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Abstract: In this paper, we reveal the relation between the most general entropy, namely Generalized Z-Entropy (Gze) and the fractal

dimension, a statistical index which is measuring the complexity of a given pattern, embedded in given spatial dimensions. Numerical

experiments are undertaken to interpret the behaviour of the derived (Gze) fractal dimension corresponding to its parameters. This work

reports the ultimate generalization in the literature. Moreover, this paper unifies information theory with fractal geometry.
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1 Introduction

In 1948 [1], Claude Shannon defined the entropy H(X) for
a discrete random variable X, as given by

H(X) = ∑
i

p(xi) I (xi) = ∑
i

p(xi) ln(p(xi)) (1)

In this expression, the probability of i-event is p(xi).
In information theory, this entropy defines the measure of
information. Several other entropic formalisms are
available for having different approaches to the measure
of information, which is present in each distribution.
Here, we will discuss in a simple approach, the link
between entropy and the fractal dimension. The fractal
dimension is a statistical index, measuring the complexity
of a given pattern, which is embedded in given spatial
dimensions. It has also been characterized as a measure of
the space-filling capacity of a pattern that tells how a
fractal scales differently from the space it is embedded in
[2,3,4]. The idea of a fractional approach to calculus has
a long history in mathematics (c.f., [5]), but the term
became popular with the works of Benoit Mandelbrot, in
particular from his 1967 paper where he discussed the
fractional dimensions [6]. In [6], Mandelbrot cited a
previous work by Lewis Fry Richardson, who was
discussing how a coastline’s measured length can change
with the length of the rigid stick used for measurements.
In this manner, the fractal dimension of a coastline is
provided by the number of rigid sticks, required to
measure the coastline, and by the scale of the used stick.

[7] Several formal mathematical definitions of fractal
dimension exist in this framework, following formulas are
given, where N stands for the number of sticks used to
cover the coastline, ε is the scaling factor, and D the
fractal dimension:

N ∝ ε−D (2)

lnN =−D =
lnN

lnε
(3)

Let us see this example. We use Google Earth satellite
images and GIMP (the GNU Image Manipulation
Program) to have a map and rigid sticks to repeat what
Richardson considered. Here, in the Figure 1, it is shown
the same approach for a part of Grand Canyon. The ruler
tool of Google Earth is used to establish the reference
length. In the left-upper panel, we have the rulers for 6
km, 3 km, and 1 km. To determine the fractal dimension,
we choose as reference length that of 6 km. In the left-
lower panel, we can see that we need about 13 rigid
sticks, one-half the reference length long, to follow the
rim of this part of the canyon. In the case that we used a
stick, which is 1/6 long, we need 44 sticks. We can go on
reducing the length of sticks.

The illustrated portraits in Fig.1, are based on Google
Earth satellite images of a part of Grand Canyon,
Arizona. Rigid sticks are created by GIMP. The ruler tool
of Google Earth is used to establish the reference length.
For evaluating the fractal dimension of the rim of the
canyon, we choose as reference length that of 6 km. In the
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Fig. 1: Google Earth Satellite images and GNU Image

Manipulation Program of a part of Grand Canyon, Arizona

left-lower panel, we can see that we need about 13 rigid
sticks, one-half the reference length long, to follow its
rim. With a stick 1/6 long, we need 44 sticks.

Table 1

N ε D

13 1/2 3.70

44 1/6 2.11

119 1/12 1.92

405 1/30 1.72

871 1/60 1.65

In the Table 1, considering the case of the Fig. 1, we
give the fractal dimension of the rim. Of course, when the
scaled sticks are smaller, we need more images, here not
shown. The process should be further iterated, to reach
the limit of smaller scales. Therefore, the fractal
dimension of the rim of the canyon, defined as the
boundary between flat soil and steep terrain, is a number
between 1 and 2. The proposed approach illustrates an
example to show the method to evaluate experimentally a
fractal dimension. In the given framework, let us consider
the role of probability. Each rigid stick has the same
probability to be used and then sticks have a uniform
distribution. In probability, the discrete uniform

distribution is a probability distribution of a finite number
N of values, which are equally likely to be observed;
every one of N values have then the equal probability 1/N.
An example of discrete uniform distribution is that we
obtain by throwing a die. If the die has 6 faces, the
possible values are 1,2,3,4,5,6 each time the die is
thrown the probability of a given score is 1/6. In Fig. 2,
the significant impact of N (the number of sticks used to
cover the coastline) on ε (the scaling factor) is illustrated.
More interestingly, Fig.3, provides strong supporting
evidence of the impact of FD (fractal dimension) on ε

(the scaling factor). Clearly, by looking at Fig. 2, we can
see that the scaling factor decreases with a very heavy
tailed trend by the increase of N, whereas, in Fig. 3, the
portrayed data shows that both ε( the scaling factor) and
FD(fractal dimension) are decreasing at the same time.

Fig. 2: An illustrative data portrait of how N impacts ε

(Scaling Factor)

Fig. 3: An illustrative data portrait of how FD impacts ε

(Scaling Factor)

The current paper is organized as follows. Section 2
overviews the available work done in the entropic
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derivation of fractal dimension. Section 3 mainly deals
with the derivation of the new resultsand provides
numerical portrait which clearly supports the strong
evidence of the significant impact of the (Gze)?s
parameters on the behaviour of the (Gze) factional
dimension. Section 4 is devoted to conclusion and future
work.

2 Materials and Methods

In [8], the author has derived the corresponding fractal
dimension to Shannon entropy [1], Renyi entropy [9,10]
(with q entropic index), Tsallis entropy [11] (with q

entropic index) and Kaniadakis entropy [12] (with
entropic index k). All these derivations were undertaken
in the case of equiprobable distribution.
The Shannonian entropic [8] definition of the fractal
dimension is given by:

Ds = lim
ε→0

lnN
1
ε

(4)

The ”generalized dimension” or the ”Renyi dimension” of
order q ∈ (0.5,1), is defined in the following manner [10]

DR = lim
ε→0

lnN
1
ε

(5)

The ”generalized dimension” or the ”Tsallisian
dimension” of order q ∈ (0.5,1), is defined in the
following manner [8]

DT = lim
ε→0

1
1−q

(

N1−q − 1
)

1
ε

, DT > 0 (6)

Now, we can define the Kaniadakis generalized dimension
[8] for Kaniadakis entropy K (k is the entropic index):

DK = lim
ε→0

1
2k

(

Nk −N−k
)

1
ε

(7)

The behaviour of these generalized dimension when their
indices are varied can be seen. The case of the Koch
snowflake (N = 4 and ε = 1/3) was proposed in [8] to
determine the corresponding fractal dimension to each
entropy. Notably, it was conjectured in [8], that Tsallis
generalized statistics seem to be the natural frame for
studying fractal systems.

3 Results and Discussion

The proposed Generalized Z-Entropy (GZE) [13] is a non-
extensive entropy functional defined by:

Hq,a,b,Z(p) = Za,b =
c

(1−q)(a−b)

[

(

∑
n

pq,Z(n)q
)a

−

(

∑
n

pq,Z(n)q
)b
]

(8)

Where, c is a positive constant, 1 > q > 0.5,a > 0,b ∈ R

or b > 0,a ∈ R with a 6= b.
The following proposition is of great importance as it

solidifies our choice of using the proposed GZE in our
study.

Proposition 1.(c.f., P. Tempesta, [13])

i. The Za,b-entropy reduces to the Renyi entropy in the

double limit, a → 0,b → 0.
ii. The Za,b-entropy reduces to the Tsallis entropy in the

double limit, a → 1,b → 0.
iii. The Za,b-entropy reduces to the Zk,q= k-entropy

(Kaniadakisian entropy functional) in the limit

a =−b = k.
iv. The Za,b-entropy reduces to the Sharma-Mittal entropy

[14] in the limit b → 0.
v. The Za,b-entropy reduces to the Shannonian entropy

functional in the triple limit a → 0,b → 0,q→ 1.

Theorem 1.In the case of equi-probable distribution, the

GZE fractal dimension, Da,b is devised by

DZa,b
= lim

ε→0

1
(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

(9)

Provided that, 1 > q > 0.5,a> 0,b ∈ R or b > 0,a ∈ R

with a 6= b.

Proof.By the definition, we have

DZa,b
=

1

(1− q)(a− b)
lim
ε→0

(∑n pq,Z(n)
q)a − (∑n pq,Z(n)

q)b

1
ε

=
1

(1− q)(a− b)
lim
ε→0

(

∑
N
i=1

(

1
N

)q
)a

−
(

∑
N
i=1

(

1
N

)q
)b

1
ε

=
1

(1− q)(a− b)
lim
ε→0

(

1
N

)aq (

∑
N
i=1 1

)a
−
(

1
N

)bq (

∑
N
i=1 1

)b

1
ε

=
1

(1− q)(a− b)
lim
ε→0

(

1
N

)aq
(N)a −

(

1
N

)bq
(N)b

1
ε

=
1

(1− q)(a− b)
lim
ε→0

(

N(1−q)a −N(1−q)b
)

1
ε

, as claimed, ( c.f., (9))

This completes the proof.

Corollary 1.The GZE fractal dimension, DZa,b
satisfies the

following:

i. lima→0,b→0 Dza,b
= DR

ii. limq→1

(

lima→0,b→0 Dza,b

)

= Ds

iii. lima→1,b→0 DZa,b
= DT

iv. lima→k,b→−k DZa,b
= DK

v. limb→0 DZa,b
= DSharma-Mittal
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Proof.It could be verified that DZa,b
(c.f., (9)) satisfies the

following:

i. lim
a→0,b→0

Dza,b = lim
ε→0

lima→0,b→0
1

(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

= lim
ε→0

lima→0
1

(1−q)(1)

(

(1−q)N(1−q)a lnN
)

1
ε

= lim
ε→0

lnN

1
ε

= DR (c.f .,(5)) (3.1)

ii.Taking the limit both sides of (3.1) as q → 1, we have

lim
q→1

(

lim
a→0,b→0

DZa,b

)

= lim
q→1

(

lim
ε→0

lnN

1
ε

)

= lim
ε→0

lnN

1
ε

= Ds ( c . f .,(4)) (3.2)

iii. lim
a→1,b→0

DZa,b
= lim

ε→0

lima→1,b→0
1

(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

= lim
ε→0

lima→1
1

(1−q)a

(

N(1−q)a −1
)

1
ε

= lim
ε→0

1
(1−q)

(

N(1−q) −1
)

1
ε

= DT ( c . f .,(6)) (3.3)

iv. lim
a→k,b→−k

DZa,b
= lim

ε→0

lima→k,b→−k
1

(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

= lim
ε→0

c
(1−q)(k+k)

(

(1−q)N(1−q)k − (1−q)N−(1−q)k
)

1
ε

= lim
ε→0

c
(2k)

(

N(1−q)k −N−(1−q)k
)

1
ε

Define (1−q)k = λk ,c = 1
1−q

,q ∈ (0.5,1)

Hence,it follows that

lim
a→k,b→−k

DZa,b
= lim

ε→0

1
(

2λk

)

(

N
λk −N

−λk
)

1
ε

= DK ( c.f., (7)) (3.4)

v. lim
b→0

DZa,b
= lim

ε→0

limb→0
1

(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

= lim
ε→0

1
(1−q)

(

N(1−q)a −1
)

1
ε

= DSharma-Mittal (3.5)

4 Numerical experiments

We have determined that:

DZa,b
= lim

ε→0

1
(1−q)(a−b)

(

N(1−q)a −N(1−q)b
)

1
ε

(c.f., (9))

Following the Koch snowflake (N = 4 and ε = 1/3), we
have

DZa,b
=

3

(1− q)(a− b)

(

4(1−q)a − 4(1−q)b
)

(10)

It can be seen that

DZ2,−1
(q) =

1

(1− q)

(

42(1−q)− 4(q−1)
)

(11)

and

DZ−2,1
(q) =−

1

(1− q)

(

4−2(1−q)− 4(1−q)
)

(12)

Moreover, it holds that

lim
q→1

DZ2,−1
(q) = lim

q→1

1

(1− q)

(

42(1−q)− 4(q−1)
)

= ln4 lim
q→1

(

2
(

42(1−q)
)

+ 4(q−1)
)

= 3ln4 = 4.158883083 (4.1)

Also, we have

lim
q→1

DZ−2,1
(q) = lim

q→1
−

1

(1− q)

(

4−2(1−q)− 4(1−q)
)

= ln4 lim
q→1

(

2
(

4−2(1−q)
)

+ 4(1−q)
)

= 3ln4 = 4.158883083 (4.2)

Thus, we see that

lim
q→1

DZ2,−1
(q) = lim

q→1
DZ−2,1

(q) = 4.15888308

Fig. 4: IncreasabilityDecreasability of DZ2,−1
(q) against

against the non-extensive information theoretic parameter

q,1 > q > 0.5

It is observed from both the figures 4 and 5, that
DZ2,−1

(q) and DZ−2,1
(q) are increasing in q, q ∈ (0.5,1)

.This provides a strong evidence to support the significant
impact of the non-extensive information theoretic
parameter q,(1 > q > 0.55) on the overall behaviour of
both DZ2,−1

(q) and DZ−2,1
(q).

5 Conclusion and future work

In this paper, an exposition to reveal the relation between
the most general entropy, namely Generalized Z-Entropy
(GZE) and the fractal dimension, a statistical index which
is measuring the complexity of a given pattern, embedded
in given spatial dimensions is undertaken. Numerical
experiments are to interpret the behaviour of the derived
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Fig. 5: Increasability of DZ−2,1
(q) against against the non-

extensive information theoretic parameter q,1 > q > 0.5

(GZE) fractal index corresponding to its parameters. This
work reports the ultimate generalization in the literature.
This paper is a giant step towards the unification of
information theory with fractal geometry. Future work
involves finding the fractal dimension of available
entropies in the literature to draw a detailed comparison
between these derived fractal dimensions, which will
open new grounds towards Information Theoretic Fractal
Geometry (ITFG).
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