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Abstract: Heavy-tailed distributions are vital in actuarial and financial modeling. In this article, a new family of heavy-tailed

distributions known as sine F-Loss is proposed. The mathematical properties are derived and maximum likelihood estimators of the

model parameters are obtained. For illustrative purposes, three special distributions; sine Weibull loss, sine Fréchet loss and sine Burr

XII loss are proposed. Monte Carlo simulations are carried out to assess the behavior of the estimators. The densities and hazard

rate functions exhibit increasing, decreasing, increasing-constant-decreasing, symmetric, right skewed, reversed J-shaped, bathtub and

upside down bathtub shapes. The application of the proposed distributions is presented with two insurance loss datasets.
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1 Introduction

Statistical distributions are essential in modeling data in
applied fields, primarily in actuarial, financial sciences,
and risk management. Heavy-tailed distributions have
proven to be the best choice for modeling financial
datasets. Actuaries often look for such distributions to
better describe actuarial or financial datasets [1].
Insurance data usually are positive, and their distribution
is typically unimodal humped shaped with extreme values
yielding tails heavier than some conventional distributions
[2]. Therefore, traditional distributions may not be
flexible in modeling these heavy-tailed datasets [3].
Some classical distributions like the Pareto [4], Lomax
[5], beta [6], Burr [7], and Weibull [8] still have some
drawbacks as they cannot model heavy-tailed datasets
adequately. Also, some of the methods employed in
developing heavy tail distributions in the literature have
been the compounding of distributions, addition of
variables, transformation of variables, composition
method, and the finite mixture of distributions; most of
the heavy-tailed distributions from these methods are
mostly not flexible enough in modeling insurance loss
data and at times lead to over-parameterization.

Since there is an increased interest in data analysis,
further research is needed to have more choices regarding
distributions that dwell on trigonometric functions [9].
The merits of these distributions are; to allow a good
understanding of the mathematical properties, limits over
parameterization, and give better applicability in
modeling different datasets. These points come from
proper use of the trigonometric functions. Also, the
trigonometric transformation provides flexibility because
of the periodic function, which controls how the
distribution curve behaves, and parameter(s) oscillate
with value changes [10] .
Most of the statistical distributions proposed in the
literature have many parameters to make them flexible.
According to [11] , these estimates may be challenging to
obtain numerically. Therefore, it is essential to develop
distributions with a few parameters but a significant
degree of flexibility for modeling data. Few researchers
decided to look for other distributions using trigonometric
functions to achieve this. Among them are; [12,13,14,15,
16,17,18].
More recently, [19] introduced the F-loss family of
distributions by adding a shape parameter to the baseline
distribution. They proposed the Weibull-Loss (W-Loss)

∗ Corresponding author e-mail: abonongojohn@gmail.com

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/160518


836 J. Abonongo et al.: Sine F-Loss family of distributions: properties...

distribution as a sub-model. The distributions from this
family are not flexible enough in handling varying shape
of the density and hazard rate functions. Hence, we
propose an extension of this family without adding any
extra parameters by using trigonometric functions.
Also, to address the drawbacks of some of the existing
heavy-tailed distributions and methods of developing
probability distributions, we propose the sine F-Loss
Family of distributions. We show the flexibility of the sine
F-Loss family of distributions as a better alternative to the
F-Loss family of distributions and other heavy tailed
distributions in real-world phenomenon. In this regard,
we use the F-Loss family of distributions introduced by
[19]. A random variable X is said to follow the F-Loss
family, if its cumulative distribution (CDF) is given by

H(x;σ ,ωωω) = 1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))
, σ > 0,x ∈R,

(1)

where F̄(x;ωωω) = 1−F(x;ωωω) is the survival function (sf)
of the baseline distribution, ωωω is a p × 1 vector of
parameters and σ is a shape parameter.
[20] proposed the sine-G family of distributions. A
random variable X is said to follow the sine-G family of
distributions, if its CDF is given by

G(x;σ ,ωωω) = sin
(π

2
H(x;σ ,ωωω)

)

, x ∈R. (2)

We propose a new heavy-tailed family of distributions
based on the F-Loss family and sine-G family of
distributions called the sine F-Loss (SFL) family of
distributions without adding an extra parameter. A
random variable X is said to follow the SFL family of
distributions if its CDF is designated as

G(x;σ ,ωωω) = sin
[

π
2

(

1− σ F̄(x;ωωω)
σ−log(F̄(x;ωωω))

)]

, σ > 0,x ∈ R,

(3)

where F̄(x;ωωω)= 1−F(x;ωωω) is the survival function (sf) of
the baseline distribution which may depend on the vector
parameter ωωω and σ is a shape parameter.
It is constructed from the insertion of the CDF, H(x;σ ,ωωω)
in equation (1) into the CDF; G(x;σ ,ωωω) given in equation
(2).
The PDF is given by

g(x;σ ,ωωω) =
π

2

[

σ f (x;ωωω) [1+σ − log(F̄(x;ωωω))]

[σ − log(F̄(x;ωωω))]
2

]

× cos

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]

,x ∈R.

(4)

The hazard rate function of the SFL family of distributions
is given by

h(x;σ ,ωωω) =
π [σ f (x;ωωω)[1+σ−log(F̄(x;ωωω))]]cos

[

π
2

(

1−
σ F̄(x;ωωω)

σ−log(F̄(x;ωωω))

)]

2[σ−log(F̄(x;ωωω))]2
[

1−sin
[

π
2

(

1−
σ F̄(x;ωωω)

σ−log(F̄(x;ωωω))

)]] ,x ∈ R.

(5)

Our motivation for proposing an extension of the F-Loss
family of distributions are; to improve the flexibility of
the F-Loss family of distributions without introducing any
additional parameter(s); to produce heavy tailed
distributions with fewer parameters that gives better
parametric fit to a given data sets than some existing
distributions; to generate distributions which are
approximately symmetric, right-skewed and reversed-J
shaped and distributions capable of modeling monotonic
and non-monotonic hazard rates. Therefore, there is the
need to extend the F-Loss family of distributions so as to
capture all these variations.
The rest of the paper is organized as follows: Section 2,
gives the mixture representation of the SFL family of
distributions, Section 3 presents the mathematical
properties of the SFL family. In Section 4, we present the
parameter estimation. Section 5, presents three special
distributions of the family of distributions. The behavoir
of the parameters of the special distributions are ascertain
in Section 6 using Monte Carlo simulations. In Section 7,
the applications of the special distributions are illustrated
using insurance loss dataset. The conclusion is presented
in Section 8.

2 Mixture Representation

This section presents the mixture representation of the
PDF of the SFL family of distributions.
Lemma 1. The PDF of the SFL family of distributions
have a mixture representation of the form

g(x;σ ,ωωω) =
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk f (x;ωωω)F(x;ωωω)k+t+m

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1 f (x;ωωω)F(x;ωωω)k+1+t+m.

(6)

where ϖ∗
i jk =

ϖi jk(−1)t

σ k+1

(

j
t

)

,

Lk = k ∑∞
m=0

(

m−k
m

)

∑m
r=0

(−1)m+r

k−r

(

m
r

)

Pr,m and

Lk+1 = (k+ 1)∑∞
m=0

(

m−k−1
m

)

∑m
r=0

(−1)m+r

k+1−r

(

m
r

)

Pr,m.
Proof. Using the power series expansion of cosine
function,

cos(x) =
∞

∑
i=0

(−1)i

(2i)!
x2i. (7)

That is, from equation (4),

cos

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]

=
∞

∑
i=0

(−1)i

(2i)!

×

[

π

2

(

1−
σ F̄(x;ωωω)

σ − logF̄(x;ωωω)

)]2i

. (8)
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From the generalized binomial expansion given by

(1− z)n =
∞

∑
j=0

(−1) j

(

n

j

)

z j, |z| ≤ 1, (9)

and

(1+ x)−s =
∞

∑
k=0

(−1)k

(

s+ k− 1

k

)

xk, |x| ≤ 1. (10)

Substituting equation (8) in equation (4) and making use

of equation (9) and the fact that 0 <
σ F̄(x;ωωω)

σ−logF̄(x;ωωω)
< 1, we

have

g(x;σ ,ωωω) =
π

2

σ f (x;ωωω) [1+σ − logF̄(x;ωωω)]

[σ − logF̄(x;ωωω)]
2

×
∞

∑
i=0

2i

∑
j=0

(−1)i+ j(π
2
)2i

(2i)!

(

2i

j

)[

σ jF̄(x;ωωω) j

[σ − logF̄(x;ωωω)] j

]

=
π

2
σ f (x;ωωω) [1+σ − logF̄(x;ωωω)]

×
∞

∑
i=0

2i

∑
j=0

(−1)i+ j(π
2
)2i

(2i)!

(

2i

j

)

[

σ jF̄(x;ωωω) j

σ2+ j[1−
log F̄(x;ωωω)

σ ]2+ j

]

= f (x;ωωω) [1+σ − logF̄(x;ωωω)]

×
∞

∑
i=0

2i

∑
j=0

(−1)i+ j(π
2
)2i+1

(2i)!

(

2i

j

)

F̄(x;ωωω) j

σ [1− log F̄(x;ωωω)
σ ]2+ j

.

Using the binomial expansion in equation (10) and letting

x =− log F̄(x;ωωω)
σ ,

g(x;σ ,ωωω) =
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

(−1)i+ j+k(π
2
)2i+1

(2i)!

(

2i

j

)

×

(

j+ k+ 1

k

)

×
(1+σ) f (x;ωωω))F̄(x;ωωω) j [− log F̄(x;ωωω)]

k

σ k+1

+
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

(−1)i+ j+k(π
2
)2i+1

(2i)!

(

2i

j

)

×

(

j+ k+ 1

k

)

×
f (x;ωωω)F̄(x;ωωω) j [− log F̄(x;ωωω)]

k+1

σ k+1
.

Again, using the expansion;

(− log(1− z))a = a
∞

∑
m=0

(

m− a

m

)

m

∑
r=0

(−1)m+r

a− r

(

m

r

)

Pr,m,z
a+m,

where a > 0 is any real value. The constants Pr,m can be
calculated, recursively, via
Pr,m = 1

m ∑m
s=1

rs+s−m
s+1

Pr,m−s for m = 1,2,3, ... and

Pr,0 = 1. Let ϖi jk =
(−1)i+ j+k( π

2 )
2i+1

(2i)!

(

2i
j

)(

j+k+1
k

)

,

g(x;σ ,ωωω) =
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

ϖi jk(1+σ)

σ k+1
f (x;ωωω)F̄(x;ωωω) j

[− log F̄(x;ωωω)]
k
+

∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

ϖi jk

σ k+1
f (x;ωωω)

F̄(x;ωωω) j [− log F̄(x;ωωω)]
k+1

.

This implies that,

g(x;σ ,ωωω) =
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

ϖi jk(1+σ)

σ k+1
f (x;ωωω)F̄(x;ωωω) j

×k
∞

∑
m=0

(

m− k

m

)

m

∑
r=0

(−1)m+r

k− r

(

m

r

)

Pr,m

F(x;ωωω)k+m +
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

ϖi jk

σ k+1
f (x;ωωω)

F̄(x;ωωω) j(k+ 1)
∞

∑
m=0

(

m− k− 1

m

)

×
m

∑
r=0

(−1)m+r

k+ 1− r

(

m

r

)

Pr,mF(x;ωωω)k+1+m.

Letting Lk = k ∑∞
m=0

(

m−k
m

)

∑m
r=0

(−1)m+r

k−r

(

m
r

)

Pr,m

and Lk+1 = (k+ 1)∑∞
m=0

(

m−k−1
m

)

∑m
r=0

(−1)m+r

k+1−r

(

m
r

)

Pr,m

and the fact
that, F̄(x;ωωω) j = [1−F(x;ωωω)] j = ∑

j
t=0(−1)t

(

j
t

)

F(x;ωωω)t ,
we get,

g(x;σ ,ωωω) =
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

j

∑
t=0

ϖi jk(1+σ)(−1)tLk

σ k+1

(

j

t

)

f (x;ωωω)F(x;ωωω)k+t+m

+
∞

∑
i=0

2i

∑
j=0

∞

∑
k=0

j

∑
t=0

ϖi jk(−1)tLk+1

σ k+1

(

j

t

)

f (x;ωωω)F(x;ωωω)k+1+t+m.

3 Mathematical Properties of the SFL Family

of Distributions

In this section, the mathematical properties of the SFL
family of distributions including quantile function,
moments, moment generation function, limited expected
value, mean deviation, median deviation, mean excess
loss function, value at risk, tail value at risk, tail variance
and tail variance premium are derived.

3.1 Quantile Function

The quantile function is vital in describing the random
variable of a distribution. It helps in simulating random
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samples which are useful in computing the median,
kurtosis and skewness of a distribution amongst others.
Lemma 2. The quantile function of the SFL family of
distributions for u ∈ (0,1) is given by

σ(1− t)− (σ − log(1− t))

(

1−
2

π
arcsin(u)

)

= 0.

(11)

Proof. By definition the quantile function is given by

xu = G−1(u).

Thus,

1−
2

π
arcsin(u) =

σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))
. (12)

Solving equation (12), we get

σ(1− t)− (σ − log(1− t))

(

1−
2

π
arcsin(u)

)

= 0,

where t is the solution of the equation
σ(1 − t)− (σ − log(1− t))

(

1− 2
π arcsin(u)

)

= 0, and u

has the uniform distribution on the interval (0,1).
The quantile function can also be employed in estimating
the skewness and kurtosis especially when the moments
of the distribution does not exist. It can be obtained by
using Galton’s skewness and Moor’s kurtosis measure
which are given respectively by

G .S =
Q
(

6
8

)

+Q( 2
8
)− 2Q

(

4
8

)

Q
(

6
8

)

−Q
(

2
8

) (13)

and

M .K =
Q
(

7
8

)

−Q( 5
8
)+Q

(

3
8

)

−Q
(

1
8

)

Q
(

6
8

)

−Q
(

2
8

) . (14)

3.2 Moments

The moments of a distribution is important in estimating
measures of variation like the variance, standard
deviation, coefficient of variation, mean deviation,
median deviation, kurtosis, skewness amongst others.
Proposition 1. The nth non-central moment of the SFL
family of distributions is given by

µ
′

n =
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lkϑktm(x;ω)

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1φktm(x;ω). (15)

where ϑktm(x;ω) =
∫ ∞

0 xn f (x;ωωω)F(x;ωωω)k+t+mdx,

φktm(x;ω) =
∫ ∞

0 xn f (x;ωωω)F(x;ωωω)k+1+t+mdx and

n = 1,2, ....
Proof. By definition the nth non- central moment is given
by

µ
′

n =

∫ ∞

0
xng(x)dx.

This implies that,

µ
′

n =
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

∫ ∞

0
xn f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

∫ ∞

0
xn f (x;ωωω)F(x;ωωω)k+t+1+mdx.

3.3 Expressing the Moment in terms of the

Quantile Function

Proposition 2. The moment of the SFL family of
distributions in terms of the quantile function is given by

µ
′

n =
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkA+

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1A∗.

(16)

where A =
∫ 1

0 Qn
G(u)u

k+t+mdu and

A∗ =
∫ 1

0 Qn
G(u)u

k+1+t+mdu.
Proof. Letting u = G(x), implies that if, x → −∞ then,
u → 0 and if x → ∞, then, u → 1. Also, du = g(x)dx and
x = G−1(u) = QG(u).
Thus,

µ
′

n =
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

∫ 1

0
Qn

G(u)u
k+t+mdu

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

∫ 1

0
Qn

G(u)u
k+1+t+mdu.

3.4 Moment Generating Function

The moment generating function (MGF) helps in
determining the moments of a random variable.
Proposition 3. The MGF of the SFL Family of
distributions is given by

MX (z) =
∞

∑
i,k,n=0

2i

∑
j=0

j

∑
t=0

Znϖ∗
i jk(1+σ)Lk

n!
ϑktm(x;ω)

+
∞

∑
i,k,n=0

2i

∑
j=0

j

∑
t=0

Znϖ∗
i jkLk+1

n!
φktm(x;ω). (17)

Proof. By definition the MGF is given as;

MX (z) = E(ezX ) =

∫ ∞

0
ezxg(x)dx.
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Using series expansion,

MX (z) =
∞

∑
n=0

Zn

n!
µ

′

n.

This implies,

MX (z) =
∞

∑
i,k,n=0

2i

∑
j=0

j

∑
t=0

Znϖ∗
i jk(1+σ)Lk

n!

×

∫ ∞

0
xn f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k,n=0

2i

∑
j=0

j

∑
t=0

Znϖ∗
i jkLk+1

n!

×
∫ ∞

0
xn f (x;ωωω)F(x;ωωω)k+t+1+mdx.

3.5 Mean Excess Loss Function

The mean excess loss function measures the expected
payment per claim on a policy with a fixed amount
deductible x, ignoring the claims with amounts less than
or equal to x.
Proposition 4. The mean excess loss function of the SFL
family of distributions is given by

eX(d) =
1

1−F(x;ωωω)(d)

{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkBktm

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1B∗

ktm

}

.

(18)

where Bktm =
∫ ∞

d (x − d) f (x;ωωω)F(x;ωωω)k+t+mdx and

B∗
ktm =

∫ ∞
d (x− d) f (x;ωωω)F(x;ωωω)k+1+t+mdx.

Proof. By definition the mean excess loss function is
given as;

eX(d) = E(X − d|X > d) =
1

1−Fx(d)

∫ ∞

d
(x− d)g(x).

This implies that,

eX(d) =
1

1−F(x;ωωω)(d)

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

×
∫ ∞

d
(x− d) f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

×
∫ ∞

d
(x− d) f (x;ωωω)F(x;ωωω)k+1+t+mdx

]

.

3.6 Limited Expected Value

The limited expected value represents the expected
amount per claim retained by insured on a policy with a
fixed amount deductible of x. Also, it shows how the
different parts of the claim size CDF contributes to the
premium.
Proposition 5. The limited expected value of the SFL
family of distributions is given by

L(u) =

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkAu

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1A∗

u

]

+u(1−F(x)) (19)

where Au =
∫ u

0 x f (x;ωωω)F(x;ωωω)k+t+mdx

and A∗
u =

∫ u
0 x f (x;ωωω)F(x;ωωω)k+1+t+mdx

Proof. By definition the limited expected value function of
a claim size variable X is given as;

L(u) = E(X ∧u) =

∫ u

0
xg(x)dx+ u(1−F(x)).

This implies that,

L(u) =

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

∫ u

0
x f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

∫ u

0
x f (x;ωωω)F(x;ωωω)k+1+t+mdx

]

+u(1−F(x)).

3.7 Value at Risk

Value at risk (VaR) is commonly used as a benchmark in
measuring market risk. It is also called the quantile
premium principle or quantile risk measure. It is usually
expressed with a confidence level q (usually 90%, 95% or
99%), and represent the percentage of loss in portfolio
value that will be equaled or exceeded only X percent of
the time. The VaR of a random X is the qth quantile of its
[21].
Proposition 6. For σ > 0, the VaRq(X) of the SFL family
of distributions is given by

(1− t)− (σ − log(1− t))

(

1−
2

π
arcsin(q)

)

= 0, (20)

where t is the solution of equation
(1− t)− (σ − log(1− t))

(

1− 2
π arcsin(q)

)

= 0.
Proof. By definition

xq = F−1(t).

Thus, the VaR of SFL distribution can be written as;

(1− t)− (σ − log(1− t))

(

1−
2

π
arcsin(q)

)

= 0.
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3.8 Tail Value at Risk

The Tail value at risk is also called the tail conditional
expectation (TCE) or conditional tail expectation (CTE)
and is for determining the average loss beyond a given
probability level.
Proposition 7. For σ ≥ 0, the TVaRq(X) for the SFL
family of distributions is given by

TVaRq(X) =
1

1− q

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkJq

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1J∗q

]

. (21)

where Jq =
∫ ∞

VaRq
x f (x;ωωω)F(x;ωωω)k+t+mdx and

J∗q =
∫ ∞

VaRq
x f (x;ωωω)F(x;ωωω)k+1+t+mdx.

Proof. By definition

TVaRq(X) = E(X |X >VaRq) =
1

1− q

∫ ∞

VaRq

xg(x)dx.

TVaRq(X) =
1

1− q

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

×

∫ ∞

VaRq

x

(

f (x;ωωω)F(x;ωωω)k+t+m
)

dx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

×

∫ ∞

VaRq

x

(

f (x;ωωω)F(x;ωωω)k+1+t+m
)

dx

]

.

3.9 Tail Variance

TV is an important risk measure in insurance sciences. It
is vital in determining the risk level at the tails.
Proposition 8. For σ ≥ 0, the TVq(X) for the SFL family
of distributions is given by

TVq(X) =
1

1− q

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkBq

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1B∗

q

]

−

[

1

1− q

{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkJq (22)

×
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1J∗q

}]2

,

where Bq =
∫ ∞

VaRq
x2 f (x;ωωω)F(x;ωωω)k+t+mdx and

B∗
q =

∫ ∞
VaRq

x2 f (x;ωωω)F(x;ωωω)k+1+t+mdx.

Proof. From definition

TVq(X) = E(X2|X > xq)− (TVaRq)
2. (23)

Using conditional moments, E(Xn|X > x) = 1
s(x)τn(x),

where τn(x) =
∫ ∞

x yng(y)dy and s(x) = 1−F(x).
This implies that,

E(X2|X > xq) =
1

1− q

{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

×

∫ ∞

VaRq

x2 f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1 (24)

×

∫ ∞

VaRq

x2 f (x;ωωω)F(x;ωωω)k+1+t+mdx

}

.

Substituting equation (24) into equation (23) completes the
proof.

3.10 Tail Variance Premium

The TVP is another important measure that plays an
important role in insurance sciences. It is vital in
determining the premium for a risk.
Proposition 9. For 0 < δ < 1 , the TVPq(X) for the SFL
distribution is given by

TVPq =
1

1− q

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkJq

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1J∗q

]

+δ

[

1

1− q

[

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkBq +

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1B∗

q

]

−

[

1

1− q

{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkJq

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1J∗q

}]2]

.

(25)

Proof. From definition,

TVPq(X) = TVaRq + δTVq. (26)

Substituting equation (21) and equation (22) in equation
(26) completes the proof.

3.11 Mean Deviation

Proposition 10. The mean deviation of the SFL family of
distribution is given by

δµ = 2µF(µ)− 2µ + 2

[{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkDµ

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1Uµ

}]

,

(27)
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where Dµ =
∫ ∞

µ x f (x;ωωω)F(x;ωωω)k+t+mdx and

Uµ =
∫ ∞

µ x f (x;ωωω)F(x;ωωω)k+1+t+mdx.

Proof. By definition

δµ =

∫ ∞

0
|x− µ | f (x)dx = 2µF(µ)− 2µ + 2τ1(µ).

This implies that,

δµ = 2µF(µ)− 2µ + 2

[{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

∫ ∞

µ
x f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

∫ ∞

µ
x f (x;ωωω)F(x;ωωω)k+1+t+mdx

}]

.

3.12 Median Deviation

Proposition 11. The median deviation of the SFL family
of distribution is given by

δM = 2

[{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)LkAM

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1A∗

M

}]

− µ , (28)

where AM =
∫ ∞

M x f (x;ωωω)F(x;ωωω)k+t+mdx and

A∗
M =

∫ ∞
M x f (x;ωωω)F(x;ωωω)k+1+t+mdx. Proof. By definition

δM =
∫ ∞

0
|x−M| f (x)dx = 2τ1(M)− µ .

That is,

δM = 2

[{

∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jk(1+σ)Lk

×

∫ ∞

M
x f (x;ωωω)F(x;ωωω)k+t+mdx

+
∞

∑
i,k=0

2i

∑
j=0

j

∑
t=0

ϖ∗
i jkLk+1

×
∫ ∞

M
x f (x;ωωω)F(x;ωωω)k+1+t+mdx

}]

− µ .

3.13 Order Statistics

Let X1,X2, . . . ,Xn be a sample of size n from the SFL
family of distributions and X1:n ≤ X2:n ≤ . . .≤ Xn:n denote
the order statistics of the sample. The PDF of the ith order
statistics gi:n(x) is defined as

gi:n(x) =
n!

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−1g(x).

(29)

Using binomial series expansion, we have

[1−G(x)]n−1 =
n−i

∑
r=0

(−1)r

(

n− i

r

)

[G(x)]r. (30)

That is, equation (29) becomes

gi:n(x) =
n!

(i− 1)!(n− i)!
g(x)

n−i

∑
r=0

(−1)r

(

n− i

r

)

[G(x)]r+i−1.

(31)

Substituting equation (3) and equation (4) in equation (31),
we get the ith order statistics as

gi:n(x) =
πσ f (x;ωωω)[1+σ − log(F̄(x;ωωω))]cos

[

π
2

(

1− σ F̄(x;ωωω)
σ−log(F̄(x;ωωω))

)]

n!

2[σ − log(F̄(x;ωωω))]2(i− 1)!(n− i)!

×
n−i

∑
r=0

(−1)r

(

n− i

r

)[

sin

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]]r+i−1

.

(32)

The PDF of the first order statistics is defined as

g1:n(x) = n[1−G(x)]n−1g(x). (33)

Substituting equation (3) and equation (4) in equation (33),
we get the PDF of the first order statistics as

g1:n(x) = n

[

1− sin

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]]n−1

×
π

2

[

σ f (x;ωωω) [1+σ − log(F̄(x;ωωω))]

[σ − log(F̄(x;ωωω))]
2

]

×cos

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]

.

(34)

Also, the PDF of the nth order statistics is defined as

gn:n(x) = n[G(x)]n−1g(x). (35)

Substituting equation (3) and equation (4) in equation (35),
we get the PDF of the nth order statistics as

gn:n(x) = n

[

sin

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]]n−1

×
π

2

[

σ f (x;ωωω) [1+σ − log(F̄(x;ωωω))]

[σ − log(F̄(x;ωωω))]
2

]

(36)

× cos

[

π

2

(

1−
σ F̄(x;ωωω)

σ − log(F̄(x;ωωω))

)]

.

4 Parameter Estimation

In this section, the unknown parameters of the SFL family
of distributions were estimated using the maximum
likelihood estimation (MLE) technique.
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4.1 Maximum Likelihood Estimation

Let X1,X2, ...,Xn are n random sample from the SFL
family of distributions. Therefore, the log-likelihood
function which is a p× 1 parameter vector Λ = (σ ,ωωω)T

is given by

ℓ = n
(

log
(π

2

))

+ n log(σ)+
n

∑
i=1

log f (xi;ωωω)

+
n

∑
i=1

log [1+σ − log(1− F̄(xi;ωωω))]

−2
n

∑
i=1

log [σ − log(1− F̄(xi;ωωω))]

+
n

∑
i=1

logcos

[

π

2

(

1−
σ F̄(xi;ωωω)

σ − log(F̄(xi;ωωω))

)]

. (37)

The log-likelihood function in equation (37) is
differentiated with respect to each parameter to obtain the

score function, U(Λ) =
(

∂ℓ
∂σ ,

∂ℓ
∂ωωω

)T

. Hence,

∂ℓ

∂σ
=

n

σ
+

n

∑
i=1

1

[1+σ − log(F̄(xi;ωωω))]

− 2
n

∑
i=1

1

[σ − log(F̄(xi;ωωω))]

−
π

2

n

∑
i=1

(

σ F̄(xi;ωωω)

σ − logF̄(xi;ωωω)
−

F̄(xi;ωωω)

σ − log F̄(xi;ωωω)

)

× tan

[

π

2

(

1−
σ F̄(xi;ωωω)

σ − log(F̄(xi;ωωω))

)]

. (38)

and

∂ℓ

∂ωωω
=

n

∑
i=1

f
′
(xi;ωωω)

f (xi;ωωω)
+

n

∑
i=1

F
′
(xi;ωωω)

[1+σ − log(F̄(xi;ωωω))]

−
π

2

n

∑
i=1

(

σF
′
(xi;ωωω)

σ − logF̄(xi;ωωω)
−

σF
′
(xi;ωωω)

σ − log F̄(xi;ωωω)

)

× tan

[

π

2

(

1−
σ F̄(xi;ωωω)

σ − log(F̄(xi;ωωω))

)]

. (39)

where F
′
(xi;ωωω) = ∂F(xi;ωωω)

∂ωωω and f
′
(xi;ωωω) = ∂ f (xi ;ωωω)

∂ωωω .

5 Special Distributions

In this section, three special distributions are presented.
These are the sine Weibull Loss (SWL) , sine Fréchet Loss
(SFrL) and sine Burr-XII Loss (SBXIIL) distributions.

5.1 Sine Weibull Loss Distribution

If we consider the Weibull distribution as the baseline
distribution with CDF and PDF defined as

F(x) = 1− e−αxβ
and f (x) = αβ xβ−1e−αxβ

for x > 0 and
α,β > 0, respectively, we obtain the SWL distribution.
From equation (3), the CDF of the SWL distribution is
given by

G(x;α,β ,σ) = sin

[

π

2

(

1−
σe−αxβ

σ +αxβ

)]

, x > 0, α,β ,σ > 0,

(40)

where β and σ are shape parameters and α is a scale
parameter.
The related PDF is given by

g(x;α,β ,σ) =
παβ σ

2

[

xβ−1e−αxβ
(1+σ +αxβ )

(σ +αxβ )2

]

× cos

[

π

2

(

1−
σe−αxβ

σ +αxβ

)]

, x > 0. (41)

The corresponding hazard rate function is given by

h(x;α,β ,σ) =

παβ σxβ−1e−αxβ
(1+σ +αxβ )cos

[

π
2

(

1− σe−αxβ

σ+αxβ

)]

2(σ +αxβ )2

[

1− sin

[

π
2

(

1− σe−αxβ

σ+αxβ

)]] , x > 0.

(42)

The plots of the density function of the SWL distribution
is shown in Figure . The density function exhibits
decreasing, right skewed, approximately symmetric and
symmetric shapes.

Fig. 1: Different Plots for the density function of the SWL

distribution

From Figure 2, the hazard rate function of the SWL
distribution exhibits increasing, decreasing,
increasing-constant-increasing, reversed-J and bathtub
shapes.

5.2 Sine Fréchet Loss Distribution

Consider the Fréchet distribution as the baseline
distribution with CDF and PDF defined as F(x) = e−αx−β

and f (x) = β αx−(β+1)e−αx−β
for x > 0 and α,β > 0,
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Fig. 2: Different Plots for the hazard rate function of the SWL

distribution

Fig. 3: Different Plots for the density function of the SFrL

distribution

respectively, we obtain the SFrL distribution. Using
equation (3), the CDF of the SFrL is given by

G(x;α,β ,σ) = sin





π

2



1−
σ
(

1− e−αx−β
)

σ − log
(

1− e−αx−β
)







 , x > 0,α,β ,σ > 0,

(43)

where α is a scale parameter, β and σ > 0 are shape
parameters.

The related PDF is given by

g(x;α,β ,σ) =
παβ σ

2







x−(β+1)e−αx−β
[

1+σ − log
(

1− e−αx−β
)]

[

σ − log
(

1− e−αx−β
)]2







×cos





π

2



1−
σ
(

1− e−αx−β
)

σ − log
(

1− e−αx−β
)







 , x > 0. (44)

The hazard rate function is given by

h(x;α,β ,σ) =

παβ σ

[

x−(β+1)e−αx−β
[

1+σ−log

(

1−e−αx−β
)]]

cos







π
2






1−

σ

(

1−e−αx−β
)

σ−log

(

1−e−αx−β
)













2
[

σ−log
(

1−e−αx−β
)]2






1−sin







π
2






1−

σ

(

1−e−αx−β
)

σ−log

(

1−e−αx−β
)



















, x > 0.

(45)

The plots of the density function of the SFrL in Figure 3
exhibits right skewed and reversed-J shapes with varying
degree of kurtosis.
The plots of the hazard rate function as shown in Figure 4,
exhibits decreasing, reversed-J and upside down bathtub
shapes.

Fig. 4: Different Plots for the hazard rate function of the

SFrL distribution

5.3 Sine Burr XII Loss Distribution

Consider the Burr XII distribution as the baseline
distribution with CDF and PDF defined as

F(x) = 1 −
(

1+
(

x
α

)γ
)−τ

and

f (x) = τγα−γ xγ−1
(

1+
(

x
α

)γ
)−(τ+1)

for x > 0 and

α,γ,τ > 0, respectively, we obtain the SBXIIL
distribution. Using equation (3), the CDF of the SBXIIL
is given by

G(x;α,γ,τ,σ) = sin







π

2






1−

σ
(

1+
(

x
α

)γ
)−τ

σ + τ log
(

1+
(

x
α

)γ
)












, x > 0,α,γ,τ,σ > 0,

(46)

where α is a scale parameter, γ,τ and σ are shape
parameters.
The PDF is given by

g(x;α,γ,τ,σ) =
π

2







στγα−γxγ−1
(

1+
(

x
α

)γ
)−(τ+1) [

1+σ + τ log
(

1+
(

x
α

)γ
)]

[

σ + τ log
(

1+
(

x
α

)γ
)]2







×cos







π

2






1−

σ
(

1+
(

x
α

)γ
)−τ

σ + τ log
(

1+
(

x
α

)γ
)












,x > 0. (47)

The hazard rate function is given by

h(x;α,γ,τ,σ) =

πστγα−γ

[

xγ−1
(

1+
(

x
α

)γ
)−(τ+1) [

1+σ + τ log
(

1+
(

x
α

)γ
)]

]

cos

[

π
2

(

1−
σ
(

1+( x
α )

γ
)−τ

σ+τ log
(

1+( x
α )

γ
)

)]

2
[

σ + τ log
(

1+
(

x
α

)γ
)]2

[

1− sin

[

π
2

(

1−
σ
(

1+( x
α )

γ
)−τ

σ+τ log
(

1+( x
α )

γ
)

)]] ,x > 0.

(48)

The density plots of the SBXIIL distribution in Figure 5
exhibits right skewed, decreasing, reversed-J shapes with
some level of peakedness.

From Figure 6, the hazard rate function plots of the
SBXIIL distribution shows
increasing-constant-decreasing, decreasing, bathtub,
upside down bathtub and reversed-J shapes.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


844 J. Abonongo et al.: Sine F-Loss family of distributions: properties...

Fig. 5: Different Plots for the density function of the SBXIIL

distribution

Fig. 6: Different Plots for the hazard rate function of the

SBXIIL distribution

6 Monte Carlo Simulation

In this section, the simulation results are presented in
examining the properties of the maximum likelihood
estimators for the parameters of the SWL distribution.
Five different combinations of the parameter values of
these distributions are specified and their quantile
functions used in generating four different random
samples of size, n = 50,100,150,200. The simulations
are replicated for N = 5000 times. The properties of the
estimators are investigated by computing average bias
(AB) and root mean square error (RMSE) for each of the
parameters. The simulation steps are as follows:

i.Specify the values of the parameters and the sample
size n.

ii.Generate random samples of size n = 50,100,150,200
from the SWL the quantiles.

iii.Find the maximum likelihood estimates for the
parameters.

iv.Repeat steps ii-iii for 5000 times.
v.Calculate the average bias (AB) and root mean square

error (RMSE) for the parameters of the distributions
using the following formulas:

AB = 1
5000 ∑5000

i=1

(

ξ̂i − ξ
)

and

RMSE =

√

1
5000 ∑5000

i=1

(

ξ̂i − ξ
)2

for ξ = (α,β ,σ),

respectively.

Table 1 shows the simulation results for the SWL
distribution using parameter values I:
α = 0.5,β = 0.5,σ = 0.8, II: α = 0.3,β = 0.3,σ = 0.3,
III: α = 0.4,β = 0.7,σ = 0.3, IV:

α = 0.6,β = 0.4,σ = 0.6, and V:
α = 0.1,β = 0.9,σ = 0.5. It can be observed that, as the
sample size increase, the AB and RMSE for the
estimators of the parameters decreases. This shows that
the estimators of the SWL distribution are consistent.

7 Applications

This section illustrates the usefulness and flexibility of the
SFL distributions using insurance loss dataset. The
performance of the SWL, SFrL, and SBXIIL distributions
are compared with other loss distributions. The
performance of the distributions about providing
reasonable parametric fit to the dataset are compared
using the Akaike information criterion (AIC), corrected
Akaike information criterion (AICc), Bayesian
information criterion (BIC), Cramér-Von Misses (W∗),
Anderson-Darling (A∗) and Kolmogorove-Smirnov (K-S)
statistics. The distribution with the least of these measures
provides a reasonable fit to the dataset. The fit for the
SWL, SFrL, and SBXIIL are compared with other
heavy-tailed distributions, including the 2-parameters
Weibull, 2-parameters Burr XII (B-XII), Weibull-Loss
(W-Loss), 2-parameter Burr III (BIII), Frechét,
Weibull-Lomax, sine inverse Weibull (SIW), Lomax,
Dagum, exponentiated Weibull (EW) and power Lomax
distributions. The distribution functions of the
competitive models are:
1. Weibull

F(x) = 1− e−γxα
, x ≥ 0,α,γ > 0.

2. B-XII

F(x) = 1− (1+ xc)−k, x ≥ 0,c,k > 0.

3. W-Loss

F(x) = 1−
σe−γxα

σ + γxγ
, x ≥ 0,σ ,α > 0.

4. BIII

F(x) =
(

1+ x−c
)−k

, x ≥ 0,c,k > 0.

5. Frechét

F(x) = e−αx−β
, x ≥ 0,α,β > 0.

6. Weibull-Lomax

F(x) = 1− e
−a
((

1+ x
β

)α
−1
)b

, x ≥ 0,a,b,β ,α > 0.

7. SIW

F(x) = sin
(π

2
e−αx−θ

)

, x ≥ 0,α,θ > 0.
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Table 1: Monte Carlo Simulation Results: AB and RMSE for the Parameters of the SWL distribution

n Parameter value AB RMSE

50

100

150

200

α β σ

0.5 0.5 0.8

0.5 0.5 0.8

0.5 0.5 0.8

0.5 0.5 0.8

α̂ β̂ σ̂

0.225 0.062 0.843

0.201 0.047 0.788

0.183 0.039 0.750

0.176 0.036 0.722

α̂ β̂ σ̂

0.067 0.007 0.852

0.052 0.004 0.773

0.043 0.003 0.729

0.040 0.002 0.693

50

100

150

200

0.3 0.3 0.2

0.3 0.3 0.2

0.3 0.3 0.2

0.3 0.3 0.2

0.316 0.035 0.681

0.253 0.029 0.504

0.222 0.025 0.417

0.190 0.021 0.331

0.162 0.003 1.033

0.105 0.002 0.676

0.083 0.001 0.518

0.064 0.001 0.366

50

100

150

200

0.4 0.7 0.3

0.4 0.7 0.3

0.4 0.7 0.3

0.4 0.7 0.3

0.332 0.083 0.782

0.273 0.067 0.616

0.247 0.058 0.540

0.222 0.051 0.478

0.158 0.011 1.129

0.108 0.007 0.817

0.090 0.005 0.672

0.076 0.004 0.564

50

100

150

200

0.6 0.4 0.6

0.6 0.4 0.6

0.6 0.4 0.6

0.6 0.4 0.6

0.316 0.050 0.833

0.283 0.038 0.761

0.257 0.033 0.701

0.235 0.029 0.663

0.130 0.004 0.961

0.103 0.002 0.853

0.085 0.002 0.760

0.073 0.001 0.709

50

100

150

200

0.1 0.9 0.5

0.1 0.9 0.5

0.1 0.9 0.5

0.1 0.9 0.5

0.068 0.109 0.867

0.062 0.084 0.756

0.056 0.073 0.657

0.053 0.067 0.615

0.006 0.020 1.103

0.005 0.012 0.916

0.004 0.008 0.752

0.004 0.007 0.684

8. Lomax

F(x) = 1−
(

1+
x

λ

)−α
, x ≥ 0,α,λ > 0.

9. Dagum

F(x) = (1+λ x−α)−β , x ≥ 0,α,β ,λ > 0.

10. EW

F(x) =
(

1− e−γxα
)λ

, x ≥ 0,λ ,α,γ > 0.

11. Power Lomax

F(x) = 1−λ α
(

xβ +λ
)−α

, x ≥ 0,α,β ,λ > 0.

7.1 Application 1: U.S Indemnity Losses

The first dataset consists of 1,500 U.S indemnity losses;
general liability claims indemnity payment in thousands
of U.S dollars. This dataset is reported in CASdatasets
package of R software.

Table 2 shows the descriptive statistics and Figure 7
shows the histogram, boxplot and kernel density plot of
the data. It can be seen that, the data is right-skewed and
leptokurtic with the histogram, boxplot and kernel density
plot depicting a typical feature of insurance loss data.
That is, the histogram and kernel density plot shows that
the data is right skewed and heavy tailed. The boxplot
shows the presence of outliers in the U.S indemnity loss
dataset.

Fig. 7: U.S Indemnity Losses: histogram (a), boxplot (b) and

kernel density (c) plots

To ascertain the nature of the hazard rate of a given
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Table 2: Descriptive Statistics of U.S Indemnity Losses

No. of Claims Mean Std. Skewness Kurtosis Min. Max.

1,500 41208.000 102747.700 9.164 145.172 10.000 2,173,595.000

dataset, the TTT plot is employed. Figure 8 shows the
TTT-transform plot for the U.S indemnity losses data.
From the plot, there is evidence of a decreasing hazard
rate function because the curve is convex below the 45
degree line.

Fig. 8: TTT-transform plot for U.S Indemnity Losses

Table 3 shows the maximum likelihood estimates for the
parameters of the fitted distributions with their
corresponding errors in brackets. The parameters of the
SWL, SFrL, W-Loss, Weibull, Lomax, Frechét, power
Lomax, EW, SIW, BIII, Weibull Lomax and Dagum
distributions are all significant at the 5% level. The
SBXIIL distribution also had its parameters significant at
the 5% level with the exception of σ and γ which are
significant at 10%. All the parameters of the BXII
distribution are significant at the 10% level.
Table 4 shows the goodness-of-fit and information criteria
for the fitted distributions. The SWL was compared with
other competing distributions. It can be seen that, the
SWL provides a better fit to the dataset since it has
smaller AIC, AICc, BIC, K-S, A∗, W ∗ and −2l values
compared with the rest of the competitive distributions.
Figure 9 shows the plots of the empirical density, the
fitted density, the empirical CDF and the CDF of the fitted
distributions. It is evident that, the SWL distribution also
provide reasonable fit to the data among the other
distributions.

7.2 Application 2: Automobile Insurance Claims

The second dataset consists of 6,773 amounts (in U.S.
dollars) paid, by a large midwestern (U.S) insurance
company, to settle and close claims for private passengers

Fig. 9: Empirical and fitted density (a) and CDF (b) plots of

U.S Indemnity Losses data

automobile policies. This dataset is available in
CASdatasets package of R software.
Table 5 shows the descriptive statistics while Figure 10
shows the histogram, boxplot and kernel density plot of
the automobile insurance claims data. It can be seen that,
the losses are right skewed and leptokurtic, with a long
right tail. Also, the histogram, boxplot and kernel density
plot shows a typical characteristics of insurance loss data.
That is, the histogram and kernel density plot shows that
the data is right skewed and heavy tailed.
The boxplot is used to detect the presence of outliers
which is a common feature of insurance loss data which
is clearly exhibited by the boxplot in Figure 10.

Fig. 10: Automobile Insurance Claims: histogram (a),

boxplot (b) and kernel density (c) plots

Figure 11 shows the TTT-transform plot for the
automobile insurance claims data so as to ascertain the
nature of the failure rate. The data exhibits a unimodal
(upside down bathtub ) hazard rate since it is first concave
above the 45 degree line and then followed by a convex
shape below.
Table 6 shows the maximum likelihood estimates for the
parameters of the fitted distributions with their
corresponding errors in brackets. The parameters of the
SWL, SFrL, W-Loss, Weibull, Lomax, Frechét, power
Lomax, EW, SIW, BIII, Weibull Lomax and Dagum
distributions were all significant at the 5% level. The
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Table 3: Maximum likelihood estimates of the parameters and standard errors for U.S indemnity losses data

Model α̂ β̂ λ̂ σ̂ γ̂ τ̂ θ̂
SWL 0.003 0.524 8.185

(0.003) (0.010) (0.005)

SFrL 4257.187 0.443 406.466

(0.002) (0.009) (0.001)

SBXIIL 29.791 42.621 38.619 0.002

(0.003) (0.001) (0.006) (0.004)

W-Loss 0.556 41.265 0.004

(0.012) (0.004) (0.002)

Weibull 0.568 0.003

(0.012) (0.006)

Lomax 1.522 1406.423

(0.048) (6.389)

Frechét 1476.849 0.370

(6.414) (0.010)

Power Lomax 1.839 0.754 2439.771

(0.189) (0.014) (0.002)

EW 0.267 8.565 0.208

(0.020) (1.856) (0.056)

SIW 68.989 0.448

(4.725) (0.008)

ĉ k̂

BIII 0.570 132.024

(0.009) (1.019)

ĉ k̂

B-XII 0.068 1.621

(0.050) (1.222)

â b̂

Weibull-Lomax 6.070 39.038 0.016 0.104

(0.002) (0.005) (0.001) (0.002)

Dagum 0.737 3.031 240.971

(0.008) (0.571) (0.001)

SBXIIL distribution also had its parameters significant at
the 5% level with the exception of γ which was significant
at 10%. The BXII distribution had all its parameters
significant at the 10% level.

Table 7 shows the goodness-of-fit and information
criteria for the fitted distributions. The SFrL distribution
was compared with other competing distributions. It can
be seen that the SFrL distribution which is one of the
proposed model provides a better fit to the dataset since it
has the least AIC, AICc, BIC, K-S, A∗, W ∗ and −2l

values compared with the other competitive distributions.
Figure 12 shows the plots of the empirical density, the
fitted density, the empirical CDF and the CDF of the fitted
distributions. It is evident that, the SFrL distribution also
provide reasonable fit to the data among the other
distributions.
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Table 4: Goodness-of-fit and Information Criteria of U.S Indemnity Losses data

Model −2l AIC AICc BIC W ∗ A∗ K-S

SWL 33849.650 33855.650 33855.670 33871.590 0.144 1.033 0.065

W-Loss 34082.360 34088.360 34088.370 34104.300 11.921 12.068 0.110

Weibull 34069.280 34073.280 34073.280 34083.900 2.004 12.573 0.103

Lomax 34732.540 34736.540 34736.540 34747.160 4.001 15.666 0.656

Frechét 34128.540 34132.540 34132.550 34143.170 4.171 26.807 0.650

Power-Lomax 35946.790 35952.790 35952.810 35968.731 1.376 9.480 0.104

EW 34085.010 34151.020 34152.030 34196.960 2.001 12.499 0.100

SIW 34010.380 34014.380 34014.390 34025.010 1.210 6.497 0.067

BIII 34211.650 34215.650 34215.660 34226.280 2.617 16.682 0.086

B-XII 37834.100 37838.100 37848.110 37848.730 1.581 11.882 0.474

Weibull-Lomax 34056.000 34064.000 34064.030 34085.260 2.413 15.042 0.088

Dagum 33918.860 33955.860 33855.880 33881.810 0.824 6.601 0.069

Table 5: Descriptive Statistics of the Automobile Insurance Claims

No. of Claims Mean Std. Skewness Kurtosis Min. Max.

6,773 1853.000 2,646.909 6.236 87,278 9.500 60,000.000

Fig. 11: TTT-transform plot for Automobile Insurance

Claims

Fig. 12: Empirical and fitted density (a) and CDF (b) plots of

Automobile Insurance Claims data

8 Conclusion

In this article, we have proposed a new heavy-tailed
family of distributions known as sine F-Loss family of
distributions, an extension of the F-Loss family of
distributions. The mathematical properties and maximum
likelihood estimators of the family are studied. Three
special distributions, namely the sine Weibull loss, sine
Fréchet loss, and sine B-XII loss distributions are
proposed. Simulations are carried out to evaluate the
behavior of the parameters of the proposed distributions.
The densities exhibits different kinds of such as
decreasing, right skewed, approximately symmetric,
symmetric, and reversed-J shapes. The hazard rate
functions show different kinds of increasing, decreasing,
increasing-constant-decreasing, reversed-J, bathtub, and
upside bathtub shapes. The usefulness of the proposed
distributions is analyzed with two insurance loss datasets
and compared with eleven other well-known loss
distributions. From the applications, the sine Weibull loss
distribution provides the best parametric fit for the U.S.
indemnity losses dataset, whereas the sine Fréchet loss
gives the best parametric fit for the automobile insurance
claims dataset. The proposed models are reasonably good
compared with the competitors. We hope the proposed
models will attract broader application in the actuarial
sciences and other related fields.
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Table 6: Maximum likelihood estimates of the parameters and standard errors for automobile insurance claims data

Model α̂ β̂ λ̂ σ̂ γ̂ τ̂ θ̂
SWL 0.001 0.718 0.834

(0.003) (0.015) (0.073)

SFrL 1102.972 0.689 282.505

(1.619) (0.006) (0.260)

SBXIIL 33.092 2.843 46.632 0.003

(0.004) (0.161) (0.071) (0.002)

W-Loss 0.858 1.038 0.002

(0.013) (0.001) (0.008)

Weibull 0.806 0.003

(0.007) (0.002)

Lomax 1.957 2137.220

(0.053) (73.326)

Frechét 558.741 0.614

(8.663) (0.007)

Power Lomax 1.919 1.054 3194.496

(0.083) (0.008) (0.001)

EW 0.378 10.791 0.200

(0.013) (1.155) (0.260)

SIW 124.973 0.690

(4.628) (0.006)

ĉ k̂

BIII 0.875 276.011

(0.007) (1.175)

ĉ k̂

B-XII 0.068 0.870

(0.028) (0.870)

â b̂

Weibull-Lomax 5.210 10.840 0.008 0.181

(0.009) (0.001) (0.005) (0.002)

Dagum 1.116 3.392 490.855

(0.005) (0.090) (0.006)
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