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Abstract: In this paper, we develop an effective method based on Lerch polynomials to provide an approximate solution of various

cases of Cauchy type singular integral equations. The method reduces the solution of given singular integral equation to the solution

of a matrix equation corresponding to linear system of algebraic equations with unknown Lerch coefficients. Error estimation of the

presented method is mentioned. Finally, several examples show the reliability and efficiently of the proposed method.
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1 Introduction

Integral equations play an important role in many
branches of modern mathematics and appear in various
applications, including fluid mechanics, engineering,
contact problems in the theory of elasticity, biology, etc.
Several researchers are interested in discussing different
types of integral equations [1-10].

Singular integral equations with Cauchy kernels have
many applications in a wide variety of physics and
enigneering fields like airfoils, fracture mechanics
elastodynamics, aerodynamics see [11-15]. Since it is
difficult to find analytical solutions of singular integral
equations with Cauchy kernels, so many researchers have
been developed several numerical methods for solving
these equations such as Homotopy perturbation method
[16,17], Bernisten method [18,19], Bessel polynomials
method [20], Reproducing kernel Hilbert space [21],
Differential transform method [22], iteration method [23],
Jacobi polynomial method [24], Cubic spline method
[25], rational function method [26], Chebyshev
polynomials method [27], Nyström method [28] and
others. A general form of Cauchy singular integral
equation is given as [29]:

∫ 1

−1

ϕ(t)

t − x
dt +

∫ 1

−1
k(x, t)ϕ(t)dt = f (x), − 1 < x < 1,

(1)

where f (x) and k(x, t) are given real-valued continuous
functions, ϕ(x) is the unknown function. When k(x, t) = 0
equation (1) reduced to the following equation:

∫ 1

−1

ϕ(t)

t − x
dt = f (x), − 1 < x < 1. (2)

The complete analytical solutions of equation (2) are
given by the following cases see [30,31]:

Case (I) The solution ϕ(x) is bounded at both the end
points x =±1:

ϕ(x) =−
√

1− x2

π2

∫ 1

−1

f (t)√
1− t2(t − x)

dt , (3)

the solution exist if and only if the following condition
satisfied:

∫ 1

−1

f (t)√
1− t2

dt = 0 . (4)

Case (II) The solution ϕ(x) is unbounded at both the end
points x =±1

ϕ(x) =−
1

π2
√

1− x2

∫ 1

−1

√
1− t2 f (t)

t − x
dt +

A√
1− x2

,

(5)
where A is an arbitrary constant.
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Case (III) The solution ϕ(x) is bounded at the end point
x = 1 but unbounded at the end point x =−1

ϕ(x) =−
1

π2

√

1− x

1+ x

∫ 1

−1

√

1+ t

1− t

f (t)

t − x
dt. (6)

Case (IV) The solution ϕ(x) is bounded at the end point
x =−1 but unbounded at the end point x = 1

ϕ(x) =−
1

π2

√

1+ x

1− x

∫ 1

−1

√

1− t

1+ t

f (t)

t − x
dt. (7)

In recent years, Sezer et al. [32] have introduced Lerch
matrix collocation method for solving two-dimensional
and three- dimensional Volterra type integral and partial
integro-differential equations. Also, in [33 ] Sezer et al.
introduced A new approximation based on residual error
estimation for the solution of a class of unsteady
convection-diffusion problem. In this paper, Lerch matrix
collocation method is developed to solve Cauchy singular
integral equations of the first kind of the form (2).

2 Lerch polynomials

The explicit formula of the Lerch polynomials are given as
[34-36]:

Ln(x,λ ) =
n

∑
k=1

k!

n!
s(n,k)

(

k+λ − 1

k

)

xk
, (8)

where L0(x,λ ) = 1 is the initial value, λ is a parameter
and s(n,k) is Stirling numbers of the first kind.

Some properties about the Stirling numbers of the first
kind can be written as [37,38]:

s(n+ 1,0) = 0, s(n,n) = 1, s(n,1) = (−1)n−1 (n− 1)!,

s(n,n− 1) =−
(

n

2

)

, n ≥ 0.

The Lerch polynomials are defined by the generating
functions as follows:

(1− x log(1+ t))−λ = ∑
n≥0

Ln(x,λ )t
n
.

From (8), the first six Lerch polynomials are computed as
follows:

L0(x,λ ) = 1,

L1(x,λ ) = λ x,

L2(x,λ ) =−
λ

2
x+

λ (λ + 1)

2
x2
,

L3(x,λ ) =
λ

3
x−

λ (λ + 1)

2
x2 +

λ (λ + 1)(λ + 2)

6
x3
,

L4(x,λ ) =−
λ

4
x+

11λ (λ + 1)

24
x2 −

λ (λ + 1)(λ + 2)

4
x3

+
λ (λ + 1)(λ + 2)(λ + 3)

24
x4
,

L5(x,λ ) =
λ

5
x−

5λ (λ + 1)

12
x2 +

7λ (λ + 1)(λ + 2)

24
x3

−
λ (λ + 1)(λ + 2)(λ + 3)

12
x4

+
λ (λ + 1)(λ + 2)(λ + 3)(λ + 4)

120
x5
.

Lerch polynomials can be converted into matrix form by
using the relation (2.1):



















































L0(x,λ )

L1(x,λ )

L2(x,λ )

...

LN(x,λ )



















































=





















































1 0 . . . 0

0 1!
1!

s(1,1)
(λ

1

)

. . . 0

0 1!
2!

s(2,1)
(λ

1

)

. . . 0

...
...

. . .
...

0 1!
N!

s(N,1)
(

λ
1

)

. . .
N!
N!

s(N,N)
(

λ+N−1
N

)







































































































1

x

x2

...

xN



















































.

3 Transformation of equation (2)

The unknown function ϕ(x) in equation (2) can be
represented by the following form:

ϕ(i)(x) =
ψ(i)(x)Ψ (i)(x)√

1− x2
, i = 1,2,3,4, (9)
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where ψ(i)(x) is a well-behaved function of x in the
interval [−1,1] and



























































Ψ (1)(x) = 1− x2, f or Case (I) ,

Ψ (2)(x) = 1, f or Case (II),

Ψ (3)(x) = 1− x, f or Case (III),

Ψ (4)(x) = 1+ x, f or Case (IV ).
(10)

Now, in order to remove the singular term of equation (2)
at t = x, we have convert equation (2) to the equivalent
transformation for cases I, II, III, IV respectively as
follows:

Case (I): By using (9) and (10) the unknown function

ϕ(1)(x) can be represented in the form:

ϕ(1)(x) =
√

1− x2 ψ(1)(x), − 1 ≤ x ≤ 1. (11)

Substituting from (11) into (2), we have

∫ 1

−1

√
1− t2

t − x
ψ(1)(t)dt = f (x), − 1 ≤ x ≤ 1. (12)

Therefore,

∫ 1

−1

√
1− t2

t − x
ψ(1)(t)dt =

∫ 1

−1

√

1− t2
ψ(1)(t)−ψ(1)(x)

t − x
dt

+

∫ 1

−1

√

1− t2
ψ(1)(x)

t − x
dt. (13)

In the sense of Cauchy principle value,

∫ 1

−1

√

1− t2
1

t − x
dt =−πx, − 1 ≤ x ≤ 1. (14)

Thus equation (12) can be converted into

−πx ψ(1)(x)+

∫ 1

−1

√

1− t2
ψ(1)(t)−ψ(1)(x)

t − x
dt = f (x),

−1 ≤ x ≤ 1. (15)

Case (II): By using (9) and (10) the unknown function

ϕ(2)(x) of equation (2) can be represented in the form:

ϕ(2)(x) =
1√

1− x2
ψ(2)(x), − 1 < x < 1. (16)

Substituting from (12) into (2), we have

∫ 1

−1

1√
1− t2

ψ(2)(t)

t − x
dt = f (x), − 1 < x < 1. (17)

Therefore,

∫ 1

−1

1√
1− t2

ψ(2)(t)

t − x
dt =

∫ 1

−1

1√
1− t2

ψ(2)(t)−ψ(2)(x)

t − x
dt

+ψ(2)(x)

∫ 1

−1

1√
1− t2(t − x)

dt. (18)

In the sense of Cauchy principle value,

∫ 1

−1

1√
1− t2(t − x)

dt = 0. (19)

Thus equation (17) can be converted into

∫ 1

−1

1√
1− t2

ψ(2)(t)−ψ(2)(x)

t − x
dt = f (x),−1 < x < 1.

(20)
Case (III): From (9) and (10) the unknown function
ϕ(3)(x) of equation (2) can be represented in the form:

ϕ(3)(x) =

√

1− x

1+ x
ψ(3)(x), − 1 < x ≤ 1. (21)

Substituting from (21) into (2), we have

∫ 1

−1

√

1− t

1+ t

ψ(3)(t)

t − x
dt = f (x), − 1 < x ≤ 1. (22)

Therefore,

∫ 1

−1

√

1− t

1+ t

ψ(3)(t)

t − x
dt =

∫ 1

−1

√
1− t2

1+ t

ψ(3)(t)

t − x
dt

=

∫ 1

−1

√
1− t2

t − x
(

ψ(3)(t)

1+ t
−

ψ(3)(x)

1+ x
+

ψ(3)(x)

1+ x
) dt

=

∫ 1

−1

√
1− t2

t − x
(

ψ(3)(t)

1+ t
−

ψ(3)(x)

1+ x
) dt

+
ψ(3)(x)

1+ x

∫ 1

−1

√
1− t2

t − x
dt

=
1

1+ x
(
∫ 1

−1

√

1− t2
ψ(3)(t)−ψ(3)(x)

t − x
dt

−
∫ 1

−1

√

1− t2
ψ(3)(t)

1+ t
dt)−

πxψ(3)(x)

1+ x
,

and equation (22) can be converted into

1

1+ x
(
∫ 1

−1

√

1− t2
ψ(3)(t)−ψ3(x)

t − x
dt−

∫ 1

−1

√

1− t2
ψ(3)(t)

1+ t
dt)−

1

1+x
πxψ(3)(x) = f (x) ,−1 < x ≤ 1.

(23)
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Case (IV): From (9) and (10) the unknown function
ϕ(4)(x) of equation (2) can be represented in the form:

ϕ(4)(x) =

√

1+ x

1− x
ψ(4)(x), − 1 ≤ x < 1. (24)

Substituting from (24) into (2), we have

∫ 1

−1

√

1+ t

1− t

ψ(4)(t)

t − x
dt = f (x), − 1 ≤ x < 1. (25)

Similarly, as in case (III) equation (25) can be converted
into

1

1− x
(

∫ 1

−1

√

1− t2
ψ(4)(t)−ψ(4)(x)

t − x
dt+

∫ 1

−1

√

1− t2
ψ(4)(t)

1− t
dt)−

1

1− x
πxψ(4)(x) = f (x), (26)

− 1 ≤ x < 1.

In equations (15), (20), (23) and (26),
ψ(t)−ψ(x)

t−x
= ψ ′(x) if

t = x, then
ψ(t)−ψ(x)

t−x
∈ C([−1,1]× [−1,1]) for any case,

the singularity of equation (2) has been removed.

4 The method of solution

The approximate solution of equations (15), (20), (23) and
(26) is assumed to be in the truncated Lerch series form as:

ψ(i)(x)∼=ψ
(i)
N (x,λ ) =

N

∑
n=0

a
(i)
n Ln(x,λ ), i = 1,2,3,4, (27)

where i = 1,2,3,4 for case I, II, III and IV respectively,

a
(i)
n are the unknown Lerch coefficients for

n = 0,1, . . . ,N, and Ln(x,λ ) is Lerch polynomials which
is defined by (8).

We rewrite equations (15), (20), (23) and (26) in the
following form:

F(i)(x)+G(i)(x) = f (x), i = 1,2,3,4, (28)

where

F (1)(x) =

∫ 1

−1

√

1− t2
ψ(1)(t)−ψ(1)(x)

t − x
dt,

G(1)(x) =−πxψ(1)(x), f or case (I), (29)

F (2)(x) =

∫ 1

−1

1√
1− t2

ψ(2)(t)−ψ(2)(x)

t − x
dt,

G(2)(x) = 0, f or case (II), (30)

F (3)(x) =
1

1+ x
(

∫ 1

−1

√

1− t2
ψ(3)(t)−ψ(3)(x)

t − x
dt

−
∫ 1

−1

√

1− t2
ψ(3)(t)

1+ t
dt),

G(3)(x) =−
πxψ(3)(x)

1+ x
, f or case (III), (31)

F (4)(x) =
1

1− x
(

∫ 1

−1

√

1− t2
ψ(4)(t)−ψ(4)(x)

t − x
dt

+

∫ 1

−1

√

1− t2
ψ(4)(t)

1− t
dt),

G(4)(x) =−
πxψ(4)(x)

1− x
, f or case (IV ). (32)

By using the collocation points

xl =−1+
2

N
l, l = 0,1, . . . ,N, (33)

into equation (28), we get

F(i)(xl)+G(i)(xl) = f (xl), (34)

i = 1,2,3,4, l = 0,1, . . . ,N.

Substituting from (27) into (29), (30), (31) and (32) we
obtain

F (1)(xl ,λ )≃
N

∑
n=0

a
(1)
n

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt,

f or case (I),

F (2)(xl ,λ )≃
N

∑
n=0

a
(2)
n

∫ 1

−1

1√
1− t2

Ln(t,λ )−Ln(xl ,λ )

t − xl

dt,

f or case (II), (35)

F (3)(xl ,λ )≃

1

1+ xl

[
N

∑
n=0

a
(3)
n

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt

−
N

∑
n=0

a
(3)
n

∫ 1

−1

√

1− t2
Ln(t,λ )

1+ t
dt], f or case (III),

F (4)(xl ,λ )≃

1

1− xl

[
N

∑
n=0

a
(4)
n

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt

+
N

∑
n=0

a
(4)
n

∫ 1

−1

√

1− t2
Ln(t,λ )

1− t
dt], f or case (IV ),
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and

G(1)(xl ,λ )≃−πxl

N

∑
n=0

a
(1)
n Ln(xl ,λ ), f or case (I),

G(2)(xl ,λ ) = 0, f or case (II), (36)

G(3)(xl ,λ )≃−
πxl

1+ xl

N

∑
n=0

a
(3)
n Ln(xl ,λ ), f or case (III),

G(4)(xl ,λ )≃−
πxl

1− xl

N

∑
n=0

a
(4)
n Ln(xl ,λ ), f or case (IV ).

Substituting from (35) and (36) into (34) we obtain

N

∑
n=0

a
(1)
n [

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt−

πxl Ln(xl ,λ )] = f (xl), f or case (I),

N

∑
n=0

a
(2)
n [

∫ 1

−1

1√
1− t2

Ln(t,λ )−Ln(xl ,λ )

t − xl

dt] = f (xl),

f or case (II), (37)

N

∑
n=0

a
(3)
n

1

1+ xl

[

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt−

∫ 1

−1

√

1− t2
Ln(t,λ )

1+ t
dt −πxl Ln(xl ,λ )] = f (xl),

f or case (III),

N

∑
n=0

a
(4)
n

1

1− xl

[

∫ 1

−1

√

1− t2
Ln(t,λ )−Ln(xl ,λ )

t − xl

dt−

∫ 1

−1

√

1− t2
Ln(t,λ )

1− t
dt −πxl Ln(xl ,λ )] = f (xl),

f or case (IV ).

We can write equation (37) in the following form

N

∑
n=0

a
(i)
n [F(i)(xl ,λ )+G(i)(xl ,λ )] = f (xl), (38)

i = 1,2,3,4.

Hence, the matrix form (38) corresponding to all cases of
equation (2) can be written in the form

AiXi = F, i = 1,2,3,4, (39)

where

[Ai] = F(i)(xl ,λ )+G(i)(xl ,λ ), i = 1,2,3,4,

Xi = [a
(i)
0 , a

(i)
1 , a

(i)
2 , . . . , a

(i)
N ]T , i = 1,2,3,4

and
F = [ f (x0), f (x1), . . . , f (xN)]

T
.

After solving equations (39) for Cases (i), (ii), (iii) and

(iv), the unknown coefficients a
(i)
n are determined and the

approximate solutions of (11), (16), (21) and (24) by using
(27) are given by

ϕ
(1)
N (x,λ ) =

√

1− x2
N

∑
n=0

a
(1)
n Ln(x,λ ), f or case I,

ϕ
(2)
N (x,λ ) =

1√
1− x2

N

∑
n=0

a
(2)
n Ln(x,λ ), f or case II,

(40)

ϕ
(3)
N (x,λ ) =

√

1− x

1+ x

N

∑
n=0

a
(3)
n Ln(x,λ ), f or case III,

ϕ
(4)
N (x,λ ) =

√

1+ x

1− x

N

∑
n=0

a
(4)
n Ln(x,λ ), f or case IV.

5 Error estimation

In this section, we give an error estimation for the
approximate solutions of equation (2). Let ϕn(x) be
approximate solution for all cases I, II, III, IV and
en(x) = ϕ(x) − ϕn(x) be the error function associated
with ϕn(x) where ϕ(x) is the exact solution of (2) for all
cases I, II, III, IV . Since ϕn(x) is the approximate
solution, it satisfies

∫ 1

−1

ϕn(t)

t − x
dt = f (x)+Hn(x) −1 < x < 1, (41)

where Hn(x) is a perturbation term and it is obtained from:

Hn(x) =

∫ 1

−1

ϕn(t)

t − x
dt − f (x). (42)

Subtracting (2) from (41), we obtain

∫ 1

−1

en(t)

t − x
dt = Hn(x), (43)

for the error function en(x). To find an approximation ê(x)
to en(x) we can solve (43) by the same ways as we did for
(2). In this case, only the function f (x) will be replaced by
the perturbation term Hn(x).

6 Numerical examples

In this section several numerical examples are given to
illustrate the effectiveness and relability of Lerch
polynomial method. These examples have been solved by
our method with N = 5 and λ = 1, all numerical
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computation were performed by using Maple 18.

Example 1. Consider the following Cauchy integral
equation of the first kind [18,21,27].

∫ 1

−1

ϕ(t)

t − x
dt = x4+5x3+2x2+x−

11

8
, −1< x< 1. (44)

The exact solution of equation (44) for all cases is given
by:

Case (I):

ϕ(x) =−
1

π

√

1− x2(x3 + 5x2 +
5

2
x+

7

2
). (45)

Case (II):

ϕ(x) =
1

π
√

1− x2
(x5 + 5x4 +

3

2
x3 −

3

2
x2 −

5

2
x−

7

2
).

(46)

Case (III):

ϕ(x) =−
1

π

√

1− x

1+ x
(x4 + 6x3 +

15

2
x2 + 6x+

7

2
). (47)

Case (IV):

ϕ(x) =
1

π

√

1+ x

1− x
(x4 + 4x3 −

5

2
x2 + x−

7

2
). (48)

Now applying Lerch polynomial method for equation
(44) and using the collocation points (33) when
N = 5, λ = 1.

For case (I):we obtain the following matrix equation:































































1 − 1
2

3
4

− 25
24

73
48

− 1073
480

3
5

7
50

− 77
500

4591
15000

− 24017
50000

370537
500000

1
5

23
50

− 161
500

5831
15000

− 66467
150000

817819
1500000

− 1
5

23
50

− 69
500

3071
15000

− 32563
150000

415739
1500000

− 3
5

7
50

7
500

2071
15000

− 5793
50000

90057
500000

−1 − 1
2

− 1
4

− 1
24

− 7
48

47
480































































































































a
(1)
0

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

































































=
1

π































































− 35
8

− 11027
5000

− 7667
5000

− 5267
5000

5773
5000

61
8































































.

Solving the above matrix equation we obtain the values of
the constants as:

[a
(1)
0 =−

7

2π
, a

(1)
1 =−

31

6π
, a

(1)
2 =−

6

π
, a

(1)
3 =−

1

π
,

a
(1)
4 = a

(1)
5 = 0].

Substituting from these constants into (40) we obtain the
approximate solution which is the same as the exact
solution (45).
For case (II):we obtain the following matrix equation:































































0 1 − 3
2
π 17

6
π − 59

12
π 128

15
π

0 1 − 11
10

π 269
150

π − 1303
500

π 2451
625

π

0 1 − 7
10

π 161
150

π − 2027
1500

π 3608
1875

π

0 1 − 3
10

π 101
150

π − 1153
1500

π 2173
1875

π

0 1 1
10

π 89
150

π − 237
500

π 536
625

π

0 1 1
2
π 5

6
π − 1

12
π 13

15
π































































































































a
(2)
0

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

































































=
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− 35
8

− 11027
5000

− 7667
5000

− 5267
5000

5773
5000

61
8































































.

Solving the above matrix equation we obtain the values of
the constants as:

[a
(2)
0 arbitrary, a

(2)
1 =−

167

60π
, a

(2)
2 =

19

6π
, a

(2)
3 =

41

4π
,

a
(2)
4 =

7

π
, a

(2)
5 =

1

π
].

Substituting from these constants into (40) we obtain the
approximate solution in the following form:

ϕ
(2)
5 (x,1) =

1

π
√

1− x2
(x5 + 5x4 +

3

2
x3 −

3

2
x2 −

5

2
x)+

a
(2)
0√

1− x2
. (49)

Comparing the exact solution (46) with the approximate
solution (49) it is clear that the approximate solution is

the same as the exact solution if we take a
(2)
0 =− 7

2π .

For case (III): we obtain the following matrix equation:





























































0 0 0 0 0 0

− 2
5
π 16

25
π − 113

125
π 2527

1875
π − 18761

9375
π 139523

46875
π

− 4
5
π 24

25
π − 134

125
π 894

625
π − 18412

9375
π 130342

46875
π

− 6
5
π 24

25
π − 111

125
π 779

625
π − 5431

3125
π 39259

15625
π

− 8
5
π 16

25
π − 92

125
π 2212

1875
π − 15344

9375
π 113228

46875
π

−2π 0 −π π − 5
3
π 7

3
π





























































































































a
(2)
0

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

































































=





























































0

− 11027
12500

− 7667
6250

− 15801
12500

5773
3125

61
4





























































.

Solving the above matrix equation we obtain the values of
the constants as:

[a
(3)
0 =−

7

2π
, a

(3)
1 =−

98

1875
a
(3)
5 −

259

24π
,

a
(3)
2 =−

13

20
a
(3)
5 −

169

12π
,a

(3)
3 =

7

20
a
(3)
5 −

15

2π
,

a
(3)
4 = 2a

(3)
5 −

1

π
,

a
(3)
5 is arbitrary constant ].

If a
(3)
5 takes value close to zero, then the approximate

solution is the same as the exact solution which is given
by (47).

For case (IV): we obtain the matrix equation































































2π 0 π −π 5
3
π − 7

3
π

8
5
π 16

25
π 12

125
π 652

1875
π − 3136

9375
π 30148

46875
π

6
5
π 24

25
π − 9

125
π 269

625
π − 929

3125
π 6989

15625
π

4
5
π 24

25
π 14

125
π 164

625
π − 668

9375
π 8402

46875
π

2
5
π 16

25
π 33

125
π 337

1875
π 281

9375
π 3853

46875
π

0 0 0 0 0 0































































































































a
(2)
0

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

































































=
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− 35
4

π

− 11027
3125

− 23001
12500

− 5267
6250

5773
12500

0





























































.

Solving the above matrix equation we obtain the values of
the constants as:

[a
(4)
0 =−

7

2π
, a

(4)
1 =−

98

1875
a
(3)
5 +

11

24π
,

a
(4)
2 =−

13

20
a
(3)
5 +

25

12π
, a

(4)
3 =

7

20
a
(3)
5 +

11

2π
,

a
(4)
4 = 2a

(3)
5 +

1

π
,

a
(4)
5 is arbitrary constant ].

If a
(4)
5 takes value close to zero, then the approximate

solution is the same as the exact solution which is given
by (48).

Comparing the above results with the results of [21] for
N = 150, N = 200 and results of [27] for N = 20 it is
clear that our method gives the accurate results.

Example 2. Consider the following Cauchy integral
equation of the first kind [18].

∫ 1

−1

ϕ(t)

t − x
dt =−x4 +

3

2
x2 −

3

8
, − 1 < x < 1. (50)

The exact solution of equation (6.7) for all cases is given
by:

Case (I) : ϕ(x) =−
1

π

√

1− x2(x− x3). (51)

Case (II) : ϕ(x) =
1

π
√

1− x2
(−x+ 2x3 − x5). (52)

Case (III) : ϕ(x) =−
1

π

√

1− x

1+ x
(x+ x2 − x3 − x4). (53)

Case (IV) : ϕ(x) =−
1

π

√

1+ x

1− x
(x− x2 − x3 + x4). (54)

Applying Lerch polynomial method for equation (50) and
using the collocation points (33) when N = 5, λ = 1.
For case (I)we obtain the following matrix equation:































































1 − 1
2

3
4

− 25
24

73
48

− 1073
480

3
5

7
50

− 77
500

4591
15000

− 24017
50000

370537
500000

1
5

23
50

− 161
500

5831
15000

− 66467
150000

817819
1500000

− 1
5

23
50

− 69
500

3071
15000

− 32563
150000

415739
1500000

− 3
5

7
50

7
500

2071
15000

− 5793
50000

90057
500000

−1 − 1
2

− 1
4

− 1
24

− 7
48

47
480































































































































a
(1)
0

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

































































=

1

π































































1
8

177
5000

− 1583
5000

− 1583
5000

177
5000

1
8































































. (55)

Solving the matrix equation (55) we obtain the values of
the constants as:

[a
(1)
0 = 0, a

(1)
1 =−

5

6π
, a

(1)
2 =

1

π
, a

(1)
3 =

1

π
,

a
(1)
4 = a

(1)
5 = 0].

Substituting from these constants into (40) we obtain the
approximate solution which is the same as the exact
solution (51).
For case (II): Similarly as in case (I) we obtain the values
of the constants as:

[a
(2)
0 arbitrary, a

(2)
1 =−

27

40π
, a

(2)
2 =

7

4π
, a

(2)
3 =

3

4π
,
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a
(2)
4 =−

2

π
, a

(2)
5 =−

1

π
].

Substituting from these constants into (40) we obtain the
approximate solution in the following form:

ϕ
(2)
5 (x,1) =

1

π
√

1− x2
(−x+ 2x3− x5)+

a
(2)
0√

1− x2
. (56)

Comparing the exact solution (52) with the approximate
solution (56) it is clear that the approximate solution is the

same as the exact solution if we take a
(2)
0 = 0.

For case (III): Similarly as in cases (I) and (II) we obtain
the values of the constants as:

[a
(3)
0 = 0, a

(3)
1 =−

98

1875
a
(3)
5 −

31

24π
, a

(3)
2 =−

13

20
a
(3)
5 +

7

12π
,

a
(3)
3 =

7

20
a
(3)
5 +

5

2π
, a

(3)
4 = 2a

(3)
5 +

1

π
,

a
(3)
5 is arbitrary constant ].

If a
(3)
5 takes value close to zero, then the approximate

solution is the same as the exact solution which is given
by (53).
For case (IV) Similarly as the above cases the values of
the constants are given by

[a
(4)
0 = 0,a

(4)
1 =−

98

1875
a
(4)
5 −

3

8π
,a

(4)
2 =−

13

20
a
(4)
5 +

17

12π
,

a
(4)
3 =

7

20
a
(4)
5 −

1

2π
, a

(4)
4 = 2a

(4)
5 −

1

π
,

a
(4)
5 is arbitrary constant ].

If a
(4)
5 takes value close to zero, then the approximate

solution is the same as the exact solution which is given
by (54).

7 Conclusion

In this paper, Lerch matrix collocation method for solving
various cases of Cauchy type singular integral equations
of the first kind is developed. The singularity of equation
(2) was successfully removed by applying smooth
transformations. Numerical examples show the reliability
and efficiently of the proposed method.

Acknowledgement

The author is grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] A. M. A. El-Sayed and R. Gamal. Infinite point and Riemann-

Stieltjes integral conditions for an integrodifferential

equation: Nonlinear Anal. Model. Control, 24, 733-754

(2019).
[2] A. M. A. El-Sayed and R. Gamal Ahmed: Solvability of a

coupled system of functional integro-differential equations

with infinite point and Riemann-Stieltjes integral conditions,

Appl. Math. Comput, 370, 124918 (2020).
[3] K. R. Raslan, M. Ahmed Abd-elsalam, K. K. Ali and E. M.

Mohamed: Spectral Tau method for solving general fractional

order differential equations with linear functional argument,

Journal of the Egyptian Mathematical Society, 27-33 (2019).
[4] L. Zada, M. Al-Hamami, R. Nawaz, S. Jehanzeb, A. Morsy,

A. Abdel-Aty, K. S. Nisar: A New Approach for Solving

Fredholm Integro-Differential Equations Inf. Sc. Lett. Vol.

10, No. 3, 407-415 (2021).
[5] M. A. Ramadan, Mahmoud A. Nassar, Mohamed A. Abd

El salam: On the Numerical Solution of Volterra-Fredholm

Integro-Differential Equations via Rational Chebyshev

Spectral Collocation Approach Math. Sc. Lett. Vol. 11, No.

1 35-43 (2022).
[6] R. M. Hafez, Y. H. Youssri: Spectral Legendre-Chebyshev

Treatment of 2D Linear and Nonlinear Mixed Volterra-

Fredholm Integral Equation Math. Sc. Lett. Vol. 9, No. 2 37-

47 (2020).
[7] A. Abd-Elall Ibrahim, Afaf A. S. Zaghrout, K. R. Raslan,

Khalid K. Ali: On the Analytical and Numerical Study

for Nonlinear Fredholm Integro-Differential Equations Appl.

Math. Inf. Sci. Vol. 14, No. 5 921-929 (2020).
[8] M. A. Abdel-Aty, M.A.Abdou, and A. A. Soliman:

Solvability of Quadratic Integral Equations with Singular

Kernel. Journal OF Contemporary Mathematical Analysis

Vol. 57 No. 1 (2022).
[9] M. Basseem and Ahmad Alalyani: On the Solution

of Quadratic Nonlinear Integral Equation with Different

Singular Kernels. Mathematical Problems in Engineering.

Article ID 7856207, 7 pages (2020).
[10] A. M. A. El-Sayed and Sh. M. Al-Issa: Monotonic solutions

for a quadratic integral equation of fractional order. AIMS

Mathematics, 4(3), 821-830 (2019).
[11] F. Erdogan, GD. Gupta and TS.Cook: Numerical solution

of singular integral equations. In: Sih, GC (ed.) Methods

of Analysis and Solutions of Crack Problems: Recent

Developments in Fracture Mechanics Theory and Methods of

Solving Crack Problems, pp. 368-425. Springer, Dordrecht

(1973).
[12] E. Ladopoulos: Singular Integral Equations: Linear and

Non-linear Theory and Its Applications in Science and

Engineering. Springer, New York (2013).
[13] M.A. Abdou. and A.A. Nasr: On the numerical treatment of

the singular integral equation of the second kind. Appl. Math.

Comput. 146, 373-380, (2003).
[14] D.A Hills. P.A. Kelly., D.N. Dai. and A.M Korsunsky:

Solution of Crack Problems. Springer, Dordrecht (1996).
[15] X.Jin., L.M. Keerand Q.Wang: A practical method for

singular integral equations of the second kind. Eng. Fract.

Mech. 75, 1005-1014, (2008).
[16] S. Kumar and O.P.Singh: Numerical inversion of the Abel

integral equation using homotopy perturbation method. Z.

Naturforsch. Sect. A J. Phys. Sci. 65, 677-682, (2010).

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


574 D. Shokry: Application of Lerch polynomials to singular integral equations

[17] S. Kumar, O. Singh. and S.Dixit: Homotopy perturbation

method for solving system of generalized Abels integral

equations. Appl. Appl. Math. 5, 2009-2024, (2011).

[18] A. Seifi, T. Lotfi, T. Allahviranloo. and M. Paripour:

An effective collocation technique to solve the singular

Fredholm integral equations with Cauchy kernel. Advances

in Difference Equations. 1-18, (2017).

[19] B. Mandal and S. Bhattacharya: Numerical solution of some

classes of integral equations using Bernstein polynomials.

Appl. Math. Comput. 190(2), 1707-1716, (2007).

[20] A. Seifi: Numerical solution of certain Cauchy singular

integral equations using a collocation scheme. Advances in

Difference Equations,1-15, (2020).

[21] A. Dezhbord, T. Lotfi and k. Mahdiani: A new efficient

method for cases of the singular integral equation of the first

kind. Journal of Computational and Applied Mathematics.

296, 156-169, (2016).

[22] M.Abdulkawi and S. A. H. Moayad: Bounded Solution of

Cauchy Type Singular Integral Equation of The First Kind

Using Differential Transform Method. Journal of Advences

in Mathematics. 7580-7595, (2018).

[23] A.Mennouni and S.Guedjiba, A note on solving Cauchy

integral equations of the first kind by iterations, J. Appl. Math.

Comput. 217, 7442-7447, (2011).

[24] P. Karczmarek , D.Pylak and M.A. Sheshko,: Application

of Jacobi polynomials to approximate solution of a singular

integral equation with Cauchy kernel. Appl. Math. Comput.

181(1), 694-707, (2006).

[25] E. Jen and R.P.Srivastas: Cubic spline and approximate

solution of singular integral equations, J. Math. Comput. 37,

417-423, (1981).

[26] M.Yaghobifar, N.M.A. Nik Log and Z.K.Eshkuvatov:

Analytical solutions of characteristic singular integral

equations in the class of rational functions, Int. J. Contemp.

Math. Sci. 5, 2773-2779, (2010).

[27] Z. Eshkuvatov, N.N. Long and M.Abdulkawi: Approximate

solution of singular integral equations of the first kind with

Cauchy kernel. Appl. Math. Lett. 22(5), 651-657 (2009).

[28] MC. De Bonisand and C. Laurita: Nystrom method for

Cauchy singular integral equations with negative index. J.

Comput. Appl. Math. 232(2), 523-538 (2009).

[29] M.A.Golberg: Introduction to the numerical solution of

Cauchy singular integral equations, in: M.A. Golberg (Ed.),

Numerical Solution of Integral Equations, Plenum Press,

New York, 1990.

[30] F. Gakhov: Boundary Value Problems. Dover, New York

1990.

[31] I.K.Lifanov: Singular Integral Equation and Discrete

Vortices, VSO, The Netherlands, 1996.

[32] S. Cayan and M. Sezer: Lerch matrix collocation method

for 2D and 3D Volterra type integral and second order partial

integro differential equations together with an alternative

error analysis and convergence criterion based on residual

functions. Turkish Journal of Mathematics. 44: 2073- 2098,

(2020).

[33] S. Cayan and M. Sezer: A New approximation based

on residual error estimation for the solution of a class of

unsteady convection-diffusion problem. Journal of Science

and Arts. 323-338, (2020).

[34] D. Branson: An extension of stirling numbers. Fibonacci

Quarterly. 34 (3): 213-223, 1996.

[35] S.Illie, D. J. Jeffrey, RM. Corless and X.Zhang:

Computation of Stirling Numbers and Generalizations.

In: 17th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing; Timisoara, Romania.

57-60, (2015).

[36] V. Kruchinin and D.Kruchinin: Explicit formulas for

some generalized polynomials. Applied Mathematics and

Information Sciences. 7 (5): 2083-2088, (2013).

[37] D.Branson: Official Publication of the Fibonacci

Association, 34, 213, 1996.

[38] N.Balakrishnan: Advances in Combinatorial Methods and

Applications to Probability and Statistics, Birkhauser, Basel,

Berlin, Boston, 1997.

Doaa Shokry Mohamed
Lecturer of pure mathematics,
Department of Mathematics.
Faculty of Science, Zagazig
University, Egypt. She has
published several research
paper in international
journals. Her PHD in
integral equations.

c© 2022 NSP

Natural Sciences Publishing Cor.


	Introduction
	Lerch polynomials
	Transformation of equation (2)
	The method of solution
	Error estimation
	Numerical examples
	Conclusion

