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Abstract: In this paper, we give a complete picture of the boundedness and compactness of the product operator Ty, y, ¢ from H* to
Zygmund spaces. Specifically, we give the necessary and sufficient conditions for the product operator Ty y, ¢ from H™ to Zygmund

spaces to be bounded and compact.
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1 Introduction

The open unit disk D = {z € C: |z] < 1}, where C is the
complex plane.
Let H(ID) be the space of all analytic functions in .
The space H™ denotes the space of all analytic
functions f on the unit disk ID such that

|1fl|= = sup| f(z)] < eo. q))
zeD

The Bloch space 4 is defined as
[If1l = sup(v(2)If'(2)] < o=
zeD

By the Zygmund theorem and the closed graph
theorem (see [1], Theorem 5.3), we see that f € 2 if and
only if

sup(v(2))[f" (2)] < ee.

zeD

Under the norm

Ifllz = IF(O)]+1£'(0)] +52£V(Z)If”(2)l, 2

Z is a Banach space. This space is called a Zygmund-type
space when v(z) = 1 — |z|*. Zygmund-type spaces on the
unit disk have been well studied [2-5].

Li and Stevi¢ introduced a small Zygmund space 29
[6] in the following way:

feZe lim v(Z)|f"(z)| =0.

|z]—1

For any analytic self-mapping ¢ of D, the linear

composition operator Cy (f) := fo ¢ = f(¢(z)) [7].
The composition operator has been extensively studied in
Banach spaces of analytic functions [8—14]

For ¥, f € H(D), let the multiplication operator My be
defined as follows:

My (z) = y(2).f(2)-

The differentiation operator D is defined as

Df(z) = f (2).

The products of composition and differentiation operators
DCy and Cyp D are defined, respectively as follows :
are defined, respectively, as follows:

DCsf(z) = f (9(2)).0'(z), feHD)
CoDf(z) = (f ©9)(z), feH(D).

The product of the differentiation and multiplication
operators, denoted by DMy, is defined as

DMy f(z) = ¥'(2).f(2) + ¥(2)-f'(2), fe€H(D).
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The weighted composition operator is

Wy o f(2) = (WCo)f(2) = ¥(2)f(9(2)), [feHD).

For ¥, € H(D) and ¢ denotes an analytic
self-mapping of ID. The products of the multiplication,
composition, and differentiation operators are defined as
follows:

Ty .0 f(2) = ¥1(2)£(9(2) + B2 (2)f (9(2)), f € H(D)3)

Over the past several years, the operator Ty, y, ¢ has been
studied by many people, and has been a hot topic of
research [15-27] . However, Stevic et al. were the first to
introduce the operator Ty, y, ¢ [23].

The following lemmas can be proven in a standard
manner (see, e.g., Proposition 3.11 in [28]). These
lemmas give the definitions of the boundedness and
compactness of the operators Ty, y, ¢ : H” — 2.

Lemma 1.The operator Ty, y, ¢ : H® — 2 is said to be
bounded if there is a positive constant C such that

T 5.0 f1| 2 < Cl|fl for all f € H.

Lemma 2.The operator Ty, w, ¢ : H® — 2 is said to be
compact if it maps any function in the unit disk in H* onto
a precompact set in Z.

This paper uses the term C to denote a positive constant
that is independent of the essential variables.

2 The boundedness of Ty, y, ¢ : H” — 2

In this section, we characterize the operator

Then (fi)¢ € H” and

40 = (F)E(E) =0, (f)(0) = %
where C; =2a+3b+4c—1+#0;
=2
() = (AL =0, (M) = ﬁ
where Cy = 6a+ 12b+20c —2 # 0;
=3
(R0 = (FO) =0, (1) (€)= 7=
where C3 = 24a+ 60b + 120c — 6 £ 0.
Proof By the triangle inequality, we have
| == IEP)  leli= 1Py
R T~ AN (R 2
|b|<1f|4| P L=
(S )R
(=1¢P)  a(—[gP?
=Toqe s
b= LR e(1= | L P
TTasey T Tasgy

< 2+4|a|+ 8|b| +16|c|.

It is therefore clear that, for all ( fi)C € H*” and

Ty w ¢ : H® — 2. Moreover, we give the conditions that 2‘615 | (fi)g [le< 2+ 4|al +8|b| + 16]c|. %)
prove the boundedness of the operator Ty y, . We
therefore cite the following two necessary lemmas. Then
Lemma 3. [20] Suppose f € H”. Then, for eachn € N, (f)/ (0) = ( —(1-1¢ %) n 2a(1—| ¢ |?)?
i)¢(z =
1—-Cz 1-¢7)3
sup(1- | 2 )" | /7)) | <C | . (=gep (-G
€D 3b(17 ¢ 12)3 +4c(17 |_C| ) Y4 ©)
The next lemma is introduced in [29]. (1- CZ)4 (1-8z)
Lemma 4.Suppose f € B. Then, for eachn € N, B 21— ¢ ) 6a(1—]| ¢ ?)?
(fi)e (@) = ( 0T + 0z
HfH%’”\Z |f |+sup( (2)" |f(n)(z)|- 12b(1—|§|2)3 206(1_|C|2)4 _»
+ = + = )5
: : (1-8z) (1-Ez)°
We now introduce the main boundedness results.
(f')w(Z) — (76(17 | C |2) + 24a(17 | C |2)2
Lemma 5.Suppose a test function in the following form: Ve (1— ZZ)3 (1— ZZ)4
o) — Z0=1EP) a(—|EPY O0B(1= ¢ P | 120e(1—| £ L) o
i = = = — —
: - -Gy (1-Cp (1-Cf
b(1-1¢ |2)3 n c(1-1¢ |2)4 i=1,2,3. (4) We choose the values for the constants a,b,c in (4) such
(=T (-t T
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wheni=1,

40 = () =0, (F)(0) = %
where C; =2a+3b+4c—1#£0;
when i = 2, then
NG
! n n 2
where C; = 6a+ 12b +20c —2 # 0;
and when i = 3, then
! " n C ¢
(R0 = (O =0, (R (€)= =

where C3 = 24a+60b+ 120c — 6 # 0.

Proposition:

Let

A sup Y 2H0'0) + 20" () +#(2) |
1 z€D (]_ | ¢(Z) |2)

» (D

— o Y@ (29" (2) +2¥ ()¢’ (z) + ¥(2)9" (2) |
A2 = (=160 P° ®
and

o YO BE00)|
A= o PP ©

Theorem 1.Let W, ¥ € H(D). Then, the following
statements are equivalent:

(@) Ty, w9 : H® — 2 is a bounded operator,
(b)Y, € &, where Ay, Ay, and A3 are finite.

Proof.(b) = (a). First, assume that ¥] € Z and (7) to (9)
hold. Then, by Lemma 4, we obtain

sup (v(2)) | (T ws.0f) (2) |

zeD

= sup (v(2)) | ' (2) £(9(2)) + ¥/ (2)9" (). (9)

zeD

+ W (2)9' () + ¥1(2)9" () + ' (). (9(2)
+ (H(2) '(Z)+‘Pz( )9’ (2)f"(9(z)

+ ¥ (2)0"(2)f"(9(2)) + ¥a(2)9" (2)f" (9(2))

+ (297 ()" (9(2)) |

= sup (v(2)) | ¥ (2)f(9(2)) + (2% (2)¢' ()

zeD

+W(2)9" () + ¥ (2)f (9(2) + (Hi ()" (2)
+2%5(2)9'(2) + ¥a(2)9" (2)) 1" (9(2))
)" (9(2)
"(@f(9) [+(v(2) | 2% (2)9'(z)
"(2)+¥'(2)f (9(2) |
(¥1(2)9”(2)

'Pz( 2@f"(9() |

+ W(z

()9

< (v(2)
+ Wi(z)¢
(2)

(2)

(2)
P

!
+ (v
+ (v

<
<

|
|
(2)

L [2HQ0Q) + A0+ )
0@ P)
L HE0°0) + 290/ + 920" (2)
(= [0G) PP
[ B(2)02() |
T |¢<>|>]'f'°°
<Cl f - (10)

Moreover, by using Lemma 4, we obtain
| (To.0)(0) [=] ¥1(0) £(¢(0)) +¥4(0) /' (¢(0)) |

8 (0) ]

| (im0 ) (0) = | (H(0)£(6(0)) + %4(0) £ (6(0)) |
= [ (H(0/(6(0)) + (#(0)0'(0)
) (00 1 (08 O (60N
(| %(0)0'(0) + %(0)) |
('q'l“” (- 100 )

B)0'(0)
+ 2O )||f|| (12)

By using the conditions (10) to (12), we can deduce
Ty w9 - H® — 2 is bounded.

(a) = (b). Now suppose that Ty y ¢ : H® — 2 is
bounded. Then,

I T 0 (@) [l o <C I S o
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forall f € H. ,
Assume that f(z) =72/,j =0,1,2,3 € H*. For j =0, we
have f(z) = 1 € H”, and we obtain

I (T .0 /) (D) | =1 i) | -

Then

Ki=|¥ [lz=sup(v(2)) | ¥ (2) | <eo.  (13)
zeDd
For j =1, we have f(z) =z € H”, and

supv(z) | (qu,,%,guf)” (2) |

zeD

=sup (v(2)) | ' (2)9(2) + ¥ (2)9'(2)

z€D

+ ¥ (2)¢'(2) + P (2)9" (2) + 5 (2) |
v( o

= sup(v(2)) | ¥ (9 (2) + 2929’2
+ Wi (2)9" (z) + ' (2) |< oo (14)

From (13), (14), and the boundedness of the function ¢ (z),
we obtain

Ky:=sup(v(2)) [ 29 (2)9' (2) + ¥i(2)9" (2) + B3 (2) [ < o=.

zeD
(15)
For j =2, we have f(z) = z2 € H”, and

sup (V(2)) | (T ws.0) (2) |

zeD

=sup(v(2)) | H'(2)(9(2))* + 2%/ (2)9(2)9’ (z)

zeD
+2%/(2)(2)9' (2) +2‘1’1(Z)( '(2))* +2%(2)9(2)9" (2)
+ 2% (2)0(2) + 2% ()9 (2)
+2%(2)¢'(2) + 2%5(2)9" (2) |

(
= sup (v(2)) | ¥ (2)(9(2))* + 4% ()9 ()9’ (2)

zeD

+ 2% (2)(9' ())* + 2% (2)9(2)9" (z) + 2% (2)9 ()
+ 495 (2)9'(2) +2¥5(2) 9" (2) | < oe. (16)

From (13), (15), (16), and the boundedness of the function
0(z), we have

K = Sgﬂg(V(Z)) | ¥1(2)(¢'(2)* +2%5(2)9(2)
+ ¥(2)9" (2) | <. (17

For j = 3, we have f(z) = z* € H, and

sup (v(2)) | (T s.0f) (2) |

z€D

= sup (v(2)) | ¥ (2)(9(2))* +3%(2)(9(2))°¢' (2)

+3‘I’2”(z) 2))? +12‘Pz( )¢( )9’ (2)
+ 6% (2)(¢(2)°

(
'(2))”+ 6%(2)9(2)9" (2) | <. (18)

From (13),(15), (17), (18), and the boundedness of the
function ¢(z), we have

Ky:=sup(v(2) | B(2)(9'(2))* | <eo.  (19)

zeD

For a fixed { € D and using Lemma 5, we obtain

C>sup(1- | ¢ 1P) | (T o (fi)g) (0]

(43

= sup (1= [ £ ) [ (P () (f1)o(0)(#(£))

£eD

()0 () () (D0 + B (A (9(0))
B0 () ye) (9(0)'|
= sup (1= €)' €) (et (0(0)

)9"(5)(f1)o()#(8)'(9(8) + (F(£)e' ()
)9"(8) + 5" (£)) (f1)g(5)(9(£))
¢) '(C)+%(C))cb'(é)(fl);ﬁ(g)(ﬁb(é))
+W(8)9" () (F1)g(5)(9(£))
+¥(8)9"(E)(F)g () (9(8))
+¥(0)0" () (f1)g(0) (9(0)) |
=sup(1—[ £ )| 'Pl"(C)(f )o(6)(@(8))

[43))
L (W00 +H(0)8"()
) () (9(0)

L (BO)R() + 2B
00" ()l (9(0)
B0 () () (9(0)) |

G- L) | @¥(0)9(©)
= 1~ 6(0) ]2
()" (£) + (D) | 9(0)

- 16(0) P

+ (¢
+ W% (¢
i (

+ (W

¢)
)

+ (20)
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G- EP) [ (#(£)9”(8) +2%5(£)9'(4)

For 6 € (0, 1), by using (20) and (15), we obtain > 2161% (=1 6(0) )2
o G0 IRET o)
qup L[S 1) [291(5)97(9) + Hi(8)9"(C) +#5'(0) | (1= 9(5) [)?
= oo For 8 € (0,1), by using (22) and (17), we obtai
< s (= LEP) I 2H(O0'(0)+ #(©)0"(§) + gy | FO70 (O 1)y sing G2 and (17 we obain
A (1=1¢(0) »)
*S“’U_|CPHZ%%?¢%f§ZT§€¢%C%“%KQ' up 1= LS PV (007 (0) + 2700/ (¢)
\C\<6 I=1¢ LeD (1= (&) [7)?
< sup (1= 1EP) 2% (5)9'(9) + Fi(£)9"(§) L B(0)9"(©)) |
B 5\§\>5 (1=1¢(0) ») (1= ¢(8) [7)?
()| 0(0) w UL P T ((E)07(5) +2%(£)9'(6)
016 1) = (I=9(0) P
i s (- 1P| CHEWE) + e
S0+ () |<C. @) +ﬁm“_ﬁ'$&ff%g
I¢l<s
It follows that condition (7) holds, as desired. n 2¥(8)0" () +¥(8)9" (8)) |
(1= o(E) P)?
For a fixed { € D and by using Lemma 5, we obtain L (1= ¢ P) | (W ()9™(8) +2%(E)9' (E)
5 , B 5 IC|>8 (1—-1¢(8) *)?
C = sup (1= | C ) | (T .0 (f2)0) (§) |
{eD L B(0)e"(0)) | 00
zug(l [P TH () (Ao (9(0)) (1=1e(S) I*)?
S 52 ,
F RO O OO +BOWie00) gy 2 (- 1SR T HE9(E)
FHROIE) )y (0(6) + 2H(0)'(0)+B(0)9" ()| <C. (3)

)|
= 21615(1* S (H () (2)0)(9(0))

+ (B0 () + () () (9(0)
+ B (00 () () (D)) |

It follows that condition (8) holds, as desired.

For a fixed { € D and by using Lemma 5, we obtain

= sup (1= €1 [#() (o) (0(0)) € 2 sup (1= £ )| (T 0 (1)) (0)|
+ (09" () (2)o()#(8) (9(8) + (#(£)¢' (£) = sup (1= | £ 1) | (F() (530 (9(0)
+%@W@>W%xm;<@»uﬂmwm ¢ep
OO (0(0) + ()0 (€) ()i c) (9(6) + B (9(0))
OO (00) RO Bl @]
+%mwwwn@wm> = sup (1= [ £ ) [ (H(O) (Blop) (06

(09" (E) () (9(D)) | + (H(E)9' () + () () (9(0))
—wa—MIHWWQ%me@D+@%@W%Q + (0O (0D |

eb

U Q) IO o 0@+ @020~ BT IERIHOUe )
+2%5(8)¢"(8) +¥5(8)9"(8)) (f2)5 () (9(8)) ()9 () (f)o)0(8) (9(8)) + (H (L9 (L)
+ B892 () (i) (8(0) | +W(8)9" (8) + B (0 ()0 (9(0))
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eb
+ (2¥/(¢
+%'(8))

>wp30—MIH((g o

" ¢eD (1= 19(

For & € (0,1), by using (24) and (19), we obtain

(1= L) | (#(0)92(0)) |
T e 1
SSW(PWCHI(AQ’%OH

1¢I>8 (1=19(5) )

(1= P) [ (#(£)9"(8)) |
€1<s (1=19(5) )

«LWUﬂHM(MW%MTW
T s (1-19(0) )}
'*atgq;ﬁgﬂ—lm%|ﬁﬂﬁw%oﬂgc.@&

It follows that condition (9) holds, as desired.
That ends the proof of Theorem 1.

3 The compactness of Ty, y, o : H* — 2

In this section, we give the conditions that prove the
compactness of the operator Ty y, .

The following lemma can be proven in a standard manner
(see, e.g., Proposition 3.11 in [20]).

Lemma 6.Suppose Wi, ¥, € H(D). Then Ty, y, o : H* —
Z is compact if and only if Ty, w, ¢ : H™ — 2 is bounded,
and for any bounded sequence {f,} in H that converges
to zero uniformly on compact subsets of D as n — oo, we
have || Ty, w ¢ fi HEZ —0asn— .

We now introduce the main compactness results.

Lemma 7.Suppose we have a test function of the form
Voo —0=10G)P) | al=](0G) 1)?
) ey

Li=1,2,3. (26)

Then, (gi)r € H” and

(80)e(9(z)) = (21)i (9(z1)) =0,
/ C19(z)
(81)k(¢(zx)) = =10 P’
where Cy =2a+3b+4c—1+#0;
(82)(9(26)) = ()¢ (9(z1)) = 0,
, @)
(82)k(¢(z)) = = ToG) P2
where C; = 6a+ 12b+20c —2 #0;
(23)1(0(z1)) = (23) (9(z1)) =0,
" G
(83)k (O(z1)) = = 6@ PP
where C3 = 24a+ 60b+ 120c — 6 # 0.

Proof By the triangle inequality, we have

| (81)k(2) |

< =U0=1(9) ) L lal= (0@ )?

I T (1 €9) 4 (1—1(9(z))z])?

L 1pla=1(9G) ?)? | lel(=1](¢(z)) [*)
(1= (¢ (z))zl)? (1= 1(9(z))z])?

< =100 P) (G CIE)) *)?

= 1=[(e(z))] (1—1(9(z))])?

L b1 (0(z) )} G NCIEN)) )
(1=1(9(z)))? (1=1[(o(z)))*

< 2+44|a| +8|b| + 16]c|.

It is therefore clear that, for all (g;); € H”,
sup || (gi)k [|«< 2+ 4|a| + 8|b| + 16]c]|. 27)
eN

V= —(1=10G) P) | 2a(1- | (9(z0) 22
(80)¢(2) ((1—(¢(Zk))Z)2 " (1—(¢(z))2)?
L 3(0=1(0@0) P
(1- (0 0)2)*
4c(1- ] (9(z) M)
NI e SRR Y
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126(1— | (§(z)) 2)°
(1—(0(zx))2)?
B 244
20c(1— | (¢ Zk))6| ) )(0()

We choose values for the constants a,b,c in (26) such
that,

wheni=1,
(81 (0(zx)) = (81 (9(z1)) =0,
(@0il0(@) = 15,
where C; =2a+3b+4c—1+#0;
when i =2,
(82)e(9(z1)) = (82 (#(zx)) =0,
, o)
(gZ)k(¢(Zk)) = W7
where C; = 6a+ 12b +20c —2 # 0;

when i = 3,

(83)k(9(z1)) = (g3 (9 (z1)) =0,

p o)
(83)i (¢(zx)) = = ToG) P’

where C3 = 24a+60b+ 120c — 6 # 0.

Proposition Let

(v(2) | 2% (2)9'(2)

B =

16(z )Hl (1; | ¢(2) ?)
b= ¢leﬁﬁﬁifn()
s
and

Theorem 2.Suppose Vi, ¥ € H(D). Then the following
statements are equivalent.

(@) Ty, w9 : H® — 2 is a compact operator,
(b) Ty, 9 : H” — 2 is a bounded operator,
where By = By = B, = 0.

Proof.(b) = (a). Suppose that Ty w4 : H® — & is
bounded and (29), (30) and (31) hold. To prove that
Ty 9 - H” — 2 is compact for any bounded sequence
{fx} in H* with f; — 0 uniformly on compact subsets of
D, let || fi ||z=< 1. Then, it suffices, in view of Lemma 6,
to show that

| Tos o fic |y — O as k— oo,

By (29) to (31), for any € > 0, there exists p € (0, 1) such
that

(v(2) | 229’ () + ¥ (9" (2) + ¥ () |
019G P) <& G2
(v(2) | (2)0”(2) + 299" (2) + ¥(2)9"(2) |
(-0 P2 <839
and
(v(2) | %()4”() |
(-To PP - ° B9

From the proof of Theorem 1 and the boundedness of the
operator Ty, y, ¢, the conditions (13), (15), (17), and (19)
hold.

Since f; — 0 uniformly on compact subsets of I,
Cauchy’s estimate shows that f;, f/’, and f” converge to
zero uniformly on compact subsets of D, and there exists
Ky € N such that k > Kj tends to

sup | (V() (T w0 i) (2) |
[9(2)[<p

< sup (v(2) | (

s W (2) fe(9(2) + B () fi(0(2) |
<p
= sup (v(2)) ] (

Y (2)fi(0(2) + Wi (2)0' (2) i (¢(2))
0(2)<p

+ () fi(9(2) + B(2)0" () (6(2))) |

= sup (v(2) | (F(2)fe(9(2) + (i (2)9'(2)
l9(z)|<p

+ B (2)fi(0(2) + P2 (2)0"(2) £ (9(2) |
i

= sup (v(2) | (2)fi(9(2) + ¥ ()9
oIz

+ (H(2)9'(2)
+(‘1’1(Z)¢/(
+ ‘Pz’(Z)¢’(Z)f£

"(2)fi(¢)

Pi(2)9" (2) + ' () fi(9(2)
¥(2))9" ) (9(2))
( ))

z)+
+

\4’( )<p
+ ¥i(2)9" () + ¥ (@) (9(2) + (i ()97 (2)
+ 2% (2)9'(2) +¥5(2)9"(2)) /¢ (9(2))
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+ B9 (0) |
< Ki sup [ fi(¢(2)) [+K2 sup |fi(9(2))]

[o(z)|<p [o(z)|<p

+ K3 sup | f(9(2) | +Ks sup | f"(9(2)) |
[o(z)|<p lo(z)|<p

<Ce. (35)

Moreover, by using Lemma 4, we obtain

| (T 91.0.£)(0) | < [ W1(0)i(¢(0)) + ¥5(0) f(6(0))

+ [ ¥/(0)/i(¢(0)) |< Ce, (36)

| (T 5,9£)(0) | < | (#1(0)¢'(0) +¥5(0)) £z (6(0))

+ ¥(2)9'(0) £ (¢(0))) [ <Ce. (37)

When k > Kj, from (32) to (37) and Lemma 4, we

obtain

| (T w36 £) (0) |+ | (T, w9 14)' (0) |
+sup| (v(2) (T ws.0 /) (2) |

z€D

< (| (Tt 5,66 0) |+ (Tig 5,9 £2)'(0) |

+ sup | (V@) (T w0 fi) (2) )
d(z)<p

+ sup | (V@) (T e fi) (2) ]
p<d(z)<l

= Ce¢

+ s (V@) [ (@A) +B(2)f(0(2) |
pP<o(z)<

= Ce

+ .o (V@) '] (2)fi($(2)) + P (2)9' (2) /i ()

+ (W (2)9'(2)
+W(2)¢"(2) + 9 () fi((2) + (¥ () (2)
+¥(2))0" () (#(2) + B (2)9' D) A (9(2)

+¥(2)¢" ()£ (9(2)) + ¥a(2)9 2(z)f,§”( @) |
=Cet+ sup (v(2) |9 (2)fi(9(2)) + (2% (2)9' ()

p<9(z)<l

+ Wi (2)9" (2) + ¥ (2) (¢()) (¥ (209" (2)
+2%(2)9'(2) + P(2)9" () (9(2))

+ W20 @)K (9() |

< Ce+(v(2) | (2 fe(0(2) | +(v(2) | ¥ (2)9'(2)
+ (20" () + B @) f(0R) [+(v(E) | ()9 (2)
+ 2% (2)¢ ()+‘Pz(z) ") (9(2) |

+(v(2) | ()97 (@) (9(2)) |

< Ce

+Cv) | 1@ |

29(2)0'(2) + V(9" () + B ) |
0@ P)

W (2)97(2) + 2%()0' () + B9 () |
010G PP
B(2)070)|

i [o@ Py 1Ml
< 5Ce. (38)

+

+

From lemma 6, the operator Ty w4 : H® — 27 is
compact.

(a) = (b). The compactness of the operator
Ty we : H® — 2 implies the boundedness of
Ty o - H® — Z.1f || ¢ [|.< 1, the limit in (29) to (31)
equals zero. Hence, let || ¢ ||.= 1 and {z;} be a sequence
in D such that [¢(z;)| — 1 as k — co.

Thus, for a fixed z; € D and by using Lemma 7, we obtain

C > sup | (1— |z I*) (T s (1)) (2k) |
zeD

= sup (1— |z |*) | (Wi (z)(g1)i(9(zx))

zeD

+ (20 (81)k(0(2))) |
= sup (1— |z |*) | (% (zx) (1) (0 (z1))

zeD

+ Wi (20) 9" (2 (1)1 (9 (21)
+ W5 (2) (1)1 (9 (2i)) + Fa(2) 9" (zi) (17 (0 (20))) |
= sup (1= [z [*) | (%] (2) (81)x(9 (z))

zeD
+ (Wi (219" (z
+ Wo(z) 9 ()
k

= sup (1—|z
zeD

)+ (z
(81);(0(z))) |
RIEA

=
~
N
—
o
< =
~—
~
~—
<
—
N
=
~
N

+ (2% (1) 9 (z1) + i (z) 9"

+ ¥ (2))(81)k

+ 295 (21)9' (z) + Wa(zi) 9"

+ W(26) 9" (z0) (811 (9 (z)
C(l— |z ) [ (

> sup
zeD

' (21)) 9 (2x)
T ot P

T e P
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Since (g1)r — 0 uniformly on D, (g1); converges to
zero uniformly on the compact subsets of . Therefore
(g1)r is bounded in H*, which converges to zero
uniformly on compact subsets of D:

Hm ([ Ty .9 (81)i [l o = 0, (40)

‘C1(1— |2k 1) | 2% (2) ' () + P (2)9" ()

1= ] ¢(z) |
n P (z1)) ¢ (z)
1= () 2
< || Ty w0(81)kll 5 =0 as k—0. (41)

By (41) and | ¢(zk) |— 1, we have

L (V@) | 2% (209 (z) + ¥ ()9 (26) + ¥4 (z0) |
e (=190 P)
—0. (42)

It follows that condition (29) holds, as desired.

To prove (30), let a fixed z; € D, and, by using Lemma
7, since (g2)x — 0 uniformly on I, (g2)x converges to zero
uniformly on the compact subsets of . Therefore (g2)x
is bounded in H*, which converges to zero uniformly on
compact subsets of . Using Lemma 6, we obtain

Hm ([ Ty s 9 (82)i [l oo = O, (43)

(1= | 7 P) (i (209 (26) + 2% () ' (20))
(1= o) P2
W (2)9" () 9 (20
(1 [0(z) P
<|| T, w68k »—0 as k—0. (44)

By (44) and | ¢ (zk) |— 1, we have
(I Lz ) | (P (z1) 0" (2i) + 295 (1) 9 (1)

+

o (- 0() P2
()" () |
T leGPr )

It follows that condition (30) holds, as desired.

To prove (31), let a fixed z; € D, and, by using Lemma
7, since (g3); — 0 uniformly on I, (g3); converges to zero
uniformly on the compact subsets of . Therefore (g3)x
is bounded in H*, which converges to zero uniformly on
compact subsets of D. Using Lemma 6, we obtain

klijreloH Ty .0 (23)k | » — 0, (46)

C(1— |z ) | (B(2)97(20) | 9)
(1= 9Gx) )
< | Twmo(g)illy =0 as k—0. (47)

By (44) and | ¢(zk) |— 1, we have
(= a ) | (F(@)9? (@) |
N (T IEVER

It follows that condition (31) holds, as desired.
That ends the proof of Theorem 2.

=0. (48)

4 Applications

Operator theory on different spaces of analytic functions
have been actively appearing in different areas of
mathematical sciences like dynamical systems, theory of
semigroups, isometries and quantum mechanics
(see [30]).

Our results in this paper can be generalized and applied to
some analytic and hyperbolic classes to obtain strong and
new characterizations of several classes of functions.

5 Conclusion

In this paper, we characterized the boundedness and
compactness of the new product operator Ty, y, ¢ from
H* to Zygmund spaces. Moreover, we proved that the
properties of boundedness and compactness still hold for
this operator from H* to Zygmund spaces. In addition,
we gave the conditions for the product operator Ty, y, ¢ to
be bounded and compact.
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