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Abstract: In this work, the Peyrard-Bishop DNA dynamic model is being investigated through three analytical and numerical

techniques. The Kudryashov method and modified Kudryashov method for analytical solutions as well as the B-spline method for

numerical verification are those methods that are utilized for solving the presented problem. The results obtained from these techniques

are then compared through tables and an excellent agreement between them is noticed. We give some figures to show how accurate the

solutions will be obtained from analytical and numerical methods. These methods have the advantages of providing accurate results

besides being straightforward and docent requiring any complex computations.
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1 Introduction

Over the past few years, the search for finding
approximate solutions using analytical or numerical
methods for different mathematical models is an ongoing
process. The importance of finding these solutions comes
from the fact that these different forms of solutions may
contribute greatly to better understanding the behavior of
various natural phenomena. This natural phenomenon
may occur in different areas of science, engineering,
biology, chemistry, and physics. Recently, different
effective techniques have been utilized to simulate some
of these models with applications. For example, Adel et.
al adapted a collocation based numerical method for
solving Lienard’s equation [1], CD4+T cell model [2],
Lane-Emden equation [3], Hunter Saxton equation [4],
fractional foam drainage equation [5] and Ambartsumian
equation [6]. Other researchers recently described
real-life phenomena through some numerical and
analytical techniques. These studied can be found
in [7–13].

In this paper, we are interested in obtaining a solitary
wave solution to a famous biological model named the
Peyrard-Bishop which has an important application in

DNA flow [14]. The novelty of this paper lies in finding
an approximate solution to the previously mentioned
model using two different techniques. The first technique
depends on acquiring the analytical solution while the
other technique is a numerical-based technique to confirm
the obtained results. A convergence between the
analytical and numerical solutions can be confirmed by
comparing the results through absolute error. This model
was first introduced by Peyrard-Bishop in [15] and this
was the motivation for beginning this continuous work.

To explore the behavior of this model, Peyrard and
Bishop in [15] investigated the statistical mechanics of
the nonlinear DNA denaturation model and the possibility
of the appearance of the solitonic structure. Also, in [16],
Abazari et. al formulated a new model to simulate the
vibrational dynamics and solitary wave solution of this
model. Dusuel et. al in [17], and Alverez et. al [18], both
provided a detailed connection in the continuum limit,
between the nonlinear terms with no power and the
scattering within the DNA energetic.

There have been many analytical methods that can
deal with such models and among these models are the
Kudryashov and the modified Kudryashov methods. This
method has been used ever since for solving different
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forms of biological models as well as models with great
engineering applications. For example, the Kudryashov
method has been used for finding the exact solutions to
high order nonlinear evolution equation [19],
time-fractional differential equations [20], nonlinear
conformable time-fractional Boussinesq equations [21], a
system of some nonlinear evolution equations [22],
time-fractional Burger type equation [23]and other related
models. These methods prove to be reliable methods of
providing accurate solitons solutions with some important
physical behaviors. Also, for the purpose of numerical
verification, the B-spline method uses different bases
considered as a benchmark method for solving such
equations. The method has been tested on different
problems including Newell Whitehead Segel type
equations [24], Gardner and Harry Dym equation [25],
Jaulent–Miodek coupled equations [26]and PHI-four and
Allen–Cahn equations [27]. Due to the above-mentioned
reasons, we choose these two methods for solving the
Peyrard-Bishop model.

The organization of the paper is as follows: in section
2, a short presentation of the model under study is
analyzed. Section 3 illustrates the main steps of the
proposed analytical technique for solving the given
problem. In section 4, the Cubic B-spline method is
utilized for solving the model problem. In section 5, the
results obtained using the two methods are presented in
tables and figures and compared to each other. Finally, the
last section is devoted to the conclusion of the study.

2 Model Formulation

In this section, we shall introduce and analyze the DNA
dynamic model of the Peyrard-Bishop type. First, the
main structure for a molecule of a DNA model is to be of
a form of the double helix and this means that it mainly
consists of double polymeric chains which are wrapped
around each other [28]. The Watson Crick model is a
form of these double helix models that describes the basic
formation of the DNA of B-shaped type which may
contain a double chain. The masses of these molecules
are not different since they are formed from some
homogenous structure and the bond between the
hydrogen toms is weak while the longitudinal length is
strong [29]. The main equation for the prescribed model
is in the form

Fm( fn − gn) = D[e−a( fn−gn)− 1]2, (1)

in which fn and gn are the displacements of the
nucleotides. In addition, Zdravkovíc described the
Hamiltonian for DNA’s chain in [29]. Also, Dauxois [30]
provided a modification to the known Peyrard Bishop
model taking into account other several factors. The
Hamiltonian for the system can take the following

form [31]

G( f ) =
1

2m
q2

n +
k1

2
∆ 2 fn +

k2

4
∆ 4 fn + δ (e−a

√
2 fn)2

,

∆ fn = fn+1 − fn.

(2)

where k1 and k2 represent the couplings of the both
linear and nonlinear and qn = m f .n defined as the
momentum of the displacement. The equation of motion
(2) can be in the form

ftt − (l1 + 3l2 fxx)− 2
√

2aDe−a f (e−a f − 1) = 0, (3)

with l1 =
k1
m

d2
, l2 =

k2
m

d4
,D= δ

m
,α ≡

√
2a and being d the

inter-site nucleotide distance in the DNA ladder [32–34].
In this paper, consider the Peyrard-Bishop DNA dynamic
model equation as follows

ftt − (l1 + 3l2 f 2
x ) fxx − 2αωe−α f (e−α f − 1) = 0, (4)

where l1, l2,α and ω = D are constants. Next, we shall
investigate the analytical solution for the main equation
using the Kudryashov and the modified Kudryashov
methods.

3 Analytical solutions

In this section, we give a detailed view of the Kudryashov
and the modified Kudryashov methods are used to find the
solution of the model in (1). First, we begin with the first
method next.

3.1 The Kudryashov method

The partial differential equation (4) with the following
transformation:

f (x, t) = h(ξ ), ξ = x−β t, (5)

which can be reduced into the following

β 2h′′− (l1 + 3l2h′2)h′′− 2αΩe−αh(e−αh − 1) = 0. (6)

The next step is to multiply the (6) by the value of h′ and
then apply integration to ξ once, the we reach the
following

(β 2 − l1)

2
(h′)2 −

3

4
l2(h

′)4 +Ωe−αh(e−αh − 2)+R= 0,

(7)
Then, by assuming the following

φ(ξ ) = e−αh(ξ )
, (8)
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Then, by substituting (8) into (7), we get the following
form of nonlinear equation:

(β 2 − l1)

2α2
φ2(φ ′)2 −

3

4α4
l2(φ

′)4 +Ωφ5(φ −2)+Rφ4 = 0,

(9)
Now, we can express for the Kudryashov method in a finite
series as follows:

φ(ξ ) = A0 +
N

∑
i=1

AiΩ
i(ξ ), (10)

where, A0,A1,A2, ..., AN are constants and N is a positive
integer that can be determined by using homogeneous
balancing method. The function Ω(ξ ) can be expressed
in this form:

Ω(ξ ) =
1

1+ deξ
, (11)

where (11) achieve the ordinary differential equation

Ω ′(ξ ) = Ω(ξ )(Ω(ξ )− 1). (12)

We can compensate by (10) with some derivatives that we
need into (9) then, we get from that of a polynomial as a
function in Ω(ξ )

P(Ω(ξ )) = 0. (13)

Thus equating the coefficient of each power of Ω(ξ ) in
the above equation to zero gives a set of nonlinear
algebraic equations with the aid of symbolic computation
using Mathematica which will be used to yield the exact
solutions for (9).
Now, if we make balancing between φ6, φ2(φ ′)2 and
(φ ′)4 in (9) and take the high balance we get
6N = 4N + 4, thus N = 2.
This gives a truncated form of Eq. (10) as

φ(ξ ) = A0 +A1Ω(ξ )+A2Ω 2(ξ ). (14)

Finally, by replacing the terms of (14) into (9), we get the
following:

ωA6
0 − 2ωA5

0+RA4
0 = 0,

6ωA1A5
0 − 10ωA1A4

0 + 4RA1A3
0 = 0,

6ωA2A5
0 + 15ωA2

1A4
0 − 10ωA2A4

0 − 20ωA2
1A3

0

+ 4RA2A3
0 +

β 2A2
1A2

0

2α2
+ 6RA2

1A2
0 −

A2
1l1A2

0

2α2
= 0,

30ωA1A2A4
0 + 20ωA3

1A3
0 − 40ωA1A2A3

0 − 20ωA3
1A2

0

+
2β 2A1A2A2

0

α2
+ 12RA1A2A2

0 +
A2

1l1A2
0

α2

−
β 2A2

1A2
0

α2
−

2A1A2l1A2
0

α2
+

β 2A3
1A0

α2

+ 4RA3
1A0 −

A3
1l1A0

α2
= 0,

15ωA2
2A4

0 − 20ωA2
2A3

0 + 60ωA2
1A2A3

0 + 15ωA4
1A2

0

+
β 2A2

1A2
0

2α2
+

2β 2A2
2A2

0

α2
+ 6RA2

2A2
0 − 60ωA2

1A2A2
0

+
4A1A2l1A2

0

α2
−

4β 2A1A2A2
0

α2
−

2A2
2l1A2

0

α2

−
A2

1l1A2
0

2α2
− 10ωA4

1A0 +
5β 2A2

1A2A0

α2
+ 12RA2

1A2A0

+
2A3

1l1A0

α2
−

2β 2A3
1A0

α2
−

5A2
1A2l1A0

α2

+
β 2A4

1

2α2
+RA4

1 −
A4

1l1

2α2
−

3A4
1l2

4α4
= 0,

− 2ΩA5
1 + 6ΩA0A5

1 +
l1A4

1

α2
+

3l2A4
1

α4
−

β 2A4
1

α2

+
β 2A0A3

1

α2
+

3β 2A2A3
1

α2
+ 60ΩA2

0A2A3
1 + 4RA2A3

1

− 40ΩA0A2A3
1 −

A0l1A3
1

α2
−

3A2l1A3
1

α2

−
6A2l2A3

1

α4
+

10A0A2l1A2
1

α2
−

10β 2A0A2A2
1

α2

+ 60ωA3
0A2

2A1 − 60ΩA2
0A2

2A1 +
8β 2A0A2

2A1

α2

+ 12RA0A2
2A1 +

2β 2A2
0A2A1

α2
−

8A0A2
2l1A1

α2

−
2A2

0A2l1A1

α2
+

4A2
0A2

2l1

α2
−

4β 2A2
0A2

2

α2
= 0,

ωA6
1 +

β 2A4
1

2α2
− 10ωA2A4

1 + 30ωA0A2A4
1

−
l1A4

1

2α2
−

9l2A4
1

2α4
+

6A2l1A3
1

α2

+
24A2l2A3

1

α4
−

6β 2A2A3
1

α2

+
13β 2A2

2A2
1

2α2
+ 90ωA2

0A2
2A2

1 + 6RA2
2A2

1

− 60ωA0A2
2A2

1 +
5β 2A0A2A2

1

α2
−

5A0A2l1A2
1

α2

−
13A2

2l1A2
1

2α2
−

18A2
2l2A2

1

α4
+

16A0A2
2l1A1

α2

−
16β 2A0A2

2A1

α2
+ 20ωA3

0A3
2 − 20ωA2

0A3
2

+
4β 2A0A3

2

α2
+ 4RA0A3

2 +
2β 2A2

0A2
2

α2

−
4A0A3

2l1

α2
−

2A2
0A2

2l1

α2
= 0,

6ωA2A5
1 +

3l2A4
1

α4
− 20ωA2

2A3
1 + 60ωA0A2

2A3
1

+
3β 2A2A3

1

α2
−

3A2l1A3
1

α2
−

36A2l2A3
1

α4

+
13A2

2l1A2
1

α2
+

72A2
2l2A2

1

α4
−

13β 2A2
2A2

1

α2

+
6β 2A3

2A1

α2
+ 60ωA2

0A3
2A1 + 4RA3

2A1 − 40ωA0A3
2A1
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+
8β 2A0A2

2A1

α2
−

6A3
2l1A1

α2
−

8A0A2
2l1A1

α2

−
24A3

2l2A1

α4
+

8A0A3
2l1

α2
−

8β 2A0A3
2

α2
= 0,

15ωA2
2A4

1 −
3l2A4

1

4α4
+

24A2l2A3
1

α4

− 20ωA3
2A2

1 + 60ωA0A3
2A2

1 +
13β 2A2

2A2
1

2α2

−
13A2

2l1A2
1

2α2
−

108A2
2l2A2

1

α4
+

12A3
2l1A1

α2

+
96A3

2l2A1

α4
−

12β 2A3
2A1

α2
+

2β 2A4
2

α2

+ 15ωA2
0A4

2 +RA4
2 − 10ωA0A4

2 +
4β 2A0A3

2

α2

−
2A4

2l1

α2
−

4A0A3
2l1

α2
−

12A4
2l2

α4
= 0,

− 10ωA1A4
2 + 30ωA0A1A4

2 +
4l1A4

2

α2
+

48l2A4
2

α4

−
4β 2A4

2

α2
+ 20ωA3

1A3
2 +

6β 2A1A3
2

α2
−

6A1l1A3
2

α2

−
144A1l2A3

2

α4
+

72A2
1l2A2

2

α4
−

6A3
1l2A2

α4
= 0,

2ωA5
2 + 6ωA0A5

2 +
2β 2A4

2

α2
+ 15ωA2

1A4
2

−
2l1A4

2

α2
−

72l2A4
2

α4
+

96A1l2A3
2

α4
−

18A2
1l2A2

2

α4
= 0,

6ωA1A5
2 +

48l2A4
2

α4
−

24A1l2A3
2

α4
= 0,

ωA6
2 −

12A4
2l2

α4
= 0.

(15)

Thus, solving the above system gives
Case 1:

A0 = 0, A1 =−
2
√

3
√

l2

α2
√

ω
, A2 =

2
√

3
√

l2

α2
√

ω
,

β =∓

√

2
√

3α2
√

l2
√

ω +α2l1 + 3l2

α
,

R =
−4

√
3α2

√
l2
√

ω − 3l2

4α4
.

By using (5), (8), (11) and (14) yields the solution in the
form of a bright soliton solution for (4)

f1,2(x, t) =−
1

α
ln

(

−
2
√

3
√

l2

α2
√

ω(1+ de(x−β t))

+
2
√

3
√

l2

α2
√

ω(1+ de(x−β t))2

)

.

(16)

Case 2:

A0 = 0, A1 =
2
√

3
√

l2

α2
√

ω
, A2 =−

2
√

3
√

l2

α2
√

ω
,

β =∓

√

−2
√

3α2
√

l2
√

Ω +α2l1 + 3l2

α
,

R =
4
√

3α2
√

l2
√

ω − 3l2

4α4
.

By using (5), (8), (11) and (14) yields the following bright
soliton solution for (4)

f3,4(x, t) =−
1

α
ln

(

2
√

3
√

l2

α2
√

ω(1+ de(x−β t))

−
2
√

3
√

l2

α2
√

ω(1+ de(x−β t))2

)

.

(17)

3.2 The modified Kudryashov method

We illustrate the modified Kudryashov method in this
section by suppose a solution of (9) given in a series take
shape

φ(ξ ) =
N

∑
n=0

AnQn(ξ ), (18)

where, A0,A1,A2, ...,AN are constants aht need to be
calculated and N is a whole number to be obtained, while
Q(ξ ) is

Q(ξ ) =
1

1+ bmξ
, (19)

which accept the below differential equation:

Q′(ξ ) = (Q2(ξ )−Q(ξ ))ln(m). (20)

Putting (18) and its possible derivatives like:

φ ′(ξ ) =
N

∑
n=0

AnnQn(Q− 1)ln(m),

φ ′′(ξ ) =
N

∑
n=0

AnnQn(Q− 1)((1+ n)(Q− n)ln(m))2
,

(21)

in (9) yields a polynomial in Q(ξ );

P(Q(ξ )) = 0. (22)

Thus equating the coefficient of each power of Q(ξ ) in the
above equation to zero gives a set of nonlinear algebraic
equations which will be used to yield the exact solutions
for (9). This offers a truncated series form (18) of the form

φ(ξ ) = A0 +A1Q(ξ )+A2Q2(ξ ). (23)

Then, substituting (23) into (9), we get the following
system of algebraic equations:

A4
0R+A6

0ω − 2A5
0ω = 0,

4A1A3
0R+ 6A1A5

0ω − 10A1A4
0ω = 0,

−
A2

1A2
0l1 log2(m)

2α2
+

A2
1A2

0β 2 log2(m)

2α2
+4A2A3

0R+6A2
1A2

0R
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+6A2A5
0ω + 15A2

1A4
0ω − 10A2A4

0ω − 20A2
1A3

0ω = 0,

A2
1A2

0l1 log2(m)

α2
−

2A1A2A2
0l1 log2(m)

α2

−
A3

1A0l1 log2(m)

α2
+

2A1A2A2
0β 2 log2(m)

α2

−
A2

1A2
0β 2 log2(m)

α2
+

A3
1A0β 2 log2(m)

α2
+ 12A1A2A2

0R

+4A3
1A0R+ 30A1A2A4

0ω

+20A3
1A3

0ω − 40A1A2A3
0ω − 20A3

1A2
0ω = 0,

4A1A2A2
0l1 log2(m)

α2
−

2A2
2A2

0l1 log2(m)

α2

−
A2

1A2
0l1 log2(m)

2α2
+

2A3
1A0l1 log2(m)

α2

−
5A2

1A2A0l1 log2(m)

α2
−

A4
1l1 log2(m)

2α2

−
3A4

1l2 log4(m)

4α4
+

A2
1A2

0β 2 log2(m)

2α2

+
2A2

2A2
0β 2 log2(m)

α2
−

4A1A2A2
0β 2 log2(m)

α2

+
5A2

1A2A0β 2 log2(m)

α2
−

2A3
1A0β 2 log2(m)

α2

+
A4

1β 2 log2(m)

2α2
+ 6A2

2A2
0R+ 12A2

1A2A0R+A4
1R

+15A2
2A4

0ω − 20A2
2A3

0ω + 60A2
1A2A3

0ω

+15A4
1A2

0ω − 60A2
1A2A2

0ω − 10A4
1A0ω = 0,

A4
1l1 log2(m)

α2
+

3A4
1l2 log4(m)

α4
−

A0A3
1l1 log2(m)

α2

−
3A2A3

1l1 log2(m)

α2
−

6A2A3
1l2 log4(m)

α4

+
10A0A2A2

1l1 log2(m)

α2
−

8A0A2
2A1l1 log2(m)

α2

−
2A2

0A2A1l1 log2(m)

α2
+

4A2
0A2

2l1 log2(m)

α2

−
A4

1β 2 log2(m)

α2
+

A0A3
1β 2 log2(m)

α2

+
3A2A3

1β 2 log2(m)

α2
−

10A0A2A2
1β 2 log2(m)

α2

+
8A0A2

2A1β 2 log2(m)

α2
+

2A2
0A2A1β 2 log2(m)

α2

−
4A2

0A2
2β 2 log2(m)

α2
+ 4A2A3

1R

+12A0A2
2A1R− 2A5

1ω + 6A0A5
1ω

+60A2
0A2A3

1ω − 40A0A2A3
1ω

+60A3
0A2

2A1ω − 60A2
0A2

2A1ω = 0,

−
A4

1l1 log2(m)

2α2
−

9A4
1l2 log4(m)

2α4

+
6A2A3

1l1 log2(m)

α2
+

24A2A3
1l2 log4(m)

α4

−
5A0A2A2

1l1 log2(m)

α2
−

13A2
2A2

1l1 log2(m)

2α2

−
18A2

2A2
1l2 log4(m)

α4
+

16A0A2
2A1l1 log2(m)

α2

−
4A0A3

2l1 log2(m)

α2
−

2A2
0A2

2l1 log2(m)

α2

+
A4

1β 2 log2(m)

2α2
−

6A2A3
1β 2 log2(m)

α2

+
13A2

2A2
1β 2 log2(m)

2α2
+

5A0A2A2
1β 2 log2(m)

α2

−
16A0A2

2A1β 2 log2(m)

α2
+

4A0A3
2β 2 log2(m)

α2

+
2A2

0A2
2β 2 log2(m)

α2
+ 6A2

2A2
1R+ 4A0A3

2R

+A6
1ω − 10A2A4

1ω + 30A0A2A4
1ω + 90A2

0A2
2A2

1ω

−60A0A2
2A2

1ω + 20A3
0A3

2ω − 20A2
0A3

2ω = 0,

3A4
1l2 log4(m)

α4
−

3A2A3
1l1 log2(m)

α2

−
36A2A3

1l2 log4(m)

α4
+

13A2
2A2

1l1 log2(m)

α2

+
72A2

2A2
1l2 log4(m)

α4
−

6A3
2A1l1 log2(m)

α2

−
8A0A2

2A1l1 log2(m)

α2
−

24A3
2A1l2 log4(m)

α4

+
8A0A3

2l1 log2(m)

α2
+

3A2A3
1β 2 log2(m)

α2

−
13A2

2A2
1β 2 log2(m)

α2
+

6A3
2A1β 2 log2(m)

α2

+
8A0A2

2A1β 2 log2(m)

α2
−

8A0A3
2β 2 log2(m)

α2

+4A3
2A1R+ 6A2A5

1ω − 20A2
2A3

1ω + 60A0A2
2A3

1ω

+60A2
0A3

2A1ω − 40A0A3
2A1ω = 0,

96A1A3
2l2 log4(m)

α4
+

24A3
1A2l2 log4(m)

α4

−
12A4

2l2 log4(m)

α4
−

108A2
1A2

2l2 log4(m)

α4

−
3A4

1l2 log4(m)

4α4
+

12A1A3
2l1 log2(m)

α2
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−
2A4

2l1 log2(m)

α2
−

4A0A3
2l1 log2(m)

α2

−
13A2

1A2
2l1 log2(m)

2α2
+

2A4
2β 2 log2(m)

α2

+
4A0A3

2β 2 log2(m)

α2
+

13A2
1A2

2β 2 log2(m)

2α2

−
12A1A3

2β 2 log2(m)

α2
+A4

2R+ 15A2
0A4

2ω − 10A0A4
2ω

−20A2
1A3

2ω + 60A0A2
1A3

2ω + 15A4
1A2

2ω = 0,

48A4
2l2 log4(m)

α4
+

72A2
1A2

2l2 log4(m)

α4

−
144A1A3

2l2 log4(m)

α4
−

6A3
1A2l2 log4(m)

α4

+
4A4

2l1 log2(m)

α2
−

6A1A3
2l1 log2(m)

α2

+
6A1A3

2β 2 log2(m)

α2
−

4A4
2β 2 log2(m)

α2

−10A1A4
2ω + 30A0A1A4

2ω + 20A3
1A3

2ω = 0,

−
2A4

2l1 log2(m)

α2
−

72A4
2l2 log4(m)

α4

+
96A1A3

2l2 log4(m)

α4
−

18A2
1A2

2l2 log4(m)

α4

+
2A4

2β 2 log2(m)

α2
− 2A5

2ω

+6A0A5
2ω + 15A2

1A4
2ω = 0,

48A4
2l2 log4(m)

α4
−

24A1A3
2l2 log4(m)

α4

+6A1A5
2ω = 0,

A6
2ω −

12A4
2l2 log4(m)

α4
= 0.

Thus, by solving the given system will result in
Case 1:

A0 = 0, A1 =−
2
√

3
√

l2 log2(m)

α2
√

ω
,

A2 =
2
√

3
√

l2 log2(m)

α2
√

ω

β =∓

√

2
√

3α2
√

l2
√

ω +α2l1 + 3l2 log2(m)

α
,

R =
−4

√
3α2

√
l2
√

ω log2(m)− 3l2 log4(m)

4α4
.

By using (5), (8), (19) and (23) yields the following bright
soliton solution for (4)

f1,2(x, t) =−
1

α
ln

(

−
2
√

3
√

l2 log2(m)

α2
√

ω(1+ bm(x−β t))

+
2
√

3
√

l2 log2(m)

α2
√

ω(1+ bm(x−β t))2

)

.

(24)

Case 2:

A0 = 0, A1 =
2
√

3
√

l2 log2(m)

α2
√

ω
,

A2 =−
2
√

3
√

l2 log2(m)

α2
√

ω

β =∓

√

2
√

3α2
√

l2
√

ω +α2l1 + 3l2 log2(m)

α
,

R =
4
√

3α2
√

l2
√

ω log2(m)− 3l2 log4(m)

4α4
.

By using (5), (8), (19) and (23) yields the following bright
soliton solution for (4)

f3,4(x, t) =−
1

α
ln

(

2
√

3
√

l2 log2(m)

α2
√

ω(1+ bm(x−β t))

−
2
√

3
√

l2 log2(m)

α2
√

ω(1+ bm(x−β t))2

)

.

(25)

Next, we shall verify the obtained solution in the previous
sections using a numerical method based on cubic B-spline
technique.

4 Cubic B-spline collocation method

In this section, we shall verify the results obtained in the
last section using the cubic B-spline method. First, we
approximate the variables of the space an time which are
x and t with their derivatives as in [?]. Next, assuming
that the value of the function f (x, t) which is the exact
solution of the model at the points on the grid (xi, t j) and
fi, j to be the same as the approximate solution at these
points. The required values of fi and its first and the
second derivatives, f ′i and f ′′i , at nodal points xi are
identified in terms of ci as

fi, j = ci, j1 + 4ci, j + ci, j−1,

fx = f ′i, j =
3

h
(ci+1, j − ci−1, j),

fxx = f ′′i, j =
6

h2
(ci, j−1 + ci, j+1 − 2ci, j),

(26)

and if the time derivative is discretized using finite
differences, we have where

ftt =
ci, j−1 + ci, j+1 − 2ci, j

k2
. (27)
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Substituting (26) into (4) a we get

ci, j−1 + ci, j+1 − 2ci, j

k2
− (l1 + 3l2(

3

h
(ci+1, j − ci−1, j))

2)

(28)

Now we can be solved the (28) by many methods.

4.1 Numerical Simulation

Now, we shall introduce the results obtained using the
previous illustrated technique for solving the model (1). A
comparison is made in Table. 1 in the form of absolute
error between the obtained numerical results and the
results in (16) at α = 1,Ω = 0.1, l2 = 0.01, l1 = 0.1,
t = 1,k = 0.01,h = 0.1,d = 1. Figure 5 illustrate the
behavior of the solutions obtained by the numerical
solutions for (4) at α = 1,Ω = 0.1, l2 = 0.01,
l1 = 0.1,d = 1.

Table 1: A comparison between the exact and numerical

solutions along with the absolute error.

x Numerical solution Exact solution Absolute error

-5 5.44008 5.44008 8.94098 E-7

-2 3.62989 3.62989 3.12923 E-6

-1 3.42318 3.42318 4.82165 E-6

0 3.42113 3.42112 9.77842 E-6

1 3.62319 3.62319 1.48434 E-6

5 6.25290 6.25290 6.63292 E-7

In Table 2 we introduce a comparison of the results of the
numerical technique and solution in (17) at α = 1,Ω =
0.1, l2 = 0.01, l1 = 0.1, t = 1,k= 0.01,h= 0.1,d = 1. Also,
in Fig. 6 the numerical and analytical behaviour of Eq. (4)
for α = 1,Ω = 0.1, l2 = 0.01, l1 = 0.1,d = 1. is introduced.

Table 2: A comparison between the exact and numerical

solutions along with the absolute error.

x Numerical solution Exact solution Absolute error

-5 5.06351 5.06351 7.31236 E-7

-2 2.27369 2.27369 3.79312 E-6

-1 1.60539 1.60539 2.62002 E-6

0 1.30025 1.30024 1.01515 E-5

1 1.47338 1.47338 3.62099 E-6

5 4.78129 4.78129 7.97996 E-7

In addition, in Table 3 a comparison between the numerical
and analytical results for Eq. (24) at α = 1,Ω = 0.1, l2 =
0.01, l1 = 0.1, t = 1,k = 0.01,h = 0.1,b = 1,m = 0.1 is
presented. In Figure 7 we introduce the absolute value of
analytical and the absolute value of numerical solutions
for (4) at α = 1,Ω = 0.1, l2 = 0.01, l1 = 0.1,b = 1,m =
0.1. It can be seen form these tables and figures that our
two proposed techniques are in good agreement with each
other and produce accurate results.

Table 3: Comparison between numerical results and analytical

solution

x Numerical solution Exact solution Absolute error

-5 8.92689 8.92689 1.48864 E-7

-2 3.49315 3.49318 8.73023 E-5

-1 3.14647 3.14646 1.04599 E-4

0 3.14263 3.14262 1.93872 E-4

1 3.71882 3.71889 1.67069 E-4

5 11.5857 11.5857 6.41029 E-8

In Table 4 we introduce comparison between the
numerical results with the analytical solution (25) at
α = 1,Ω = 0.1, l2 = 0.01, l1 = 0.1, t = 1,k = 0.01,
h = 0.1,b = 1,m = 0.1. In Figure 2 we introduce
analytical and numerical solutions for (4) at α = 1,Ω
= 0.1, l2 = 0.01, l1 = 0.1,b = 1,m = 0.1.

Table 4: Comparison between the numerical results with the

analytical solution

x Numerical solution Exact solution Absolute error

-5 8.86341 8.86341 1.23149 E-7

-2 2.00367 2.00374 7.52585 E-5

-1 0.08889 0.08903 1.44369 E-4

0 0.18073 0.18097 2.37149 E-4

1 1.51398 1.51416 1.75912 E-4

5 10.6439 10.6439 7.18443 E-8

5 Graphical results and discussion

Now that we have completed the analytical and numerical
calculations of the model under study using the analytical
and numerical methods described above. Next, in this
section we shall provide a graphical representation of the
obtained solutions through the two proposed techniques.
It is clear from the presented Figures 1-8 that the provided
solutions are accurate for various values of the
parameters.
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Fig. 1: Analytical solution (16) at α = 1,Ω = 0.1, l2 = 0.01, l1 =
0.1,d = 1.
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Fig. 2: Graphical representation of (17) at α = 1,Ω = 0.1, l2 =
0.01, l1 = 0.1,d = 1
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Fig. 3: Graphical representation of (24) at α = 1,Ω = 0.1, l2 =
0.01, l1 = 0.1,m = 0.1,b = 1.
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Fig. 4: Graphical representation of (25) at α = 1,Ω = 0.1, l2 =
0.01, l1 = 0.1,m = 0.1,b = 1
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Fig. 5: Analytical and numerical solutions for (4) at α = 1,Ω =
0.1, l2 = 0.01, l1 = 0.1,d = 1.
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Fig. 6: Analytical and numerical solutions for (4) at α = 1,Ω =
0.1, l2 = 0.01, l1 = 0.1,d = 1
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Fig. 7: Analytical and numerical solutions for (4) at α = 1,Ω =
0.1, l2 = 0.01, l1 = 0.1,m = 0.1,b = 1.
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Fig. 8: Analytical and numerical solutions for (4) at α = 1,Ω =
0.1, l2 = 0.01, l1 = 0.1,m = 0.1,b = 1.

6 Conclusion

In this paper, we have investigated the solution of the
Peyrard-Bishop DNA dynamic model equation using two
proposed techniques named the kudryashov, modified
kudryashov methods, and B-spline collocation technique.
The kudryashov method and its modified form are then
used to find an analytical solution to the problem. The
B-spline technique is also been used to solve the same
problem numerically to verify the results obtained
analytically by the other two methods. Various solutions
to the equation have been realized in this study and a
comparison is made between the obtained solutions. A
graphical behavior of the obtained solutions is being
introduced through tables and figures. These methods
proved to be reliable, accurate, efficient, and versatile in
mathematical physics for solving similar problems. It is
interesting in the future to investigate the application of
these techniques for solving other NLEEs with more
complex structures.
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