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Abstract: In 1983, Orhan introduced Cesàro Difference Sequence Spaces. Later, various authors generalized them. In this study, we

take a generalized Cesàro difference sequence spaces and especially we consider their Köthe-Toeplitz Duals. In fact, recalling that

Dowling et al. proved that Banach spaces containing isomorphic copies of ℓ1 cannot have the fixed point property for uniform Lipschitz

mappings, we work on a well-known invariant mapping defined on a certain class in a Köthe-Toeplitz Dual of a generalized Cesàro

difference sequence space so that the right shift mapping can be a uniform Lipschitz mapping. For this aim, we find an upper bound

estimate of the Lipschitz coefficient. Next, we investigate the second power of the mapping we care so that it can be uniformly Lipschitz

while it is supposed to fail the fixed point property on the class we study in those spaces.
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1 Introduction and Preliminaries

The Cesàro sequence spaces
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were introduced by Shiue [1] in 1970, where 1 ≤ p < ∞. It
has been shown that ℓp ⊂ cesp for 1 < p ≤ ∞. Moreover,
it has been shown that Cesàro sequence spaces cesp for
1 < p < ∞ are separable reflexive Banach spaces.

Later, in 1981, Kızmaz [2] introduced difference
sequence spaces for ℓ∞, c and c0 where they are the
Banach spaces of bounded, convergent and null

sequences x = (xn)n, respectively. As it is seen below, his
definitions for these spaces were given using difference
operator applied to the sequence x, △ x = (xk − xk+1)k.

ℓ∞ (△) = {x = (xn)n ⊂ R |△ x ∈ ℓ∞} ,

c(△) = {x = (xn)n ⊂ R |△ x ∈ c} ,

c0 (△) = {x = (xn)n ⊂ R |△ x ∈ c0} .

Kızmaz investigated Köthe-Toeplitz Duals and some
properties of these spaces.

Furthermore, Cesàro sequence spaces X p of
non-absolute type were defined by Ng and Lee [3] in
1977 as follows:
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where 1 ≤ p < ∞.

Later, in 1983, Orhan [4] introduced Cesàro Difference
Sequence Spaces by the following definitions:
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where 1 ≤ p < ∞ and △ x = (△ xk) = (xk − xk+1)k. He
noted that their norms are given as below for any
x = (xn)n:
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Orhan [4] showed that there exists a linear bounded
operator S : Cp → Cp for 1 ≤ p ≤ ∞ such that
Köthe-Toeplitz β−Duals of these spaces are given
respectively as follows: Let 1 < p < ∞ and q = p

p−1
; then,

S(Cp)
β = {a = (an)n ⊂R | (nan)n ∈ ℓq} ,

S(C1)
β = {a = (an)n ⊂ R | (nan)n ∈ ℓ∞} and

S(C∞ )β =
{

a = (an)n ⊂ R
∣

∣ (nan)n ∈ ℓ1
}

.

It might be better to use the notation X p (△) instead of
Cp for 1 ≤ p ≤ ∞ since we also recalled the difference
sequence spaces and used similar type of notation.

Note also that Köthe-Toeplitz Dual for p = ∞ case in
Orhan’s study and ℓ∞ case in Kızmaz study coincides.

Furthermore, Et and Çolak [5] generalized the spaces
introduced in Kızmaz’s work [2] in the following way for
m ∈ N.

ℓ∞ (△m) = {x = (xn)n ⊂ R | △mx ∈ ℓ∞} ,

c(△m) = {x = (xn)n ⊂ R | △mx ∈ c} ,

c0 (△
m) = {x = (xn)n ⊂ R | △mx ∈ c0}

where △ x = (△ xk) = (xk − xk+1)k, △
0x = (xk)k,

△
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k
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m
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xk+i.
Also, Et [6] and Tripathy et. al. [7] generalized the

space introduced by Orhan in the following way for
m ∈ N.
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Then, it is seen that that Köthe-Toeplitz Dual for p=∞
case in Et’s study [6] and ℓ∞ case in Et and Çolak study
[5] coincides such that Köthe-Toeplitz Dual was given as
below for any m ∈N.

Dm :=
{

a = (an)n ⊂ R
∣

∣ (nman)n ∈ ℓ1
}

=

{

a = (ak)k ⊂ R : ‖a‖=
∞

∑
k=1

km |ak|< ∞

}

.

Note that Dm ⊂ ℓ1.
One can see that corresponding function space for

these duals can be given as below:

Um :=

{

f : [0,1]→R

measurable
: ‖ f‖=

∫ 1

0
tm | f (t)|dt < ∞

}

.

Note that L1 [0,1]⊂Um and Dm is the space when counting
measure is used for Um.

Now recall that we say that a Banach space (X,‖.‖)
has the fixed point property for non-expansive mappings
(fpp-n.e.) if every invariant nonexpansive mapping
defined on every nonempty closed, bounded and convex
subset (c.b.c.) in X has a fixed point. If the above
expression holds for every uniform Lipshcitz mapping,
then (X,‖.‖) is said to have the fixed point property for
uniformly Lipschitz mappings (fpp-u.L.). Therefore, once
we find a nonempty closed, bounded and convex subset E
and a uniformly Lipschitz mapping T : E→E without any
fixed point, then X is said to fail the fpp-u.L..

There have been works to research fixed point
property for Cesàro sequence spaces. For example, it was
proved by Cui and Hudzik [8], Cui, Hudzik and Li [9] and
Cui, Meng and Pluciennik [10] that Cesàro sequence
spaces cesp for 1 < p < ∞ have fpp-ne. They prove this
result using different methods. One method is to calculate
Garcia-Falset coefficient. It is known that if Garcia-Falset
coefficient is less than 2 for a Banach space, then it has
the fixed point property for nonexpansive mappings [11].
Using this fact, since they calculate this coefficient for

cesp as 21/p similarly to what it is for ℓp, they point the
result for the Cesàro sequence spaces. Another fact is that
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the space has normal structure for 1 < p < ∞. By the fact
via Kirk [12] that reflexive Banach spaces with normal
structure has the fixed point property, it is easily deduced
that the space has the fixed point property for 1 < p < ∞.
These results on Cesàro sequence spaces as a survey can
be also seen in [13]. There are various other interesting
summable spaces as well as interesting facts and useful
features in the domain of summability theory (see, for
example, [14], [15], [16]) which may be taken up for
further study in the framework of fixed point property.

Furthermore, like Cesàro sequence spaces introduced
by Shiue [1], Ng and Lee [3] proved that Cesàro sequence
spaces X p of non-absolute type are linearly isomorphic
and isometric to ℓp for 1 ≤ p ≤ ∞. Thus, one would easily
deduce that these spaces too have similar properties in
terms of the fixed point theory. That is, for 1 < p < ∞
they have the fixed point property for nonexpansive
mappings but for other two cases they fail.

Considering the fixed point theory oriented questions
for Cesàro Difference Sequence Spaces, we note that
Orhan [4] proved that X p ⊂ X p (△) for 1 ≤ p ≤ ∞ strictly.
Also, one can clearly see that X p (△) is linearly
isomorphic and isometric to ℓp for 1 ≤ p ≤ ∞. Therefore,
it easy to deduce that Cesàro Difference Sequence Spaces
also have similar properties to ℓp spaces for 1 ≤ p ≤ ∞ in
terms of the fixed point theory. That is, for 1 < p < ∞
they have the fixed point property for nonexpansive
mappings but for other two cases they fail.

In this study, we take a generalized Cesàro difference
sequence spaces and especially we consider their
Köthe-Toeplitz Duals. There are, of course, other
generalized difference operators for constructing other
generalized difference sequence spaces (see, for example,
[17], [18], [19]). In fact, recalling that Dowling et al. [20]
proved that Banach spaces containing isomorphic copies
of ℓ1 cannot have the fixed point property for uniform
Lipschitz mappings, we work on a well-known invariant
mapping defined on a certain class in a Köthe-Toeplitz
Dual of a generalized Cesàro difference sequence space
so that the right shift mapping can be a uniform Lipschitz
mapping. For this aim, we find an upper bound estimate
of the Lipschitz coefficient. Next, we investigate the
second power of the mapping we care so that it can be
uniformly Lipschitz while it is supposed to fail the fixed
point property on the class we study in those spaces.

The followings are needed as preliminaries.

Definition 1.Let (X,‖·‖) be a Banach space , E be a

nonempty c.b.c. subset and T : E→E be a mapping.

1. T is called an affine mapping if for every λ∈[0,1]
and x,y∈E, T((1−λ )x+λ y)=(1−λ )T(x)+λ T(y).

2. T is called a ‖·‖−nonexpansive mapping if for every

x,y∈E, ‖T(x)−T(y)‖≤‖x− y‖.

Furthermore, if every ‖ · ‖−nonexpansive mapping

T : E→E has a fixed point; i.e., if there exists a u∈E such

that T(u) = u, then we say that E has the fpp(n.e.).

3. T is called a uniform Lipshcitz mapping if there

exists a scalar L∈[1,∞) such that for every x,y∈E,

‖Tn(x)−Tn(y)‖≤L‖x− y‖ for every n ∈ N. Moreover,

here L is called a uniform Lipshcitz constant.

Furthermore, if every uniformly Lipschitz mapping

T : E→E has a fixed point; i.e., if there exists a u∈E such

that T(u) = u, then we say that E has the fpp-u.L..

We also note that through the study, the sequence
(en)n∈N is the canonical basis of both c0 and ℓ1, where ith

term is 1 and others 0 for the ei.

2 Main Result

In this section, we consider a large class of c.b.c. subsets
in Köthe-Toeplitz Dual for X∞ (△m), the space Dm given
above for m ∈ N, and investigate a well-known mapping
mostly used in fixed point theory researches. The
mapping we care is the right shift mapping. Since we
know by Dowling et al. [20], isomorphic copies or spaces
containing them cannot have the fpp(u.L.), we check how
our mapping becomes a uniformly Lipschitz invariant
mapping on the class we study. In the case the mapping is
a uniformly Lipschitz, we find an upper bound estimate of
the Lipschitz coefficient. In fact, we find the minimum
constant as the Lipschitz coefficient. Now, firstly we
consider the following class of c.b.c. subsets. Note that
here we use the similar ideas to those in [21, section 3.2],
written under supervision of Chris Lennard. We note that
case m = 1 has recently been done by Nezir and Güven
and submitted to a refereed international journal. As we
stated, here we present the general case for any m ∈ N.

Example 1.Fix m ∈ N and b ∈ (0,1). Define a sequenc

( fn)n∈N by setting f1 := b e1, and fn := 1
nm en, for every

integer n ≥ 2. Next, define the c.b.c. subset E(m) = Eb
(m)

of Dm by

E(m) :=

{

∞

∑
n=1

βn fn : ∀n ∈ N, βn ≥ 0 and
∞

∑
n=1

βn = 1

}

.

Consider the right shift mapping T : E(m) → E(m) defined
by

T (x) = T

(

∞

∑
n=1

βn fn

)

=
∞

∑
n=1

βn fn+1.

Then, for any x=∑∞
k=1 βk fk and y=∑∞

k=1 γk fk in E(m). It is
easy to see that T is affine and fixed point free. Moreover,
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Hence, for any q ∈ N,
‖T qy−Tqx‖≤min
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2, 1
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‖y− x‖ . Therefore, the right
shift T is uniformly Lipschitz with Lipschitz coefficient
Mb = min

{

2, 1
b

}

.

Now, we find the minimum Lipschitz coefficient in the
following theorem.

In fact, as we see that we have exactly same findings
and computations as those in section 3.2 of [21], the next
theorem is also obtained similarly to the proof method of
Everest.

Theorem 1.Fix m ∈ N and b ∈ (0,1). Define a sequence

( fn)n∈N by setting f1 := b e1, and fn := 1
nm en, for every

integer n ≥ 2. Next, define the c.b.c. subset E(m) = Eb
(m) of
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T (x) = T

(

∞

∑
n=1

βn fn

)

=
∞

∑
n=1

βn fn+1.

Then, for any x = ∑∞
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Proof.Fix m ∈ N and q ∈ N. Let = ∑∞
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∞
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∞

∑
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∞
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Here, to use (3) so that we can get uniform Lipschitz
estimate, we need

(2− τ)b

τ
≤1⇔2b− τb≤τ⇔

2b

b+ 1
≤τ.

Then, to minimize coefficient in (3), which is τ
b
, we

minimize τ , so by the above fact, minimum value for τ
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satifying (3) would be 2b
b+1

. Thus, minimum coefficient τ
b

is 2
b+1

satisfying (3).
But to use (4) so that we can get uniform Lipschitz

estimate, we need τ
(2−τ)

≤b and we minimize 2− τ. Here

we note that

τ

(2− τ)
≤b⇔τ≤2b− τb⇔τ≤

2b

b+ 1
.

Then, to minimize 2− τ we would maximize τ and that
maximum value of τ would be 2b

b+1
by the above fact. So

minimum value for 2− τ in (4) is 2
b+1

. That is, minimum

coefficient 2− τ in (4) is 2
b+1

.

Therefore, from both results, we can say that for any
q ∈ N,

‖T qy−T qx‖≤Mb

(

b |β1 − γ1|+
∞

∑
k=2

|βk − γk|

)

= Mb ‖y−x‖

and Mb might be 2
b+1

. In fact, the following fact tells us

that minimum coefficient Mb is 2
b+1

.
Indeed, consider x := f1 and y := f2. Then,

‖y− x‖=

∥

∥

∥

∥

1

2
e2 − be1

∥

∥

∥

∥

=
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∥

∥

∥
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2
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Then,
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∥

∥

∥

1

q+ 2
eq+2 −

1

q+ 1
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∥

∥

∥
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q+ 2
+

q+ 1

q+ 1
= 2 =
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b+ 1
(b+ 1)

=
2

b+ 1
‖y− x‖= Mb ‖y− x‖ .

So this shows where the equality occurs and this verifies
that 2

b+1
is the smallest Lispchitz coefficient.

Theorem 2.Fix m ∈ N. Define a sequence ( fn)n∈N by

setting f1 := 1
2

e1, f2 := 1
2m+1 e2, and fn := 1

nm en, for

every integer n ≥ 3. Next, define the c.b.c. subset S(m) of

Dm by

S(m) :=

{

∞

∑
n=1

βn fn : ∀n ∈ N, βn ≥ 0 and
∞

∑
n=1

βn = 1

}

.

Consider the second power of the right shift mapping

T 2 : S(m) → S(m). Then, the second power of the right shift

is fixed point free affine Uniformly Lipschitz mapping on

S(m) such that its Lipschitz coefficient is 2.

Proof.We can easily see that for any x ∈ S(m),

T 2 (x) = T 2

(

∞

∑
n=1

βn fn

)

=
∞

∑
n=1

βn fn+2.

Then, for any x = ∑∞
k=1 βk fk and y = ∑∞

k=1 γk fk in

S(m). It is easy to see that T 2 is affine and fixed point free.
Moreover, for every q ∈ N,

∥

∥T q+1y−Tq+1x
∥

∥ =

∥

∥

∥

∥

∥

∞

∑
k=1

βk fk+q+1 −
∞

∑
k=1

γk fk+q+1

∥

∥

∥

∥

∥

= |β1 − γ1|+ |β2 − γ2|+
∞

∑
k=3

|βk − γk|

Also,

‖y− x‖ =

∥

∥

∥

∥

∥

∞

∑
k=1

βk fk −
∞

∑
k=1

γk fk

∥

∥

∥

∥

∥

=
1

2
|β1 − γ1|+

1

2
|β2 − γ2|+

∞

∑
k=3

|βk − γk| . (5)

Case 1: Assume |β1 − γ1| ≤ |β2 − γ2|
Then, from (5),

2‖y− x‖ ≥ 2 |β1 − γ1|+ 2
∞

∑
k=3

|βk − γk|

On the other hand,

∥

∥T q+1y−T q+1x
∥

∥ = |β1 − γ1|+

∣

∣

∣

∣

∣

1−β1 −
∞

∑
k=3

βk −1+ γ1 +
∞

∑
k=3

γk

∣

∣

∣

∣

∣

+
∞

∑
k=3

|βk − γk |

≤ 2 |β1 − γ1|+

∣

∣

∣

∣

∣

∞

∑
k=3

βk − γk

∣

∣

∣

∣

∣

+
∞

∑
k=3

|βk − γk |

≤ 2 |β1 − γ1|+2
∞

∑
k=2

|βk − γk|

≤ 2‖y− x‖ .

Case 2: Assume |β2 − γ2| ≤ |β1 − γ1|
Then, from (5),

2‖y− x‖ ≥ 2 |β2 − γ2|+ 2
∞

∑
k=3

|βk − γk|

On the other hand,

∥

∥

∥
T q+1y−T q+1x

∥

∥

∥
=

∣

∣

∣

∣

∣

1−β2 −
∞

∑
k=3

βk −1+ γ2 +
∞

∑
k=3

γk

∣

∣

∣

∣

∣

+ |β2 − γ2|+
∞

∑
k=3

|βk − γk|

≤ 2 |β2 − γ2|+

∣

∣

∣

∣

∣

∞

∑
k=3

βk − γk

∣

∣

∣

∣

∣

+
∞

∑
k=3

|βk − γk|

≤ 2 |β2 − γ2|+2
∞

∑
k=2

|βk − γk|

≤ 2‖y−x‖ .

So from two cases we get that for any q ∈N,

∥

∥T q+1y−Tq+1x
∥

∥≤2‖y− x‖ .
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Also, for any q ∈ N,

∥

∥T q+1y−Tq+1x
∥

∥= |β1 − γ1|+ |β2 − γ2|+
∞

∑
k=3

|βk − γk|

= 2

(

1

2
|β1 − γ1|+

1

2
|β2 − γ2|+

1

2

∞

∑
k=3

|βk − γk|

)

≤2

(

1

2
|β1 − γ1|+

1

2
|β2 − γ2|+

∞

∑
k=3

|βk − γk|

)

=2‖y− x‖ . (by the equality (5))

Hence, for any q ∈ N ,
∥

∥T q+1y−Tq+1x
∥

∥≤2‖y− x‖ .
Therefore, the second power of the right shift T is
uniformly Lipschitz with Lipschitz coefficient M = 2.
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spaces, Istanbul Univ. fen fak. Mat. Dergisi, 55-56, 221-229

(1996-1997).

[7] B. C. Tripathy, A. Esi, and B. Tripathy, On new types

of generalized difference Cesàro sequence spaces, Soochow
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