].
Substituting from these constants into (40) we obtain the
approximate solution which is the same as the exact
solution (51).
For case (II): Similarly as in case (I) we obtain the values
of the constants as:
(2) 27 o9_ 1T  o_3

27 p— p—
aj’=———, a4y =-—, a3 =-—

(2)

lay 'arbitrary,

@© 2022 NSP
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a;’ =——, a5 =——|

Substituting from these constants into (40) we obtain the
approximate solution in the following form:

()

1 a
(x4 23 -+ 22—,
ﬂ\/l—xz( ) V1 —x2
Comparing the exact solution (52) with the approximate
solution (56) it is clear that the approximate solution is the
same as the exact solution if we take aéz) =0.

For case (II): Similarly as in cases (I) and (IT) we obtain
the values of the constants as:

I I
a5 =0, " =~ 1235 o~ 234—7ra =By T

a —a + —, a Za + —,

as’ is arbitrary constant ].

o7 (x, 1) = (56)

If agn takes value close to zero, then the approximate
solution is the same as the exact solution which is given
by (53).

For case (IV) Similarly as the above cases the values of
the constants are given by

W_gW__ B @w_ 3 @w__1Bw, 17

a0 =007 =g g T % T
@w_T @ _ L @w_,w_ 1
BT 0% T ™ ST

a(54) is arbitrary constant ].

If a(54)takes value close to zero, then the approximate
solution is the same as the exact solution which is given
by (54).

7 Conclusion

In this paper, Lerch matrix collocation method for solving
various cases of Cauchy type singular integral equations
of the first kind is developed. The singularity of equation
(2) was successfully removed by applying smooth
transformations. Numerical examples show the reliability
and efficiently of the proposed method.
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