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Abstract: In this paper we present the study of dihedral f-tilings by spherical right triangles on two distinct cases of adjacency and
with two pairs of congruent sides. Some aspects of the combinatorial structure are given.
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1 Introduction

By a dihedral folding tiling (f-tiling, for short) of the
sphere S2 whose prototiles are spherical right triangles,
T1 and T2, we mean a polygonal subdivision τ of S2 such
that each cell (tile) of τ is congruent to T1 or T2 and the
vertices of τ satisfy the angle-folding relation, i.e., each
vertex of τ is of even valency and the sums of alternating
angles around each vertex are π. In fact, the crease pattern
associated to the subjacent graph of a spherical f-tiling
satisfy the Kawasaki’s condition at any vertex v. In this
paper we shall discuss dihedral f-tilings by spherical right
triangles, considering two distinct cases of adjacency. We
assume that from all the sides of the prototiles involved
there are two pairs of congruent sides. The 3-dimensional
representations of the obtained f-tilings are presented as
well as the combinatorial structure.

f-tilings are intrinsically related to the theory of
isometric foldings of Riemannian manifolds, introduced
by S. A. Robertson [6] in 1977. The classification of
f-tilings was initiated by Ana Breda [1], with a complete
classification of all spherical monohedral f-tilings. Later
on, in 2002, Y. Ueno and Y. Agaoka [10] have established
the complete classification of all triangular monohedral
tilings (without any restrictions on angles).

The study of dihedral f-tilings by spherical right
triangles is a very extensive and exhaustive work and
some particular cases were recently obtained in papers [4,
5]. A list of all dihedral f-tilings of the sphere by triangles
and parallelograms including the combinatorial structure
of each tiling can be found in [2]. Robert Dawson has also

been interested in special classes of spherical tilings, see
[7–9] for instance.

We shall denote by Ω (T1, T2) the set, up to an
isomorphism, of all dihedral f-tilings of S2 whose
prototiles are T1 and T2.

From now on T1 is a spherical right triangle of
internal angles π

2 , α and β, with edge lengths a (opposite
to β), b (opposite to α) and c (opposite to π

2 ), and T2 is a
spherical right triangle of internal angles π

2 , γ and δ, with
edge lengths d (opposite to δ), e (opposite to γ) and f
(opposite to π

2 ) (see Figure 1). We will assume
throughout the text that T1 and T2 are distinct triangles,
i.e., (α, β) ̸= (γ, δ) and (α, β) ̸= (δ, γ). The case α = β
or γ = δ was analyzed in [4], and so we will assume
further that α ̸= β and γ ̸= δ.
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Fig. 1 Prototiles: spherical right triangles T1 and T2

Relations between faces, edges, vertices and angles of
any dihedral f-tiling of S2, with prototiles T1 and T2, are
stated in proposition 1.
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Proposition 1.[3, Proposition 2.1] Let τ ∈ Ω (T1, T2). If
N1 > 0 and N2 > 0 denote the number of spherical right
triangles of τ congruent to T1 and T2, respectively, and
E and V denote the number of edges and vertices of τ ,
respectively, then:

(i) N1 +N2 = 2V − 4 = 2
3E ≥ 8;

(ii) 3V = 6 + E;
(iii) there are, at least, six vertices of valency four;
(iv) the cases (α+ β ≥ π and γ + δ > π) and

(α+ β > π and γ + δ ≥ π) cannot occur.

It follows straight away that

α+ β >
π

2
and γ + δ >

π

2
, (1)

and also a ̸= b and d ̸= e.
In order to get any dihedral f-tiling τ ∈ Ω (T1, T2),

we find it useful to start by considering one of its local
configurations, beginning with a common vertex to two
tiles of τ in adjacent positions.

In the diagrams that follows it is convenient to label
the tiles according to the following procedures:

(i) We begin the configuration of a tiling τ ∈ Ω (T1, T2)
with a right triangle T1, labelled by 1; then we label
with 2 a right triangle T2, adjacent to T1;

(ii) For j ≥ 3, the location and orientation of tile j can be
deduced from the configuration of tiles
(1, 2, 3, . . . , j − 1) and from the hypothesis that the
configuration is part of a complete f-tiling (except in
the cases indicated).

2 F–tilings by right triangles

In the following subsections we will consider separately
two distinct cases of adjacency, assuming that any element
of Ω (T1, T2) has at least two cells such that they are in
adjacent positions and in one of the situations illustrated
in Figure 2 (the remaining two cases of adjacency are not
in the scope of this paper).
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Fig. 2 Distinct cases of adjacency

We omit the analysis of the cases where all the edges of
T1 and T2 have different lengths, except the adjacent sides.
This study is very extensive and is outside of the scope of
this work.

2.1 Case of Adjacency A

Suppose that any element of Ω (T1, T2) has at least two
cells congruent, respectively, to T1 and T2, such that they
are in adjacent positions as illustrated in Figure 2–A. We
have b ̸= e, as b = e implies T1 ≡ T2. As a = d, using
trigonometric formulas, we obtain

cosβ

sinα
=

cos δ

sin γ
. (2)

In the following subsections we will consider
separately the cases a = c, b = c, and b = f . Note that
each one of the cases a = f(= d) and c = f imply a = c.
The cases e = f and c = e are analogous to the cases
b = c and b = f (the same f-tilings are obtained),
respectively, where the roles of the angles (α, β) and
(γ, δ) are interchanged.

2.1.1 a = c

The condition a = c leads to β = δ = π
2 = a = f , α = b

and γ = e.

Proposition 2.If there are two cells in adjacent positions
as illustrated in Figure 2–A, with a = c, then for each
k1, k2, k̄1, k̄2 ≥ 1, Ω(T1, T2) =

{
Pα
j(k1,k2)

, P̄α
j̄(k̄1,k̄2)

}
,

where Pα
j(k1,k2)

and P̄α
j̄(k̄1,k̄2)

, α ∈
(
0, π

2

)
, α ̸= γ, are

non-isomorphic dihedral f-tilings, with 1 ≤ j ≤ ϕ(k1, k2)
and 1 ≤ j̄ ≤ ϕ̄(k̄1, k̄2), for some integers ϕ(k1, k2) and
ϕ̄(k̄1, k̄2), respectively; these values correspond to the
number of distinct f-tilings in each class and satisfy

ϕ(k1, k2) ≤
n∑

k=0

(
n
k

)2

, with n = k1 + k2.

Proof.
Suppose that any element of Ω (T1, T2) has at least two

cells congruent, respectively, to T1 and T2, such that they
are in adjacent positions as illustrated in Figure 2–A.

We will consider separately the cases α < β and α >
β.

1. Suppose firstly that α < β. Consequently, α < π
2 , γ ̸=

α, π
2 . Therefore, the configuration illustrated in Figure 2–

A is extended to the one given in Figure 3.
At vertices v1 and v2, that are in antipodal positions,

we have

k1α+ k2γ = π or
π

2
+ k̄1α+ k̄2γ = π,

k1, k2, k̄1, k̄2 ≥ 1.
For each α ∈

(
0, π

2

)
, α ̸= γ, and each pair (k1, k2),

with k1, k2 ≥ 1, the condition k1α + k2γ = π leads to a
class of f-tilings Pα

j(k1,k2)
, where 1 ≤ j ≤ ϕ(k1, k2);

ϕ(k1, k2) is the number of distinct f-tilings for the pair
(k1, k2), and 2(k1 + k2) is the valency of the vertices v1
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Fig. 3 Local configuration

and v2. The value of ϕ(k1, k2) could be obtained counting
circular permutations with two groups of
indistinguishable objects. ϕ(k1, k2) satisfy

ϕ(k1, k2) ≤
n∑

k=0

(
n
k

)2

, with n = k1 + k2.

For instance, fixing α ∈
(
0, π

2

)
,r if k1 = k2 = 1, there is a single f-tiling, Pα

1(1,1)
, whose

planar and 3D representations are given in Figure 4;r if k1 = 1 and k2 = 2, there are two distinct f-tilings,
Pα
1(1,2)

and Pα
2(1,2)

; planar and 3D representations are
given in Figure 5 and Figure 6, respectively.

Similarly, the case π
2 + k̄1α + k̄2γ = π, with k̄1, k̄2 ≥ 1,

leads, for each α ∈
(
0, π

2

)
, α ̸= γ, and each pair (k̄1, k̄2),

to a class of f-tilings P̄α
j̄(k̄1,k̄2)

, where 1 ≤ j̄ ≤ ϕ̄(k̄1, k̄2);

ϕ̄(k̄1, k̄2) is the number of distinct f-tilings for the pair
(k̄1, k̄2), and 2(k̄1 + k̄2 + 1) is the valency of the vertices
v1 and v2. The value of ϕ̄(k̄1, k̄2) could be obtained
counting circular permutations with three groups of
indistinguishable objects. For instance, the case
k̄1 = k̄2 = 1 give rise to six distinct f-tilings, whose
planar and 3D representations are given in Figures 7–12,
respectively.

2. Suppose now that α > β. As mentioned before, we
have β = δ = π

2 = a = f , and consequently α > β = π
2 .

Analogously to the previous case, the configuration
illustrated in Figure 2–A is extended to the one given in
Figure 3.

At vertices v1 and v2 (in antipodal positions), we must
have α + kγ = π, k ≥ 1. For each γ ∈

(
0, π

2k

)
and

k ≥ 1, the condition α+ kγ = π leads to a class of
⌈
k+1
2

⌉
f-tilings, where ⌈n⌉ denotes the smallest integer greater
than or equal to n. This class is a subset of

{
Pα
j(k1,k2)

}
,

with k1 ≥ 1 and k2 = 1, and where the roles of α and γ
are interchanged. �
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(b) 3D representation of
Pα

1(1,1)

Fig. 4 f-tiling Pα
1(1,1)
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Fig. 5 f-tiling Pα
1(1,2)
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0, π

2

)
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(b) 3D representation of
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Fig. 6 f-tiling Pα
2(1,2)

, α ∈
(
0, π

2

)
, α ̸= γ

2.1.2 b = c

The condition b = c leads to α = π
2 = b = c and β = a.

We also have e ̸= a, b, f (e = b implies T1 ≡ T2) and f ̸=
a, b (f = a implies β = π

2 ). We will consider separately
the subcases α < β and α > β.

Proposition 3.If there are two cells in adjacent positions
as illustrated in Figure 2–A, with b = c and α < β, then
Ω(T1, T2) = ∅.

Proof.
Suppose that any element of Ω (T1, T2) has at least

two cells congruent, respectively, to T1 and T2, such that
they are in adjacent positions as illustrated in Figure 2–A,
with α < β. With the labelling used in Figure 13, we have
θ1, θ2 ∈

{
β, π

2

}
. Nevertheless, as β > α = π

2 , we get an
impossibility at vertex v. �

Proposition 4.If there are two cells in adjacent positions
as illustrated in Figure 2–A, with b = c and α > β, then
Ω(T1, T2) ̸= ∅ iff

(i) α = π
2 , β = π

4 = γ and δ = π
3 or

(ii) α = π
2 , β + γ = π

2 and kδ = π, with k ≥ 3.
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(a) Planar representation of P̄α
1(1,1)

(b) 3D representation of
P̄α

1(1,1)

Fig. 7 f-tiling P̄α
1(1,1)

, α ∈
(
0, π

2

)
, α ̸= γ

The first case leads to two different dihedral f-tilings
denoted by S and T , respectively. Planar and 3D
representations of S and T are given in Figure 17 and
Figure 18, respectively.

In the last case, for each k ≥ 3, we obtain a single
tiling, denoted by Rk, with β = arccos

√
cos π

k and
γ = π

2 − β. A planar representation of Rk is given in
Figure 19(b) and 3D representations, for k = 3 and
k = 4, are given in Figure 20.

Proof.
Suppose that any element of Ω (T1, T2) has at least two

cells congruent, respectively, to T1 and T2, such that they
are in adjacent positions as illustrated in Figure 2–A, with
α > β. With the labelling used in Figure 14(a), we have
θ1 = δ or θ1 = γ.

If θ1 = δ (Figure 14(b)), then θ2 = β or θ2 = δ. But
in either cases an incompatibility between sides cannot be
avoided around vertex v.

Therefore θ1 = γ (Figure 15(a)). Analyzing the edge
lengths, at vertex v we must have
π

2
+ kγ = π or

π

2
+ k1γ + k2β = π,

with k ≥ 2 and k1, k2 ≥ 1.
1. Suppose firstly that π

2 + kγ = π, with k ≥ 2
(Figure 15(b)). Note that θ2 = π

2 (tiles 7 and 9) as θ2 = δ
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(a) Planar representation of P̄α
2(1,1)

(b) 3D representation of
P̄α

2(1,1)

Fig. 8 f-tiling P̄α
2(1,1)

, α ∈
(
0, π

2

)
, α ̸= γ

gives rise to an incompatibility between sides. As δ > π
4 ,

at vertex v we have necessarily 2δ + γ = π or 3δ = π.
If 2δ + γ = π, we get the local configuration

illustrated in Figure 16(a). At vertex v′ we must have
π
2 + δ + k′β = π, for some k′ ≥ 1. Nevertheless, we
obtain an impossibility, as an incompatibility between
sides cannot be avoided around vertex v′.

If 3δ = π, i.e., δ = π
3 , then γ > π

6 , and so γ = π
4

(k = 2). Moreover, equation (2) implies β = π
4 . The last

configuration is extended to the one illustrated in
Figure 16(b). Now θ3 = β or θ3 = π

2 .
The first case gives rise to a single f-tiling whose

planar representation is illustrated in Figure 17(a). We
denote such f-tiling by S. The corresponding 3D
representation is given in Figure 17(b).

If θ3 = π
2 , the last configuration is extended in a

unique way to the global planar representation given in
Figure 18(a). We denote such f-tiling by T . The
corresponding 3D representation is given in Figure 18(b).

2. Suppose now that π
2 + k1γ+ k2β = π, with k1, k2 ≥ 1.

2.1 We consider firstly the case k1 = 1, i.e., when π
2 +γ+

k2β = π, k2 ≥ 1.

2.1.1 If k2 = 1, we obtain the configuration illustrated
in Figure 19(a). With the labelling of this figure, we have
θ2 = β or θ2 = π

2 .
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(a) Planar representation of P̄α
3(1,1)

(b) 3D representation of
P̄α

3(1,1)

Fig. 9 f-tiling P̄α
3(1,1)

, α ∈
(
0, π

2

)
, α ̸= γ

If θ2 = β, at vertex v1 we must have π
2 + γ + γ = π,

as π
2 + γ + β = π give rise to an incompatibility between

sides. Therefore γ = β = π
4 < δ, and consequently at

vertex v2 we get 3δ = π. The last configuration is then
extended in a unique way to a planar representation that
corresponds to the previous f-tiling T .

If θ2 = π
2 , we get the local configuration illustrated in

Figure 19(b). We have kδ = π, with k ≥ 3. Using (2), we
obtain β = arccos

√
cos π

k and γ = π
2−β. We denote such

family of f-tilings by Rk, k ≥ 3. The corresponding 3D
representations for k = 3 and k = 4 are given in Figure 20.

2.1.2 If k2 ≥ 2 and δ ≤ π
4 , then γ > π

4 and we get the
configuration illustrated in Figure 21(a). Note that
θ2 = β, as θ2 = π

2 implies π
2 + γ + k2β = π and an

incompatibility between sides cannot be avoided around
vertex v1. Nevertheless we reach a contradiction at vertex
v2.

On the other hand, if k2 ≥ 2 and δ > π
4 , we have

necessarily 3δ = π as illustrated in Figure 21(b). If θ2 = δ,
we reach an incompatibility between sides around vertex
v. Now, θ3 = π

2 or θ3 = β. These two distinct cases give
rise to the local configurations illustrated in Figure 22(a)
and Figure 22(b), respectively. In both cases, at vertex v
we must have π

2 + kγ = π, for some k ≥ 2. As δ = π
3 ,

we have γ > π
6 , and so k = 2 and γ = π

4 . But then,
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(a) Planar representation of P̄α
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(b) 3D representation of
P̄α
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Fig. 10 f-tiling P̄α
4(1,1)

, α ∈
(
0, π

2

)
, α ̸= γ

by equation (2), we conclude that β = π
4 , which is not

possible since k2 ≥ 2.
2.2 If k1 ≥ 2, then γ < π

4 < δ and we get the
configuration illustrated in Figure 23(a). Note that
θ2 = γ, as θ2 = δ implies π

2 + δ + kβ = π, for some
k ≥ 1, at vertex v1, but in this case an incompatibility
between sides cannot be avoided around this vertex.
Therefore we have 3δ = π at vertex v2, and so γ > π

6 .
The last configuration is then extended in a unique way to
the one given in Figure 23(b). Now, we have θ3 = β or
θ3 = π

2 .
In the first case we must have π

2 + kγ = π, k ≥ 2,
at vertex v3. As in 2.1.2, we obtain β = π

4 , which is not
possible.

In the second case we obtain, at vertex v4, kγ = π,
for some k > 4. Thus γ = π

5 , β = arccos
√

2
5−

√
5

and
k1 = 2. However there is no integer k2 satisfying π

2 +
k1γ + k2β = π. �

2.1.3 b = f

Proposition 5.If there are two cells in adjacent positions
as illustrated in Figure 2–A and b = f , then Ω(T1, T2) ̸=
∅ iff
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(a) Planar representation of P̄α
5(1,1)

(b) 3D representation of
P̄α

5(1,1)

Fig. 11 f-tiling P̄α
5(1,1)

, α ∈
(
0, π

2

)
, α ̸= γ

(i) δ + α+ γ = π and kβ ≥ 3, k ≥ 3, or

(ii) 2α+ γ = π, α+ 3β = π and δ = π
4 or

(iii) α+ 2γ = π, α+ 2β = π and δ = π
3 or

(iv) α+ γ + π
2 = π, β = π

4 and δ = π
3 or

(v) 2α+ 2γ = π, α+ γ + 2β = π and δ = π
3 .

For each k ≥ 3, the first case leads to a single f-tiling,
denoted by Vk. A planar representation is given in
Figure 30. 3D representations for k = 3 and k = 4 are
given in Figure 31.
The case (ii) leads to a single f-tiling, denoted by Z . In
Figure 38(b) and Figure 39 are given the corresponding
planar and 3D representations.
The case (iii) leads to a single f-tiling, denoted by L, whose
planar and 3D representations are presented in Figure 42.
The case (iv) leads to a single f-tiling, denoted by Ū ,
whose planar and 3D representations are presented in
Proposition Figure 50(a) and Figure 50(b), respectively.
In the last situation, there is a single f-tiling, denoted by U .
In Figure 44 are given the corresponding planar and 3D
representations.

Proof.
Suppose that any element of Ω (T1, T2) has at least two

cells congruent, respectively, to T1 and T2, such that they
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are in adjacent positions as illustrated in Figure 2–A. If
b = f , then

cosα = cosβ cos γ and sinβ = sinα sin δ.

We also have e ̸= a, b, c and c ̸= a, b.
1. If β > α, then we must have β > π

2 , and consequently
δ > π

2 , otherwise sinα < sinβ = sinα sin δ and
sin δ > 1, which is an incongruence. Therefore we get the
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Fig. 16 Local configurations

configuration illustrated in Figure 24(a). Nevertheless,
there is no way to satisfy the angle-folding relation
around vertex v.

2. Suppose now that β < α.

2.1 If α > π
2 , as cosβ cos γ = cosα < cosβ, we

conclude that β < π
2 < α, and consequently γ > π

2 > δ.
The configuration illustrated in Figure 2–A is then
extended in a unique way to the one presented in
Figure 24(b). We must have α + β < π (α + β = π
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Fig. 17 f-tiling S

implies β = π
2 ), but at vertex v there is no way to satisfy

the angle-folding relation.

2.2 If α < π
2 , then β < α < π

2 and also γ, δ < π
2 . As

cosα = cosβ cos γ, we conclude that γ < α. Moreover,
sinβ = sinα sin δ implies β < δ.

With the labelling of Figure 25(a), we have θ1 = δ or
θ1 = π

2 .

2.2.1 If θ1 = δ (Figure 25(b)), then at vertex v we must
have π

2 + k1δ + k2β = π, with k1 ≥ 1, k2 ≥ 0 and
k1 + k2 ≥ 2. It is easy to observe that in any choice for k1
and k2 an incompatibility between sides cannot be avoided
around vertex v.

2.2.2 Suppose now that θ1 = π
2 (Figure 26(a)). Now, we

have θ2 = β, θ2 = δ or θ2 = γ.

2.2.2.1 If θ2 = β (Figure 26(b)), then at vertex v1 we must
have α + k1β + k2γ = π, with k1, k2 ≥ 1. Note that if at
vertex v1 we have α+β+α = π, α+kβ = π or α+k1β+
k2δ = π, k ≥ 2, k1, k2 ≥ 1, an incompatibility between
sides cannot be avoided around this vertex. Moreover, if
α + β + α + kγ = π, k ≥ 1, we get δ > α > β > γ and
consequently a contradiction is achieved at vertex v2.
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Fig. 18 f-tiling T

Considering the possible angle combinations at vertex
v1, it is easy to observe that the case k1 = k2 = 1 leads to
a contradiction. Therefore k1 + k2 > 2.

If δ > γ, then at vertex v2 we must have π
2 + δ +

kβ = π, with k ≥ 1, which implies α > δ > γ > β.
Nevertheless, at vertex v3 we get π

2 + α + ρ > π, ∀ρ ∈
{π
2 , α, β, γ, δ}.

Thus, we must have α > γ > δ > β and consequently
k2 = 1 and k1 ≥ 2.

At vertex v2 (Figure 26(b)) we must have π
2 + k̄δ = π,

with k̄ ≥ 2, or π
2 + k̄1δ + k̄2β = π, with k̄1 ≥ 2 and

k̄2 ≥ 1.
If π

2 + k̄δ = π, k̄ ≥ 2 (Figure 27(a)), then at vertex
v4 we have α + α + ρ = π, with ρ ∈ {α, γ, δ, β}. If
ρ = β (Figure 27(b)), we reach a contradiction at vertex
v5. For the remaining cases, the system (3) is impossible.
Note that ρ = α implies k1 = k̄ = 2, ρ = γ implies k̄ = 2
and ρ = δ implies k1 = 2. cosβ sin γ = cos δ sinα

cosα = cosβ cos γ
sinβ = sinα sin δ

(3)

If π
2 + k̄1δ + k̄2β = π, with k̄1 ≥ 2 and k̄2 ≥ 1

(Figure 28(a)), at vertex v5 we get a contradiction, as for
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Fig. 19 Local configurations

Fig. 20 f-tilings Rk, cases k = 3 and k = 4

ρ ∈ {α, γ}, we have π + π ≥
(
π
2 + δ + δ + β

)
+ (α +

α+ ρ) = π
2 + (α+ β) + (ρ+ δ) + (α+ δ) > 2π.
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Fig. 21 Local configurations

2.2.2.2 If θ2 = δ (Figure 28(b)), then at vertex v1 we must
have α + δ + kγ = π, with k ≥ 1. Note that if at vertex
v1 we have α + δ + π

2 = π, then π
2 + γ + β = π, which

implies that system (3) is impossible. On the other hand, if
α + δ + α = π or α + k1δ + k2β = π, k1 ≥ 1, k2 ≥ 0,
k1 + k2 ≥ 2, an incompatibility between sides cannot be
avoided around this vertex.

With the labelling of Figure 29(a), we have (θ3, θ4) =
(δ, δ), (θ3, θ4) = (δ, π

2 ), (θ3, θ4) = (π2 , δ) or (θ3, θ4) =
(π2 ,

π
2 ).

(i) If (θ3, θ4) = (δ, δ) (Figure 29(b)), thenr if δ > γ, at vertex v4 we must have π
2 + δ + k̄β = π,

k̄ ≥ 1. But an incompatibility between sides cannot be
avoided around this vertex;r if δ < γ, at vertex v5 we must have π

2 + γ + β =
π = δ + α + γ, which implies that system (3) has no
solution.

(ii) If (θ3, θ4) = (δ, π
2 ) (Figure 29(a)), we consider the

subcases k = 1 and k > 1.
If k = 1, we get the local configuration illustrated in

Figure 30, where k̄β = π, with k̄ ≥ 3. We denote such
family of f-tilings by Vk, k ≥ 3. The corresponding 3D
representations for k = 3 and k = 4 are given in Figure 31.
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Fig. 22 Local configurations

If k > 1 (Figure 32(a)), then δ > α > β > γ and
δ > π

4 . At vertex v5 we have necessarily δ + δ + ρ =
π, with ρ ∈ {α, β, γ, δ}. In all these cases, and for the
possible values of k, we obtain a solution of system (3).
Nevertheless, we get a contradiction at vertex v6, as there
is no way to satisfy the angle-folding relation around this
vertex.
(iii) Consider now (θ3, θ4) = (π2 , δ) (Figure 32(b)). If k =
1 the system (3) is impossible (at vertex v1 we have δ +
α + γ = π = π

2 + γ + β). The case k > 1 leads to
a contradiction at vertex v4, as π

2 + δ + ρ > π, ∀ρ ∈
{α, β, γ, δ}.
(iv) Observing Figure 33(a) we conclude that in the case
(θ3, θ4) = (π2 ,

π
2 ) we get a contradiction at vertex v4.

2.2.2.3 Finally we analyze the case θ2 = γ (Figure 33(b)),
considering separately the cases γ > δ and γ < δ.
2.2.2.3.1 If γ > δ (α > γ > δ > β), then at vertex v1 we
must have α+ γ + γ = π, α+ γ +α = π, α+ γ+ δ = π
or α+ γ + kβ = π, k ≥ 1.
(i) Suppose firstly that α + γ + γ = π, as illustrated in
Figure 34(a). At vertex v2 we have one of the following
conditions:

(i1) π
2 + δ + δ = π;

(i2) α+ δ + δ + β = π;
(i3) γ + δ + δ + δ = π;
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Fig. 23 Local configurations
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Fig. 24 Local configurations

(i4) α+ δ + δ + δ = π;
(i5) γ + δ + δ + kβ = π, k ≥ 1;
(i6) k1δ + k2β = π, k1 ≥ 2, k2 ≥ 0, k1 + k2 > 3.

Each one of the conditions (i1)–(i3), jointly with α +
γ + γ = π, give rise to a solution of the system (3). But
with these solutions we obtain a contradiction at vertex
v3, as there is no way to satisfy the angle-folding relation
around this vertex.
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Fig. 26 Local configurations

The condition (i4) implies that at vertex v2 we must
have α+ δ + δ + δ = π = π

2 + δ + δ + β, which leads to
an impossible system (3).

If condition (i5) holds then we get the configuration
illustrated in Figure 34(b). Note that θ3 must be γ,
otherwise θ4 = π

2 and π
2 + α + ρ > π, ∀ρ ∈ {α, β, δ, γ}.

At vertex v4 we have necessarily π
2 + γ + k̄β = π, k̄ ≥ 1,

and so the system (3) becomes impossible.
Due to the angles relations and the system (3), if k2 =

0 in condition (i6), then k1 must be 5 and we obtain the
local configuration illustrated in Figure 35(a). But we get
a contradiction at vertex v3 as there is no way to satisfy
the angle-folding relation around this vertex. If k2 > 0
(Figure 35(b)), then at vertex v3 we must have α+α+ρ =
π, with ρ ∈ {β, δ}. But in either cases an incompatibility
between sides cannot be avoided around this vertex.
(ii) If α + γ + α = π (Figure 36(a)), then at vertex v2
we have one of the conditions (i1)–(i6) considered in the
previous case.

If condition π
2 + δ + δ = π (i1) holds, then we obtain

one of the configurations illustrated in Figure 36(b) and
Figure 37(a). In both cases we get a contradiction at vertex
v3, as an incompatibility between sides cannot be avoided
around this vertex (note that, due to the solution of system
(3), in the first case at vertex v3 we must have π

2+δ+δ = π
and in the second α+ β + β + β = π).

If α + δ + δ + β = π (Figure 37(b)), then we obtain
an impossibility at vertex v3, since π

2 + α + ρ > π, ∀ρ ∈
{α, β, δ, γ}.
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Fig. 27 Local configurations
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Fig. 28 Local configurations

If γ+δ+δ+δ = π, α+δ+δ+δ = π or γ+δ+δ+β = π
(i3)–(i5), then, due to the solution of system (3) for each
case, we get a contradiction at vertex v3 (Figure 36(a)).

If k1δ + k2β = π, k1 ≥ 2, k2 ≥ 0, k1 + k2 > 3 (i6),
then, taking into account the vertices v2–v4 (Figure 36(a))
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Fig. 30 Planar representation of Vk, k ≥ 3

Fig. 31 f-tilings Vk, cases k = 3 and k = 4

and the solutions of system (3), we have (k1 = 3 and
k2 = 2) or (k1 = 4 and k2 = 0). The first case leads to a
contradiction, as illustrated in Figure 38(a) (at vertex v4
we have π

2 + α + ρ > π, ∀ρ ∈ {α, β, δ, γ}). The second
case give rise to a single f-tiling whose planar
representation is illustrated in Figure 38(b). We denote
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Fig. 33 Local configurations
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Fig. 34 Local configurations

such f-tiling by Z . The corresponding 3D representation
is given in Figure 39.
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Fig. 35 Local configurations
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Fig. 36 Local configurations

(iii) If at vertex v1 (Figure 33(b)) we have α+ γ + δ = π,
then we get π

2 + β+ γ = π, which implies that system (3)
has no solution.
(iv) Finally, if α + γ + kβ = π, k ≥ 1 (Figure 40(a)),
and considering the possibilities for θ3, we have θ4 = δ or
θ4 = π

2 (recall that π
2 + α+ ρ > π, ∀ρ ∈ {α, β, δ, γ}).

If θ4 = δ, then θ3 = δ and there is no way to satisfy
the angle-folding relation around vertex v2.

The case θ4 = π
2 , as illustrated in Figure 40(b), is

analogous to the one studied in 2.2.2.2 (ii), where the
roles of the angles (α, β) and (γ, δ) are interchanged.
2.2.2.3.2 If γ < δ, with the labelling of Figure 33(b), at
vertex v2 we must have one of the following conditions:
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Fig. 37 Local configurations

(i1) δ + δ + α = π;
(i2) δ + δ + δ = π;
(i3) δ + δ + δ + kβ = π, k ≥ 1;
(i4) δ + δ + γ = π;
(i5) δ + δ + γ + kβ = π, k ≥ 1;
(i6) δ + δ + kβ = π, k ≥ 1.

If condition (i1) holds, then at vertex v2 (Figure 33(b))
we have α+ γ + δ = π = π

2 + δ + β, which implies that
system (3) has no solution.

In the case (i2) (Figure 41(a)), we have to consider at
vertex v1 the following possibilities:

(j1) α+ γ + π
2 = π;

(j2) α+ γ + α = π;
(j3) α+ γ + α+ α = π;
(j4) α+ γ + δ + γ = π;
(j5) α+ γ + α+ γ = π;
(j6) α+ γ + α+ β = π;
(j7) α+ γ + kγ = π, k ≥ 1;
(j8) α+ γ + γ + β = π;
(j9) α+ γ + δ = π;

(j10) α+ γ + kβ = π, k ≥ 1.

Both conditions (i2)–(j1) and (i2)–(j5) imply β = π
4 ,

α = arctan
√
2, γ = π

2 − α and δ = π
3 , and lead to one

dihedral f-tiling denoted by Ū , whose planar and 3D
representations are presented in Proposition 6
(Figure 50(a) and Figure 50(b), respectively), with the
roles of the angles (α, γ) and (β, δ) interchanged.
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Fig. 38 Local configurations

Fig. 39 f-tiling Z

The condition (i2) together with one of the conditions
(j2)–(j4) leads to a contradiction at vertex v4, as we must
have a alternating sum containing two angles β and it is
not possible due to the respective solutions of system (3).

Also taking into account the solution of system (3)
when conditions (i2)–(j6) hold, we obtain a contradiction
at vertex v5 (Figure 41(b)).

If α+ γ+ kγ = π, k ≥ 1 (j7), then we must have k =
1 (the other possible values for k lead to a contradiction
at vertex v4, where we have at least two angles β in the
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Fig. 41 Local configurations

alternated angle sums). In this case we obtain a dihedral f-
tiling denoted by L, whose planar and 3D representations
are presented in Figure 42.

If condition (j8) holds, then the last configuration
extends in a unique way to the one illustrated in
Figure 43(a). At vertex v5 we reach a contradiction since
there is no way to satisfy the angle-folding relation.

If condition (j9) holds, then at vertex v1 (Figure 33(b))
we have γ + α+ δ = π = π

2 + β + γ, which implies that
system (3) has no solution.

Finally, we consider α + γ + kβ = π, k ≥ 1 (j10).
If k = 1, then we obtain the previous f-tiling L. If k > 1
and θ3 = α (Figure 43(b)), then π

2 + δ + k̄β = π, k̄ ≥ 1,
and α > δ > γ > β. If θ4 = δ we obtain a contradiction
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(a) Planar representation of L

(b) 3D representation of L

Fig. 42 f-tiling L

at vertex v4, as π
2 + α + ρ > π, ∀ρ ∈ {π

2 , α, β, γ, δ}.
If θ5 = δ, then at vertex v5 we have α + α + ρ = π,
with ρ ∈ {γ, β}. But in either cases the system (3) has
no solution. The case θ3 = β leads to a dihedral f-tiling
denoted by U , whose planar and 3D representations are
presented in Figure 44.

In the case (i3) (Figure 45(a)), we have α > δ > γ > β
and at vertex v2 we must have π

2 +γ+γ = π, π
2 +γ+γ+

k̄β = π or π
2 + γ + k̄β = π, k̄ ≥ 1. In the two first cases,

we have θ3 = α and α+α+ρ = π, with ρ ∈ {α, β, γ, δ}.
But considering each one of these possibilities for ρ, we
conclude that system (3) has no solution. In the last case
we obtain π

2 + δ + ¯̄kβ = π, ¯̄k ≥ 1, at vertex v3 and
consequently at vertex v1 we get π

2 + α+ γ > π.
If δ + δ + γ = π (i4), the last configuration extends to

the one illustrated in Figure 45(b). At vertex v3 we must
have δ + α + kβ = π or δ + α + kγ = π, k ≥ 1. For
each k ≥ 1, the condition δ + α + kβ = π implies that
the system (3) is impossible. In the second case, if k = 1
we obtain the previous f-tiling L; if k > 1 (Figure 46(a)),
as β increases as k increases and δ > α > β > π

3 > γ, at
vertex v4 we have necessarily β + β + kγ, k ≥ 1. But an
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Fig. 43 Local configurations

incompatibility between sides cannot be avoided around
this vertex.

If condition (i5) holds (Figure 46(b)), then α > δ >
γ > β and at vertex v2 we must have α+α+ ρ = π, with
ρ ∈ {α, β, γ, δ}. Any of the choices leads to a system (3)
impossible.

Finally, if δ + δ + kβ = π, k ≥ 1 (Figure 47), then
π
2 + α + γ = π and k = 1. But due to the solution of
system (3) a contradiction is achieved at vertex v3. �

2.2 Case of Adjacency B

Suppose that any element of Ω (T1, T2) has at least two
cells congruent, respectively, to T1 and T2, such that they
are in adjacent positions as illustrated in Figure 2–B. As
b = e, using trigonometric formulas, we obtain
cosα

sinβ
=

cos γ

sin δ
. (4)

In the following subsection we will consider the case
a = f . The case c = d is analogous interchanging the roles
of the angles (α, β) and (γ, δ). The case a = c implies
sinβ = 1, and so β = π

2 = a = c. It is easy to see that
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Fig. 44 f-tiling U

the corresponding study is analogous to the one presented
in Proposition 3 and Proposition 4 (the same f-tilings are
obtained), where the roles of the angles (α, β) and (γ, δ)
are interchanged. Both cases a = d and c = f imply T1 ≡
T2, which is not possible. The cases b = c, c = e and
d = f are analogous to the case a = c. The case e = f
implies b = c.

2.2.1 a = f

If a = f , then

cosβ = cosα cos δ and sinα = sinβ sin γ.

In this case we must have α < β. In fact, if α > β and

(i) α < π
2 , then sinα = sinβ sin γ > sinβ and sin γ >

1, which is an incongruence.
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Fig. 46 Local configurations

(ii) α > π
2 , then γ > π

2 (by (4)), and consequently we
have β < π

2 < δ or δ < π
2 < β. In both cases, all the
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angles α, β, γ, δ are greater than π
2 except one, which

is not possible.

Note that α ̸= π
2 , otherwise we get α = β = π

2 .

Proposition 6.If there are two cells in adjacent positions
as illustrated in Figure 2–B and a = f , then
Ω(T1, T2) ̸= ∅ iff α = π

4 , β = arctan
√
2, γ = π

3 and
δ = π

2 − β. This conditions lead to one dihedral f-tiling
denoted by Ū , whose planar and 3D representations are
given in Figure 50(a) and Figure 50(b), respectively.

Proof.
Suppose that any element of Ω (T1, T2) has at least two

cells congruent, respectively, to T1 and T2, such that they
are in adjacent positions as illustrated in Figure 2–B and
a = f (α < β).

With the labelling used in Figure 48(a), we have θ1 =
π
2 or θ1 = γ.
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Fig. 48 Local configurations

1. If θ1 = π
2 , then π

2 + β + kγ = π or π
2 + β + kδ = π,

for k ≥ 1. The first case leads to a contradiction at vertex
v (there is no way to satisfy the angle-folding relation
around this vertex). The condition π

2 + β + kδ = π,
k ≥ 1, leads to γ > β > α > δ and to the configuration
illustrated in Figure 48(b) (note that γ ̸= π

2 and
π
2 + γ + ρ > π, ∀ρ ∈ {π

2 , α, β, γ, δ}; for instance, tile 7
is a consequence of these conditions). We have
necessarily γ = π

3 , and so k = 1, α = π
4 , δ = arccot

√
2

and β = π
2 − δ = arctan

√
2.

Now, θ2 = α or θ2 = β. In the first case, the last
configuration extends in a unique way to the one illustrated
in Figure 49. At vertex v we reach a contradiction, as, due
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Fig. 49 Local configuration

to the edge lengths, there is no way to satisfy the angle-
folding relation around this vertex.

The second case gives rise to a single f-tiling whose
planar representation is illustrated in Figure 50(a). We
denote such f-tiling by Ū . The corresponding 3D
representation is given in Figure 50(b).

2. Suppose now that θ1 = γ (Figure 51(a)). We have
(θ2, θ3) = (γ, δ) or (θ2, θ3) = (δ, γ).
2.1 Consider that (θ2, θ3) = (γ, δ). We separate the
subcases γ > δ and γ < δ.
2.1.1 If (θ2, θ3) = (γ, δ) and γ > δ, then at vertex v1 we
must have π

2 + γ + kα = π, k ≥ 1, and consequently
β > γ > δ > α, γ + γ + β = π and k = 1 (taking into
account the edge lengths and the fact that γ+γ+β+ρ > π,
∀ρ ∈ {α, β, γ, δ, π

2 }). As sinα = sinβ sin γ, we obtain
γ = π

2 , γ = π
4 or γ = 3π

4 , which is not possible (note that
γ = π

4 implies β = π
2 ).

2.1.2 If (θ2, θ3) = (γ, δ) and γ < δ, then at vertex v2 we
have necessarily π

2 +δ+kα = π, k ≥ 1, and consequently
β > δ > γ > α. Observing Figure 51(b), we have θ4 =
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Fig. 50 f-tiling Ū
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Fig. 51 Local configurations

β or θ5 = β. In both cases we reach a contradiction, as
π
2 + β + ρ > π, ∀ρ ∈ {α, β, γ, δ, π

2 }.

2.2 Consider now that (θ2, θ3) = (δ, γ). As in the previous
case, we separate the subcases γ > δ and γ < δ.
2.2.1 If (θ2, θ3) = (δ, γ) and γ > δ, then at vertex v2 we
must have π

2 + γ + kα = π = δ + γ + kα, k ≥ 1, which
implies δ = π

2 , which is not possible.
2.2.2 If (θ2, θ3) = (δ, γ) and γ < δ, then at vertex v1
we have necessarily π

2 + δ + kα = π, with k ≥ 1, which
implies β > δ > γ > α. Therefore k = 1 and π

2 +δ+α =
π = β + δ + γ. Solving the system

cosβ = cosα cos δ

sinα = sinβ sin γ

cosα sin δ = cos γ sinβ

,

we obtain δ = π
2 or γ = π

2 , that is not possible. �

3 Summary

In Table 1 is shown a list of the spherical dihedral f-tilings
whose prototiles are spherical right triangles (with two
pairs of congruent sides in two cases of adjacency), T1

and T2, of internal angles π
2 , α, β, and π

2 , γ, δ,
respectively. Our notation is as follows:r βk

0 = arccos
√

cos π
k , k ≥ 3; α1 = β1 = arctan

√
2;

αk
0 and δk0 are the solutions of system (3), with k ≥ 3,

β = π
k and γ = π−α−δ; α0 is the solution of system

(3), with β = π−α
3 and γ = π − 2α.r |V | is the number of distinct classes of congruent

vertices;r N1 and N2 are, respectively, the number of triangles
congruent to T1 and T2, respectively, used in the
dihedral f-tilings.

f-tiling α β γ δ |V | N1 N2

Pα
j(k1,k2)

(
0, π

2

)
π
2

π−k1α
k2

π
2

4k1 4k2

k1, k2 ≥ 1 α ̸= γ

P̄α
j̄
(k̄1,k̄2)

(
0, π

2

)
π
2

π−2k̄1α

2k̄2

π
2

8k̄1 8k̄2

k̄1, k̄2 ≥ 1 α ̸= γ

S π
2

π
4

π
4

π
3

5 8 24

T π
2

π
4

π
4

π
3

5 12 12

Rk , k ≥ 3 π
2

βk
0

π
2

− β π
k

3 4k 4k

Vk , k ≥ 3 αk
0

π
k

π − δ − α δk0 3 4k 4k

Z α0
π−α

3
π − 2α π

4
4 48 16

L π − 2β β1 β π
3

5 12 12

U α1
π
4

π
2

− α π
3

5 48 48

Ū π
4

β1
π
3

π
2

− β 5 48 48

Table 1 Combinatorial structure of dihedral f–tilings of S2 by
right triangles
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