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Abstract: Instead of discussing the problem of estimating the unknown parameters for every underlying distribution separately, this

paper develops a general procedure for estimating the unknown parameters based on an ordered pooled sample from two independent

sequences of record values using a general exponential form for the underlying distributions. Maximum likelihood and Bayesian

methods are used to estimate the unknown parameters. Bayesian estimation is discussed using three different loss functions. The

problem of predicting record values from a future sample is also discussed. In addition, the results of the exponential and Pareto

distributions are shown as examples. Furthermore, a Monte Carlo simulation study is carried out to compare the maximum likelihood

and Bayesian estimates, as well as to examine the performance of point and interval predictions. Finally, a numerical example is

provided to demonstrate all of the inferential procedures discussed here.
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1 Introduction

Let X1,X2,X3, ... be an infinite sequence of independent
and identically distributed (iid) random variables. Then,
an observation X j is called an upper record value if its
value exceeds that of all previous observations, i.e., if
X j > Xi for every i < j. Scientists and engineers place a
higher value on record values and associated statistics.
The record values have been studied extensively and can
be found in a variety of real-life situations. For example,
climatologists and hydrologists are interested in
predicting a river’s flood level that is higher than previous
flood levels. Seismologists are also interested in
predicting the magnitude of an earthquake in a given
region that is larger than previous ones.

Furthermore, record values can be used to analyze
data from a minimal-repair system; see [1]. The system is
put back into operation in a minimal repair experiment
after a failure that demanded a minimal repair of the
system. Surprisingly, the observed repair times have the
same joint distribution as the upper record values in this
case. Chandler [2] was the first that introduced the theory
of record values, and many authors have since studied
record values and the associated statistics; see, for
example, [3,4,5,6,7,8,9].

In a random sample of size n, the expected number of
observed record values is approximately logn+ γ , where
γ is the Eulers constant 0.5772. As a result, we should
expect to find only 7 records in a sequence of 1000
observations. Thus, the statistical inference developed
based on this data will have a low degree of precision. In
this situation, if taking an additional independent sample
of record values is possible and convenient, the ordered
pooled sample from these two samples could be used to
increase the statistical inference’s precision.

Beutner and Cramer [10] looked at a situation where
data from two different minimal-repair systems (two
independent sequences of record values) are pooled. They
derived non-parametric prediction intervals for the future
repair times of a minimal-repair system with the same
structure. Amini and Balakrishnan [11] looked into a
general problem for pooling from k independent samples
of record values. They produced exact distribution-free
confidence intervals for population quantiles and exact
prediction intervals for future record values.

For deriving a general procedure for estimating the
unknown parameters of the underlying distribution, we
consider here the general exponential form for the
underlying distribution, proposed by AL-Hussaini [12],
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with a cumulative distribution function (CDF) which can
be written in the form

F(x|θ ) = 1− exp[−λ (x;θ )], (1)

where λ (x;θ ) = − ln(1−F(x|θ )). Of course, several
requirements must be met in order for F(x|θ ) is a proper
CDF. These conditions are: λ (x;θ ) is continuous,
monotone increasing and differentiable function, with
λ (x;θ ) → 0 as x → −∞ and λ (x;θ ) → ∞ as x → ∞. The
probability density function (PDF) is given by

f (x|θ ) = λ ′(x;θ )exp[−λ (x;θ )]. (2)

By selecting an appropriate choice of λ (x;θ ), we may
derive various distributions as special examples from the
general exponential form (1), including; exponential,
Pareto, Weibull, and Burr Type-XII distributions. Because
this exponential form provides some flexibility in
developing general results, several authors have
developed a general procedure of statistical inference
based on different forms of observed data using the
general exponential form (1) , see for example; [13,14,
15,16,17,18,19].

In this paper, the general exponential form (1) is used
to derive a general procedure for estimating the unknown
parameters of the underlying distribution as well as
predicting record values from a future sample using an
ordered pooled sample of two independent sequences of
record values. The rest of this paper is structured as
follows. In Section 2, the model of the ordered pooled
sample from two independent sequences of record values
is described and then the ML method for estimating
unknown parameters is discussed. In Section 3, three
different loss functions are used to calculate Bayesian
estimators for the unknown parameters. The problem of
predicting record values from a future sample is discussed
in Section 4. Section 5 provides illustrative examples of
the exponential and Perato distributions. Finally, the
results of a simulation study and a numerical example are
presented in Section 6 to illustrate all of the inferential
procedures developed in this paper.

2 The Model Description and ML Estimation

Let X(1), ...,X(m) and Y(1), ...,Y(n) be two independent
sequences of record values from the same population. In
the following, the ordered pooled sample from
{X(1), ...,X(m);Y(1), ...,Y(n)} is denoted by

W = (W1, ...,Wm+n). The joint density function of the
pooled sample W = (W1, ...,Wm+n) was developed by
Beutner and Cramer [10] as a mixture of the joint
distributions of particular generalized order statistics from
the same population as follows:

f (w) =
m−1

∑
i=0

Ki f U(n+i)
(w)+

n−1

∑
j=0

K∗
j f V(m+ j)

(w), (3)

where w = (w1, ...,wm+n) is a vector of realizations,

U(n+i) = (U
(n+i)
(∗1)

, ...,U
(n+i)
(∗m+n)

) for i = 0, ...,m − 1, and

V(m+ j) = (V
(m+ j)
(∗1) , ...,V

(m+ j)
(∗m+n)) for j = 0, ...,n − 1, are

generalized order statistics from the same population
based on parameters

γ
(n+i)
ℓ = 1+ 1[1,...,n+i](ℓ), 0 ≤ i ≤ m− 1,

η
(m+ j)
ℓ = 1+ 1[1,...,m+ j](ℓ), 0 ≤ j ≤ n− 1, 1 ≤ ℓ≤ m+ n,

respectively with 1A(·) denotes the indicator function on
A, and the mixture probabilities are given by

Ki =

(
n+ i− 1

n− 1

)
2−(n+i), 0 ≤ i ≤ m− 1,

K∗
j =

(
m+ j− 1

m− 1

)
2−(m+ j), 0 ≤ j ≤ n− 1.

By using the joint density function of the generalized
order statistics given by Kamps [20], the joint density
function (3) of the ordered pooled sample
W = (W1, ...,Wm+n) is derived by Mohie El-Din et al. [7]
as

f (w) =
m−1

∑
i=0

βi




m+n−1

∏
k=1

k 6=n+i

f (wk)

1−F(wk)


 f (wn+i) f (wm+n)

+
n−1

∑
j=0

β ∗
j




m+n−1

∏
k=1

k 6=m+ j

f (wk)

1−F(wk)


 f (wm+ j) f (wm+n),

(4)

where

βi =

(
n+ i− 1

n− 1

)
, 0 ≤ i ≤ m− 1,

and

β ∗
j =

(
m+ j− 1

m− 1

)
, 0 ≤ j ≤ n− 1.

Upon using (1) and (2) in (4), we obtain the likelihood
function as

L(θ ;w) =
m−1

∑
i=0

βiC(θ ;w)exp [−Di(θ ;w)]

+
n−1

∑
j=0

β ∗
j C(θ ;w)exp

[
−D∗

j(θ ;w)
]
, (5)

where C(θ ;w) = ∏m+n
k=1 λ ′(wk;θ ),

Di(θ ;w) = λ (wn+i;θ )+λ (wm+n;θ ),

for i = 0,1, . . . ,m− 1,

and

D∗
j(θ ;w) = λ (wm+ j;θ )+λ (wm+n;θ ),

for j = 0,1, . . . ,n− 1.
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From (5), the log-likelihood function of θ is given by

logL(θ ;z) = log

(
m−1

∑
i=0

βiC(θ ;w)exp [−Di(θ ;w)]

+
n−1

∑
j=0

β ∗
j C(θ ;w)exp

[
−D∗

j(θ ;w)
]
)
.

Suppose θ = (θ1, ...,θN) is the vector of parameters of

the exponential form in (1). Then, the ML estimator θ̂qML

of θq, for q = 1, ...,N, can be obtained by solving the
following system of equations

∂ logL(θ ;z)

∂θq

= 0. q = 1, ...,N. (6)

Clearly, the system of equations in (6) do not have
explicit solution but it is not difficult to carry out a
numerical method for this propose.

3 The Bayesian Estimation

In this section, we use the Bayesian method to estimate the
unknown parameters of the underlying distribution using
a general conjugate prior proposed by AL-Hussaini [12],
which is written as

π(θ ;δ )∝ A(θ ;δ )exp[−B(θ ;δ )], (7)

where δ is the vector of prior parameters. Several priors
used in the literature are included in the prior family (7).

Upon combining (5) and (7), the posterior density
function of θ , given W = w, is then given by

π∗(θ |w) = I−1

{
m−1

∑
i=0

βiφ(θ ;w)exp [−ψi(θ ;w)]

+
n−1

∑
j=0

β ∗
j φ(θ ;w)exp

[
−ψ∗

j (θ ;w)
]
}
, (8)

where φ(θ ;w) = A(θ ;δ )C(θ ;z),

ψi(θ ;w) = Di(θ ;w)+B(θ ;δ ), for i = 0,1, . . . ,m− 1,

ψ∗
j (θ ;w) = D∗

j(θ ;w)+B(θ ;δ ), for j = 0,1, . . . ,n− 1,

and

I =
m−1

∑
i=0

βi

∫

θ∈Θ

φ(θ ;w)exp [−ψi(θ ;w)]dθ

+
n−1

∑
j=0

β ∗
j

∫

θ∈Θ

φ(θ ;w)exp
[
−ψ∗

j (θ ;w)
]

dθ .

The squared error (SE), linear-exponential (LINEX),
and generalized entropy (GE) loss functions are all used to
develop the Bayesian estimation in this paper. These loss
functions have been considered by many authors; see, for
example, [21,22,23,24].

For q = 1, ...,N, the Bayesian estimator of θq under the
SE loss function is

θ̂qBS = E[θq]

= I−1





m−1

∑
i=0

βi

∫

θ∈Θ

θqφ(θ ;w)exp [−ψi(θ ;w)]dθ

+
n−1

∑
j=0

β ∗
j

∫

θ∈Θ

θqφ(θ ;w)exp
[
−ψ∗

j (θ ;w)
]

dθ



 . (9)

For q = 1, ...,N, the Bayesian estimator of θq under the
LINEX loss function is

θ̂qBL =
−1

υ
log
(

E
[
e−υθq

])

=
−1

υ
log


I−1





m−1

∑
i=0

βi

∫

θ∈Θ

φ(θ ;w)

×exp [−{ψi(θ ;w)+υθq}]dθ

+
n−1

∑
j=0

β ∗
j

∫

θ∈Θ

φ(θ ;w)

×exp
[
−{ψ∗

j (θ ;w)+υθq}
]

dθ
})

. (10)

For q= 1, ...,N, the Bayesian estimator of θq under the GE
loss function is

θ̂qBE =
(
E[θ−µ

q ]
)− 1

µ

=


I−1





m−1

∑
i=0

βi

∫

θ∈Θ

θ−µ
q φ(θ ;w)exp [−ψi(θ ;w)]dθ

+
n−1

∑
j=0

β ∗
j

∫

θ∈Θ

θ−µ
q φ(θ ;w)exp

[
−ψ∗

j (θ ;w)
]

dθ








− 1
µ

.

(11)

4 Bayesian prediction

Let Z(1),Z(2),Z(3), . . . be the record values from a future
independent sample from the same population. The
Bayesian prediction of Z(r), for r = 1,2,3..., is discussed
here based on the observed pooled sample
W = (W1, ...,Wm+n). The Bayesian predictive distribution
for Z(r) is derived and the Bayesian point predictor and
prediction interval for Z(r) are then calculated.

The marginal density function of Z(r) is well known to
be given by; see [25]

fZ(r)
(z|θ ) =

1

Γ (r)
[− logF(z;θ )]

r−1
f (z;θ ), (12)

where Γ (·) is the complete gamma function.
The marginal density function of Z(r) is obtained by

substituting (1) and (2) in (12) as follows:

fZ(r)
(z|θ ) =

1

Γ (r)
λ ′(z;θ )[λ (z;θ )]r−1 exp[−λ (z;θ )], (13)
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and the Bayesian predictive density function of Z(r), given
W = w, is then obtained by combining (8) and (13) as
follows:

f ∗Z(r) (z|w) =

∫

θ∈Θ

fZ(r)
(z|θ )π∗(θ |w)dθ

=
I−1

Γ (r)





m−1

∑
i=0

βi

∫

θ∈Θ

λ ′(z;θ )[λ (z;θ )]r−1φ(θ ;w)

exp [−{ψi(θ ;w)+λ (z;θ )}]dθ

+
n−1

∑
j=0

β ∗
j

∫

θ∈Θ

λ ′(z;θ )[λ (z;θ )]r−1φ(θ ;w)

exp
[
−{ψ∗

j (θ ;w)+λ (z;θ )}
]

dθ
}
. (14)

Given W = w, we can easily get the predictive survival
function of Z(r) from (14) as follows:

F
∗
Z(r)

(t|z) =

∞∫

ν

f ∗Z(r) (z|z)dz

=
I−1

Γ (k)





m−1

∑
i=0

βi

∞∫

t

∫

θ∈Θ

λ ′(z;θ )[λ (z;θ )]r−1φ(θ ;w)

exp [−{ψi(θ ;w)+λ (z;θ )}]dθdz

+
n−1

∑
j=0

β ∗
j

∞∫

t

∫

θ∈Θ

λ ′(z;θ )[λ (z;θ )]r−1φ(θ ;w)

exp
[
−{ψ∗

j (θ ;w)+λ (z;θ )}
]

dθdz
}
. (15)

Under the SE loss function, the Bayesian point predictor
of Z(r) is calculated as the mean of the predictive density
given by (14).

By solving the following two equations, we can
obtain the Bayesian predictive bounds of the two-sided
equi-tailed 100(1− γ)% interval for Z(r):

F̄∗
Z(r)

(L|w) = 1−
γ

2
, and F̄∗

Z(r)
(U |w) =

γ

2
, (16)

where L and U denote the lower and upper bounds,
respectively.

By solving the following two equations, we can
obtain the Bayesian predictive bounds of the highest
posterior density (HPD) 100(1− γ)% interval for Z(r):

F̄∗
Z(r)

(LHPD|w)− F̄∗
Z(r)

(UHPD|w) = 1− γ

and (17)

f ∗Z(r) (LHPD|w)− f ∗Z(r)(UHPD|w) = 0,

where LHPD and UHPD denote the HPD lower and upper
bounds, respectively.

5 Illustrative examples

The results of the exponential and Pareto distributions are
presented in this section as illustrative examples from the
general exponential form (1).

5.1 Exponential(θ ) distribution

The CDF in this case is

F(x|θ ) = 1− exp[−θx], x > 0, (18)

where θ > 0, and so we have

λ (x;θ ) = θx and λ ′(x;θ ) = θ .

Therefore, the likelihood function is given by (5), where
C(θ ;z) = θ m+n,

Di(θ ;w) = θ{wn+i +wm+n}, for i = 0,1, . . . ,m− 1,

and

D∗
j(θ ;w) = θ{wm+ j +wm+n}, for j = 0,1, . . . ,n− 1.

By solving (6) numerically, we can obtain the ML
estimator of θ .

For the Bayesian estimation and prediction, we use the
conjugate gamma prior of θ which is given by

π(θ ;a,b) =
ba

Γ (a)
θ a−1 exp[−bθ ], θ > 0, (19)

where a and b are positive hyperparameters that could be
chosen based on prior knowledge of the mean and variance
of θ . Furthermore, by substituting a= b= 0, we can obtain
Jeffrey’s prior as a special case of (19). Thus, we have

A(θ ;δ ) = θ a−1 and B(θ ;δ ) = θb, (20)

where δ = (a,b).
The posterior density function is then given by (8),

where φ(θ ;w) = θ m+n+a−1,

ψi(θ ;w) = θ{wn+i +wm+n + b}, for i = 0,1, . . . ,m− 1,

ψ∗
j (θ ;w) = θ{wm+ j +wm+n + b}, for j = 0,1, . . . ,n− 1,

and

I = Γ (m+ n+ a)

{
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a)

}
.

As a result, using the SE, LINEX, and GE loss
functions, the Bayesian estimators of θ are given,
respectively, by

θ̂BS =
(m+ n+ a)

I1

(
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a+1)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a+1)

)
, (21)
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where

I1 =

(
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a)

)
.

θ̂BL =
1

υ
log I2

−
1

υ
log

(
m−1

∑
i=0

βi [wn+i +wm+n + b+υ ]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b+υ ]−(m+n+a)

)
,(22)

where

I2 =

(
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a)

)
.

θ̂BE =

(
Γ (m+ n+ a− c)

I3

)− 1
c

×

(
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a−c)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a−c)

)− 1
c

, (23)

where

I3 =

(
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a)

)
.

In this case, the Bayesian predictive density function
of Z(r), given W = w, is then given by

f ∗Z(r) (z|w) =
I−1Γ (m+ n+ r+ a)

Γ (r){
m−1

∑
i=0

βiz
r−1 [wn+i +wm+n + z+ b]−(m+n+r+a)

+
n−1

∑
j=0

β ∗
j zr−1 [wm+ j +wm+n + z+ b]−(m+n+r+a)

}
, (24)

and the predictive survival function of Z(r), given W = w,
is given by

F̄∗
Z(r)

(t|w) = I−1

{
m−1

∑
i=0

r−1

∑
k=0

βiΓ (m+ n+ k+ a)

k!
tk

[wn+i +wm+n + t + b]−(m+n+k+a)

+
n−1

∑
j=0

r−1

∑
k=0

β ∗
j Γ (m+ n+ k+ a)

k!
tk

[wm+ j +wm+n + t + b]−(m+n+k+a)
}
. (25)

Under the SE loss function, the Bayesian point predictor
of Z(r) is given by

Ẑ(r) =
k

I4(m+ n+ a− 1)

×

{
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a−1)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a−1)

}
, (26)

where

I4 =

{
m−1

∑
i=0

βi [wn+i +wm+n + b]−(m+n+a)

+
n−1

∑
j=0

β ∗
j [wm+ j +wm+n + b]−(m+n+a)

}
.

Using f ∗Z(r)
(z|w) and F̄∗

Z(r)
(t|w) given in (24) and (25),

respectively, the Bayesian predictive bounds of the
two-sided equi-tailed 100(1− γ)% interval for Z(r) can
be obtained by solving the two equations in (16). Also,
the Bayesian predictive bounds of the HPD 100(1− γ)%
interval for Z(r) can be obtained by solving the two
equations in (17).

5.2 Pareto(α,σ ) distribution

The CDF in this case is

F(x|α,σ) = 1−
(σ

x

)α
, x ≥ σ , (27)

where α > 0 and σ > 0, and so we have

λ (x;α,σ) = α ln(
x

σ
) and λ ′(x;α,σ) =

α

x
.

Therefore, the likelihood function is given by (5), where

C(α,σ ;w) = αr+s
m+n

∏
i=1

1

wi

,

Di(α,σ ;w) = α (lnwn+i + lnwm+n − 2lnσ) ,

for i = 0,1, . . . ,m− 1,
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D∗
j(α,σ ;w) = α (lnwm+ j + lnwm+n − 2lnσ)

for j = 0,1, . . . ,n− 1.

The likelihood function (5) is obviously a monotone
increasing function in σ , so its maximum value will be
when σ = w1. As a result, the ML estimator of α can be
found by solving (6) numerically with respect to α .

Under the assumption that both parameters α and σ
are unknown, for Bayesian estimation and prediction, we
may use the joint power-gamma prior of α and σ proposed
by Arnold and Press [25] as follows;

π2(α,σ) ∝ αaσ−1 exp[−α(lnc− b lnσ)],

α > 0, 0 < σ < d, (28)

where a, b, c, d are positive constants and db < c. Thus,
we have

A(α,σ ;δ ) = αaσ−1 and B(α,σ ;δ ) = α(lnc− b lnσ),
(29)

where δ = (a,b,c,d).
The posterior density function is then given by (8),

with

φ(α,σ ;w) = αm+n+aσ−1,

ψi(α,σ ;w) = α (lnwn+i + lnwm+n − (b+ 2) lnσ + lnc) ,

for i = 0,1, . . . ,m− 1,

ψ∗
j (α,σ ;w) = α (lnwm+ j + lnwm+n − (b+ 2) lnσ + lnc) ,

for j = 0,1, . . . ,n− 1,

I =
Γ (m+ n+ a)

b+ 2

{
m−1

∑
i=0

βi [ρi(w,M)]−(m+n+a)

+
n−1

∑
j=0

β ∗
j

[
ρ∗

j (w,M)
]−(m+n+a)

}
,

where

ρi(w,y) = lnwn+i + lnwm+n − (b+ 2) lny+ lnc,

for i = 0,1, . . . ,m− 1,

ρ∗
j (w,y) = lnwm+ j + lnwm+n − (b+ 2) lny+ lnc,

for j = 0,1, . . . ,n− 1,

and M = min(w1,d).
The Bayesian estimators of α and σ under the SE,

LINEX and GE loss functions can obtained from
equations (21), (22) and (23), respectively.

The Bayesian predictive density function of Z(r), given
W = w, in this case is then given by

f ∗Z(r) (z|w) =

{
f ∗1Z(r)

(z|w), 0 < z ≤ M,

f ∗2Z(r)
(z|w), z > M,

(30)

where

f ∗1Z(r)
(z|w) =

z∫

0

∞∫

0

fZ(r)
(z|α,σ)π∗(α,σ |w)dαdσ

=
(−1)r−1Γ (m+ n+ a+ 1)I−1

(b+ 3)r

{
m−1

∑
i=0

βiz
−1[ρi(w,z)]−(m+n+a+1)

+
n−1

∑
j=0

β ∗
j z−1[ρ∗

j (w,z)]−(m+n+a+1)

}

and

f ∗2Z(r)
(z|w) =

M∫

0

∞∫

0

fZ(r)
(z|α,σ)π∗(α,σ |w)dαdσ

= I−1

{
m−1

∑
i=0

r−1

∑
k=0

(−1)r−k−1Γ (m+ n+ k+ a+ 1)

k!(b+ 3)r−k

βiz
−1[lnz− lnM]k

[ρi(w,M)+ lnz− lnM]−(m+n+k+a+1)

+
n−1

∑
j=0

r−1

∑
k=0

(−1)r−k−1Γ (m+ n+ k+ a+ 1)

k!(b+ 3)r−k

β ∗
j z−1[lnz− lnM]k

[
ρ∗

j (w,M)+ lnz− ln
]−(m+n+k+a+1)

}
.

From (30), we simply obtain the predictive survival
function of Z(r), given W = w, as

F̄∗
Z(r)

(t|w) =

{
F̄∗

1Z(r)
(t|w), 0 < t < M,

F̄∗
2Z(r)

(t|w), t ≥ M,
(31)

where

F̄∗
1Z(r)

(t|w) =

M∫

t

f ∗1Z(r)
(z|w)dz+

∞∫

M

f ∗2Z(r)
(z|w)dz

=
(−1)r(m+n+a)I−1

(b+3)r(b+2){
m−1

∑
i=0

βi([ρi(w,M)]−(m+n+a)− [ρi(w, t)]−(m+n+a))

+
n−1

∑
j=0

β ∗
j ([ρ

∗
j (w,M)]−(m+n+a)− [ρ∗

j (w, t)]−(m+n+a))

}

+ I−1Γ (m+n+a){
m−1

∑
i=0

r−1

∑
k=0

(−1)r−k−1

(b+3)r−k
βi[ρi(w,M)]−(m+n+a)

+
n−1

∑
j=0

r−1

∑
k=0

(−1)r−k−1

(b+3)r−k
β ∗

j [ρ
∗
j (w,M)]−(m+n+a)

}
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and

F̄∗
2Z(r)

(t|w) =

∞∫

t

f ∗2Z(r)
(z|w)dz

= I−1

{
m−1

∑
i=0

r−1

∑
k=0

k

∑
q=0

(−1)r−k−1Γ (m+ n+ q+ a)

q!(b+ 3)r−k
βi

×[ln t − lnM]q[ρi(w,M)+ lnt − lnM]−(m+n+q+a)

+
n−1

∑
j=0

r−1

∑
k=0

k

∑
q=0

(−1)r−k−1Γ (m+ n+ q+ a)

q!(b+ 3)r−k
β ∗

j

×[ln t − lnM]q[ρ∗
j (w,M)+ ln t − lnM]−(m+n+q+a)

}
.

Under the SE loss function, the Bayesian point
predictor of Z(r) is given by

Ẑ(r) =

M∫

0

z f ∗1Z(r)
(z|w)dz+

∞∫

M

z f ∗2Z(r)
(z|w)dz,

Using f ∗Z(r)
(z|w) and F̄∗

Z(r)
(t|w) given in (30) and (31),

respectively, the Bayesian predictive bounds of the
two-sided equi-tailed 100(1− γ)% interval for Z(r) can
be obtained by solving the two equations in (16). Also,
the Bayesian predictive bounds of the HPD 100(1− γ)%
interval for Z(r) can be obtained by solving the two
equations in (17).

6 Results and discussion

Some computational findings for the exponential
distribution are provided in this section. A Monte Carlo
simulation study is conducted to compare the ML and
Bayesian estimates, as well as to examine the
performance of point and interval prediction. Finally,
numerical findings from real data are shown to
demonstrate all of the inferential outcomes.

6.1 Monte Carlo simulation

In this simulation study, the performance of the ML and
Bayesian estimates, as well as the point and interval
prediction, is tested. With different values for m and n, the
parameter θ was chosen to be 0.1,1,5. We calculated the
ML and Bayesian estimates of θ under the SE, LINEX,
and GE loss functions using informative gamma prior
(GP) with (a,b) = (0.1,1) (when θ = 0.1), (1,1) (when
θ = 1), and (5,1) (when θ = 5), and Jeffreys’ prior (JP)
with (a,b) = (0,0). Also, when θ = 1, we computed the
point predictor as well as the 95% equi-tailed and the
HPD prediction intervals for record values Z(r), for
r = 1,5,10,15, from a future sample from the same
population.

We repeated this process 10000 times and then
computed the estimated bias (EB) and used the root mean

square error to calculate the estimated risk (ER) for each
estimate. Table 1 provides the EB and ER of all the
estimates of θ . In addition, we calculated the estimated
average value (Ẑ(r)) and mean squared prediction error
(MSPE) of the point predictor, as well as the estimated
average value of the lower limit (L), upper bound (U), and
width for each prediction interval, which are all shown in
Table 2.

Table 1: The estimated bias and risk of the ML and Bayesian

estimates of θ for different choices of θ , m and n.

θ̂ML θ̂BS θ̂BL θ̂BE

θ m n EB ER EB ER EB ER EB ER

0.1 4 4 GP 0.0300 0.1118 0.0180 0.0534 0.0175 0.0527 0.0064 0.0457

JP – – 0.0187 0.0552 0.0181 0.0544 0.0068 0.0472

6 4 GP 0.0221 0.0661 0.0150 0.0447 0.0146 0.0443 0.0055 0.0391

JP – – 0.0154 0.0458 0.0150 0.0453 0.0058 0.0399

8 6 GP 0.0108 0.0367 0.0100 0.0338 0.0097 0.0336 0.0035 0.0306

JP – – 0.0102 0.0343 0.0099 0.0341 0.0036 0.0310

10 8 GP 0.0097 0.0319 0.0075 0.0297 0.0074 0.0296 0.0026 0.0276

JP – – 0.0077 0.0300 0.0075 0.0299 0.0027 0.0278

1 4 4 GP 0.1885 0.6029 0.1362 0.4212 0.0956 0.3807 0.0460 0.3658

JP – – 0.1868 0.5515 0.1341 0.4850 0.0684 0.4717

6 4 GP 0.1711 0.4784 0.1202 0.3749 0.0869 0.3445 0.0365 0.3311

JP – – 0.1542 0.4579 0.1136 0.4137 0.0581 0.3992

8 6 GP 0.1084 0.3668 0.0858 0.3042 0.0630 0.2865 0.0259 0.2773

JP – – 0.1017 0.3429 0.0760 0.3207 0.0360 0.3099

10 8 GP 0.0733 0.3016 0.0669 0.2737 0.0496 0.2611 0.0204 0.2547

JP – – 0.0766 0.3004 0.0577 0.2853 0.0267 0.2781

5 4 4 GP 0.7924 3.0144 0.3031 1.1788 0.2069 0.9599 0.2350 1.0743

JP – – 0.9338 2.7575 0.5036 1.7064 0.6418 2.3583

6 4 GP 0.6553 2.3920 0.3022 1.1508 0.1578 0.9470 0.1971 1.0554

JP – – 0.7711 2.2897 0.3639 1.5496 0.4906 1.9960

8 6 GP 0.5420 1.8339 0.2526 1.0756 0.1152 0.9169 0.1293 1.0040

JP – – 0.5087 1.7144 0.2547 1.3150 0.3800 1.5496

10 8 GP 0.4868 1.5953 0.2146 1.0289 0.0907 0.8975 0.1031 0.9728

JP – – 0.3831 1.5020 0.1444 1.2189 0.2336 1.3905

6.2 Illustrative example

Jarrett [26] corrects and expands the British coal-mining
disasters accident data of Maguire et al. [27], which
covers the period from 15 March 1851 to 22 March 1962
and includes 191 explosions with 10 or more men killed.
The values represent the number of days between
successive coal-mining disasters. The time intervals
between two successive disasters are assumed to be
independent and exponentially distributed with
θ = 0.0039. We divided the time period from 15 March
1851 to 22 March 1962 into two sub-periods and saved
only the upper record values for each sub-period.

Table 3 shows the record values generated from the
data in each sub-period. We used the GP with
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Table 2: Bayesian prediction of Z(r) for r = 1,5,10,15, and for

different choices of m and n when θ = 1
Point Predictor Equi−Tailed Interval HPD Interval

r m n Ẑ(r) MSPE L U Width L U Width

1 4 4 GP 1.1106 0.1285 0.0248 4.5247 4.4998 0.0000 3.5201 3.5201

JP 1.1265 0.1708 0.0247 4.6493 4.6246 0.0000 3.5956 3.5956

6 4 GP 1.0863 0.1065 0.0248 4.3598 4.3340 0.0000 3.4154 3.4154

JP 1.0959 0.1347 0.0247 4.4389 4.4142 0.0000 3.4633 3.4633

8 6 GP 1.0648 0.0787 0.0250 4.1795 4.1545 0.0000 3.3064 3.3064

JP 1.0697 0.0927 0.0249 4.2192 4.1943 0.0000 3.3308 3.3308

10 8 GP 1.0527 0.0602 0.0251 4.0784 4.0533 0.0000 3.2446 3.2446

JP 1.0557 0.0683 0.0251 4.1026 4.0775 0.0000 3.2597 3.2597

5 4 4 GP 5.5532 3.5848 1.4086 14.2902 12.8816 0.7889 12.1852 11.3963

JP 5.6325 4.2696 1.3838 14.8953 13.5115 0.7485 12.5839 13.3324

6 4 GP 5.4317 2.6624 1.4274 13.5248 12.0974 0.8330 11.6663 10.8333

JP 5.4798 3.3665 1.4074 13.9133 12.5059 0.8010 11.9234 11.1224

8 6 GP 5.3240 1.9676 1.4776 12.6247 11.1471 0.9170 11.0705 10.1535

JP 5.3485 2.1355 1.4663 12.8195 11.3529 0.8977 11.2014 10.3037

10 8 GP 5.2633 1.5043 1.5089 12.1200 10.6111 0.9714 10.7325 9.7611

JP 5.2786 1.7085 1.5019 12.2380 10.7361 0.9584 10.8127 9.8543

10 4 4 GP 11.1063 12.8515 3.8752 25.5609 21.6857 2.7608 22.2802 19.5197

JP 11.2650 17.0775 3.7831 26.7968 23.0137 2.6203 23.1144 20.4941

6 4 GP 10.8633 10.6504 3.9548 24.0043 20.0495 2.9126 21.2039 18.2913

JP 10.9595 13.4652 3.8797 24.8034 20.9237 2.7999 21.7489 18.9490

8 6 GP 10.6480 7.8697 4.1470 22.1320 17.9850 3.2100 19.9252 16.7152

JP 10.6970 9.2708 4.1025 22.5362 18.4337 3.1409 20.2063 17.0654

10 8 GP 10.5265 6.0167 4.2715 21.0739 16.8024 3.4059 19.1909 15.7850

JP 10.5573 6.8335 4.2427 21.3201 17.0774 3.3599 19.3646 16.0047

15 4 4 GP 16.6595 28.9153 6.4980 36.6563 30.0065 4.9275 32.2032 27.2757

JP 16.8975 38.4251 6.3244 38.5356 32.2112 4.6715 33.4868 28.8153

6 4 GP 16.2950 23.9630 6.6546 34.2892 27.6345 5.1092 30.1428 25.0336

JP 16.4393 30.2973 6.3850 34.9863 28.60127 4.8923 30.9248 26.0325

8 6 GP 15.9520 17.7069 7.0041 31.2686 24.2645 5.7381 28.4279 22.6898

JP 16.0454 20.8595 6.9169 31.8793 24.9624 5.6098 28.8592 23.2494

10 8 GP 15.7898 13.5378 7.1418 29.2068 22.0650 6.0134 26.8783 20.8649

JP 15.8359 15.3759 7.0765 29.5441 22.4676 5.9211 27.1143 21.1932

Table 3: Record values from British coal-mining disasters

accident data

Record values

Sub-period 1 157 216 232 826

Sub-period 2 176 315 345 388 1205 1643 2366

Table 4: The ML and Bayes estimates of θ .

θ̂ML θ̂BS θ̂BL θ̂BE

GP 0.0038 0.0038 0.0038 0.0035

JP – 0.0038 0.0038 0.0035

(a,b) = (0.004,1) and JP with (a,b) = (0,0) to compute
the ML and Bayesian estimates of θ under the SE,
LINEX (with v = 0.5), and GE (with c = 0.5) loss
functions as shown in Table 4. We also calculated the
point predictor, the bounds of the 95% equi-tailed and the
HPD prediction intervals for record values Z(r), for
r = 1,2, ...,10, from a future sample from the same
population, and these obtained results are presented in
Table 5.

Table 5: Bayesian prediction of Z(r) for r = 1, ...,10

Point predictor Equi-tailed interval HPD interval

r GP JP GP JP GP JP

1 292.8 292.8 (6.7, 1178.3) (6.7, 1178.6) (0.000, 921.7) (0.000, 921.9)

2 585.6 585.7 (61.3, 1858.4) (61.3, 1858.8) (6.6, 1517.3) (6.6, 1517.6)

3 878.3 878.5 (152.2, 2482.6) (152.2, 2483.2) (53.7, 2079.4) (53.7, 2079.9)

4 1171.1 1171.3 (262.1, 3083.4) (262.2, 3084.2) (129.9, 2624.3) (129.9, 2624.9)

5 1463.9 1464.2 (383.2, 3671.3) (383.2, 3672.3) (222.0, 3158.0) (221.9, 3158.7)

6 1756.7 1757.0 (511.4, 4251.2) (511.4, 4252.4) (323.5, 3684.1) (323.5, 3685.0)

7 2049.4 2049.8 (644.5, 4825.7) (644.5, 4827.1) (431.5, 4205.0) (431.5, 4206.1)

8 2342.2 2342.7 (781.1, 5396.4) (781.2, 5397.9) (543.8, 4722.1) (543.8, 4723.3)

9 2635.0 2635.5 (920.4, 5964.2) (920.5, 5965.9) (659.5, 5236.5) (659.4, 5237.8)

10 2927.8 2928.3 (1061.7, 6529.8) (1061.8, 6531.8) (777.6, 5748.6) (777.6, 5750.1)

The above results can be used in different fields [28]-
[32].

7 Conclusions

In this paper, a general procedure for estimation and
prediction based on ordered pooled sample from two
independent sequences of record values is developed
using the general exponential form of the underlying
distributions and the general form of the prior
distributions. The ML estimator for unknown parameter is
obtained. The SE, LINEX, and GE loss functions are used
to calculate the Bayesian estimator. The point and interval
predictions for record values a future sample values from
the same population are computed. As an illustration, the
results of the exponential distribution are shown.

From Tables 1-5, we observe that:

–For all different choices of θ , m and n, the EB and ER
of the Bayesian estimate are smaller than those of the
ML estimate.

–The EB and ER of Bayesian estimates using the
LINEX and GE loss functions are smaller than those
using the SE loss function for all different values of θ ,
m, and n.

–The EB and ER of all estimates decrease with
increasing m and n.

–In all of the cases considered, the HPD prediction
interval is more precise than the corresponding
equi-tailed interval.

–The width of the equi-tailed and HPD intervals and the
corresponding mean squared prediction error decrease
with increasing m and n.

–The width of the equi-tailed and HPD intervals and the
corresponding mean squared prediction error increase
with increasing r.

–When the results of the informative priors are
compared to those of Jeffreys’ non-informative priors,
it is clear that the former provides more precise
results.
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