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Abstract: Incoherent pion photoproduction on the deuteron in the ∆ (1232)-resonance region is investigated with special emphasis on

polarization observables. For the elementary pion photoproduction operator an effective Lagrangian model which includes the standard

pseudovector Born terms and a resonance contribution from the ∆ (1232)-excitation is used. Our results for the elementary γN → πN

reaction are in good agreement with recent experimental data and results of other theoretical calculations. A general analysis of all

possible polarization observables for the γd→ πNN reaction with polarized photon beam and/or oriented deuteron target is presented.

The unpolarized differential cross section, photon asymmetry, vector and tensor target asymmetries are predicted for forthcoming

experiments.
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1 Introduction

During the last two decades, pseudoscalar meson
production in electromagnetic reactions on light nuclei
has become a very active field of research in
medium-energy nuclear physics with respect to the study
of hadron structure [1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22]. For the following reasons the
deuteron plays an outstanding role besides the free
nucleon. The first one is that the deuteron is the simplest
nucleus on whose structure we have abundant information
and a reliable theoretical understanding, i.e., the structure
of the deuteron is very well understood in comparison to
heavier nuclei. Furthermore, the small binding energy of
nucleons in the deuteron, which from the kinematical
point of view provides the case of a nearly free neutron
target, allows one to compare the contributions of its
constituents to the electromagnetic and hadronic reactions
to those from free nucleons in order to estimate
interaction effects.

Meson photo- and electroproduction on light nuclei is
primarily motivated by the following possibilities: (i)
study of the elementary neutron amplitude in the absence
of a neutron target, (ii) investigation of medium effects,

i.e., possible changes of the production operator in the
presence of other nucleons, (iii) it provides an interesting
means to study nuclear structure, and (iv) it gives
information on pion production on off-shell nucleon, as
well as on the very important ∆N-interaction in a nuclear
medium. As an illustration of these various aspects, we
will investigate in this paper incoherent pion
photoproduction on the deuteron in the
∆ (1232)-resonance region with special emphasis on
polarization observables. The importance of this process
derives from the fact that the deuteron, being the simplest
nuclear system, plays a similar fundamental role in
nuclear physics as the hydrogen atom plays in atomic
physics.

The major reason for studying polarization
phenomena in reactions of the type a+b→ c+d+ ... lies
in the fact that only the use of polarization degrees of
freedom allows one to obtain complete information on all
possible reaction matrix elements. Without polarization,
the cross section is given by the incoherent sum of
squares of the reaction matrix elements only. Thus, small
amplitudes are masked by the dominant ones. On the
other hand, small amplitudes very often contain
interesting information on subtle dynamical effects. This
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is the place where polarization observables enter, because
such observables in general contain interference terms of
the various matrix elements in different ways. Thus, a
small amplitude may be considerably amplified by the
interference with a dominant matrix element. An example
is provided by the influence of the small electric form
factor of the neutron on the transverse in-plane
component of the neutron polarization in quasifree
deuteron electrodisintegration [23,24,25]. It is just this
feature for which polarization physics has become such
an important topic in various branches of physics.

The present paper is a natural extension of our work
in [26,27] where we have presented the energy
dependence of the γd → πNN reaction over the whole
∆ (1232)-resonance region and gave results for differential
and total cross sections as well as results for the spin
asymmetry and Gerasimov-Drell-Hearn (GDH) sum rule
for the deuteron. Notwithstanding this continuing effort to
study this process, the wealth of information contained in
it has not yet been fully exploited. Since the t-matrix has
12 independent complex amplitudes, one has to measure
23 independent observables, in principle, in order to
determine completely the t-matrix. Up to present times,
only a few observables have been measured and studied
in detail, e.g., differential and total cross sections.

On the other hand, the measurement of polarization
observables is a rather difficult task, requiring great
experimental skill and advanced technology, which
explains why little is known about these more involved
polarization observables. However, in view of the recent
technical improvements, e.g., at MAMI in Mainz, ELSA
in Bonn and JLab in Newport News, for preparing
polarized beams and targets and for polarimeters for the
polarization analysis of ejected particles it appears timely
to study in detail polarization observables in pion
production on the deuteron. The aim will be to see what
kind of information is buried in the various polarization
observables, in particular, what can be learned about the
role of subnuclear degrees of freedom like meson and
isobar or even quark-gluon degrees of freedom.

The paper is organized as follows. In Section 2 we
will present the effective Lagrangian model for the
elementary pion photoproduction amplitude which will
serve as an input for the reaction on the deuteron. Its
predictions for differential and total cross sections are
compared with recent experimental data and results of
other theoretical predictions. Section 3 will introduce the
general form of the differential cross section for
incoherent pion photoproduction on the deuteron. The
treatment of the γd → πNN amplitude, based on
time-ordered perturbation theory, will be described in
Section 4. In Section 5 we will give the complete formal
expressions of polarization observables for the
γd → πNN reaction with polarized photon beam and/or
oriented deuteron target in terms of the t-matrix elements.
Details of the actual calculation and the results will be
presented and discussed in Section 6. Finally, we close in
Section 7 with conclusions.

2 The γN→ πN amplitude

For the elementary pion photoproduction operator, we
have taken, as in our previous work [26,27], the effective
Lagrangian model of Schmidt et al. [28]. This model had
been constructed to give a realistic description of the
∆ (1232)-resonance region. It is given in an arbitrary
frame of reference and allows a well defined off-shell
continuation as required for studying pion production on
nuclei. It is in contrast to other approaches, where the
elementary amplitude is constructed first on-shell in the
photon-nucleon center-of-mass (c.m.) frame with
subsequent boost into an arbitrary reference frame and
some prescription for the off-shell continuation. In the
latter method, one loses terms which by chance vanish in
the c.m. frame [29]. In our approach, the only uncertainty
arises from the assignment of the invariant energy for the
photon-nucleon subsystem in the resonance propagators
as has been discussed in detail in [29]. Here we use the
spectator on-shell approach. The model of Schmidt et

al. [28] consists of the standard pseudovector Born terms
and the contribution of the ∆(1232)-resonance. The
individual terms of the matrix element for pion
photoproduction reaction on the free nucleon are shown
in Fig. 1. For further details with respect to the
elementary pion photoproduction operator we refer
to [28]. The parameters of the ∆ -resonance are fixed by

fitting the experimental M
3/2
1+ multipole which is

dominant in the region of the ∆ -resonance. The quality of
the model can be judged by a comparison with the MAID
analysis [30], the Mainz dispersion analysis [31], and the
VPI analysis [32] as shown in Fig. 2, and one notes quite
a good agreement.

In Fig. 3 we compare our results for the differential
cross sections with the MAID analysis [30] and with
experimental data. For π+ and π0 photoproduction on the
proton the data are taken from [33] (TAPS), [34] (MAMI)
and [35] (GDH), whereas for π− photoproduction on the
neutron we took the data of the inverse reaction
γn← pπ− from [36] (Tokyo). In general, we obtain quite
a good agreement with the data, especially in the region
of the ∆ (1232)-resonance (330 MeV). Also in
comparison with the MAID analysis our elementary
production operator does quite well in this energy region.
One notes only small discrepancies which very likely
come from the fact that no other resonances besides the
∆ (1232) are included in our model.

The total cross sections for the different pion channels
are shown in Fig. 4 and compared with experimental data.
In general, we obtain a good agreement with the data
using the small value f 2

πN/4π = 0.069 for the
pion-nucleon coupling constant. The agreement with the
data from [36] and [37] for π− photoproduction is again
satisfactory. In case of the π+ photoproduction, the
agreement is good up to a photon energy of about 400
MeV. For higher energies, the D13-resonance, which is
not included in our calculation, gives a non-vanishing
contribution [30]. The π+ data from [36] are slightly
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Fig. 1: Diagrams for the elementary process γN → πN: (a)

the Kroll-Rudermann graph, (b) and (c) the two time-ordered

contributions to the direct and crossed nucleon pole graph, (d)

and (e) the two time-ordered contributions to the pion pole graph,

(f) and (g) the Z-graphs, and (h) and (i) the ∆ (1232)-resonance

graphs. A solid, dashed and wavy lines represent a nucleon, pion

and photon, respectively.
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Fig. 2: Real and imaginary parts of the M
3/2
1+ multipole. Notation:

solid curves: present model; dotted curves: MAID [30]. Data

points: from [32] (SAID, solution: September 2000), [31] (HDT).

underestimated in the resonance region by our calculation
but also by the MAID analysis. Except for a tiny
overestimation in the maximum, the description of the
data from [35,38] for π0 production on the proton is also
very good. Therefore, this model for the elementary
photoproduction amplitude is quite satisfactory for our
purpose, namely to incorporate it into the reaction on the
deuteron.

3 Process on the deuteron

In this section we will briefly review the general
formalism for incoherent pion photoproduction on the
deuteron. The general expression for the 5-fold
unpolarized differential cross section of pion
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Fig. 3: Differential cross section for the elementary reaction on

the nucleon for the three charge states of the pion at various

photon energies. Left panels: π−, middle panels: π+, and right

panels: π0. The solid curves: present model; dotted curves:

MAID [30]. Experimental data from [36] (Tokyo) for π−, [34]

(MAMI), [35] (GDH) for π0, and [33] (TAPS), [35] (GDH) for

π+.

photoproduction reaction on the deuteron is given, using
the conventions of Bjorken and Drell [39], by

dσ = (2π)−5δ 4 (k+ d− p1− p2− q)
1

|vγ − vd |

× 1

2

d3q

2ωq

d3 p1

E1

d3 p2

E2

M2
N

4ωγEd

1

6
∑
α

|M (tµ)
smmγ md

|2 , (1)

where we have introduced as a shorthand for the quantum
numbers α = (s,m, t,mγ ,md). The initial photon and
deuteron four-momenta are denoted by k = (ωγ ,k) and
d = (Ed ,d ), respectively, and the four-momenta of final
meson and two nucleons by q = (ωq,q ) with

ωq =
√

m2
π +q2, mπ as pion mass, and p j = (E j,p j )

( j = 1,2) with E j =
√

M2
N +p2

j , respectively, and MN as

nucleon mass. Furthermore, mγ denotes the photon
polarization, md the spin projection of the deuteron, s and
m total spin and projection of the two outgoing nucleons,
respectively, t their total isospin, µ the isospin projection
of the pion, and vγ and vd the velocities of photon and
deuteron, respectively. The states of all particles are
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Fig. 5: Kinematics in the laboratory system for γd→ πNN.

covariantly normalized. The reaction amplitude is

denoted by M
(tµ)
smmγ md

. As in [26,27,28], we have chosen
as independent variables the pion momentum q, its angles
θπ and φπ , the polar angle θpNN

and the azimuthal angle
φpNN

of the relative momentum pNN of the two outgoing
nucleons as independent variables. We prefer this choice
of variables, because in this case the kinematic factor do
not has any singularity on the boundary of the available
phase space, when pNN → 0.

The total and relative momenta of the final NN-system
are defined respectively by

PNN = p1 +p2 = k−q (2)

and

pNN =
1

2
(p1−p2) . (3)

The absolute value of the relative momentum pNN is given
by

pNN =
1

2

√
E2

NN(W
2
NN − 4M2

N)

E2
NN −P2

NN cos2 θPpNN

, (4)

where θPpNN
is the angle between PNN and pNN . ENN and

WNN denote total energy and invariant mass of the NN-
subsystem, respectively, and are given by

ENN = E1 +E
2
= ωγ +Ed−ωq ,

W 2
NN = E2

NN −P2
NN . (5)

For the evaluation we have chosen the laboratory
frame where dµ = (Md ,0) with Md as deuteron mass. As
coordinate system a right-handed one is taken with z-axis
along the momentum k of the incoming photon and y-axis
along k × q. Thus, the outgoing pion defines the
scattering plane. Another plane is defined by the momenta
of the outgoing nucleons which we will call the nucleon
plane (see Fig. 5).

The fully exclusive differential cross section is given
by

d5σ

dΩpNN
dΩπ dq

=
ρs

6
∑
α

|M (tµ)
smmγ md

|2 , (6)

where the phase space factor ρs is expressed in terms of
relative and total momenta of the two final nucleons

ρs =
1

(2π)5

q2

16ωγ Mdωq

× p2
NNM2

N∣∣E2(pNN + 1
2 PNN cosθPpNN

)+E1(pNN− 1
2 PNN cosθPpNN

)
∣∣ .

(7)

4 The γd→ πNN amplitude

A plane wave impulse approximation usually serves as the

starting point to calculate the amplitude for electromagnetic

pion production on the deuteron [40,41,42,43] or on a nucleus

in general. It corresponds to a direct embedding of the

elementary amplitudes into the two-nucleon system. The general

form of the photoproduction transition matrix is given by

M
(tµ)
smmγ md

(k,q,p1,p2) =
(−)〈q µ,p1p2 smt−µ|εµ(mγ )

×Jµ (0)|dmd 00〉 , (8)

where Jµ (0) denotes the current operator and εµ(mγ ) the

photon polarization vector. The electromagnetic interaction

consists of the elementary production process on one of the

nucleons T
( j)

πγ ( j = 1,2) and in principle a possible irreducible

two-body production operator T
(NN)

πγ . The final πNN state is

then subject to the various hadronic two-body interactions as

described by an half-off-shell three-body scattering amplitude

T πNN . In the following, we will neglect the electromagnetic
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two-body production T
(NN)

πγ and the outgoing πNN scattering

state is approximated by the free πNN plane wave, i.e.,

|q µ,p1p2 smt−µ〉(−) = |q µ,p1p2 smt−µ〉 . (9)

This means, we include only the pure plane wave impulse

approximation (IA), which is defined by the electromagnetic

pion production on one of the nucleons alone, while a more

realistic treatment including final state interaction as well as

two-body effects will be reported in a forthcoming paper. Our

justification for such a procedure is the fact that the IA is the

primary process which will be gauged against all other effects.

For the spin (|sm〉) and isospin (|t − µ〉) part of the two

nucleon wave functions we use a coupled spin-isospin basis

|sm, t−µ〉. The antisymmetric final NN plane wave function

thus has the form

|p1,p2,sm, t−µ〉 = 1√
2

(
|p1〉(1)|p2〉(2)− (−)s+t |p2〉(1)|p1〉(2)

)

×|sm , t−µ〉 , (10)

where the superscript indicates to which particle the ket refers.

In the case of charged pions, only the t = 1 channel contributes

whereas for π0 production both t = 0 and t = 1 channels have to

be taken into account. Then, the matrix element is given by

M
(tµ)
smmγ md

(k,q,p1,p2) = 〈p1,p2,sm, t−µ|tNN
γπ (k,q)|dmd ,00〉

=
1

2

∫
d3 p′1
(2π)3

∫
d3 p′2
(2π)3

M2
N

E ′1E ′2
×∑

m′
〈p1p2,sm, t−µ| tNN

γπ (k,q)|p ′1p ′2,1m′,00〉

×〈p ′1p ′2,1m′,00|dmd , 00〉 (11)

with

tNN
γπ (k,q) = t

N(1)
γπ (k,q)+ t

N(2)
γπ (k,q) , (12)

where t
N( j)
γπ denotes the elementary production amplitude on

nucleon “ j”. As mentioned above, we use covariant

normalization for the nucleon, deuteron and meson states, i.e.,

〈p ′|p〉 = (2π)3 Ep

MN
δ 3

(
p ′−p

)
,

〈d ′|d〉 = (2π)32Ed δ 3 (d ′−d) ,

〈q ′|q〉 = (2π)3 2ωq δ (q ′−q) . (13)

The deuteron wave function has the form

〈p1p2,1m, 00|dmd ,00〉 = (2π)3δ 3(d−p1−p2 )

×
√

2E1E2

MN
Ψ̃m,md

(pNN) (14)

with

Ψ̃m,md
(p) = (2π)

3
2

√
2Ed ∑

L=0,2
∑
mL

iL CL11
mLmmd

uL(p)YLmL
( p̂) , (15)

denoting with C
j1 j2 j
m1m2m a Clebsch-Gordan coefficient, uL(p) the

radial deuteron wave function and YLmL
( p̂) a spherical

harmonics. Using (12) one finds in the laboratory system for the

matrix element the following expression

M
(tµ)
smmγ md

(k,q,p1,p2) =
√

2∑
m′
〈sm, t−µ|

×
(
〈p1|tN(1)

γπ (k,q)|−p2〉Ψ̃m′,md
(p2)

−(−)s+t(p1↔ p2)
)
|1m′, 00〉 . (16)

Note, that in (16) the elementary production operator acts on

nucleon “1” only. This matrix element possesses the obvious

symmetry under the interchange of the nucleon momenta

M
(tµ)
smmγ md

(k,q,p2,p1) = (−)s+t+1
M

(tµ)
smmγ md

(k,q,p1,p2) . (17)

Choosing the z-axis in the direction of the incoming photon

and isolating the azimuthal dependence of the direction of pion

momentum, we obtain the following general form for the reaction

matrix

M
(tµ)
sm,mγ md

(k,q,p1,p2) = T
(tµ)

sm,mγ md
(k,q,θπ ,p1,p2) ei(mγ+md)φπ .

(18)

Using parity conservation one can shows, that the reduced T -

matrix elements obey the following symmetry relation

T
(tµ)

s,−m,−mγ ,−md
= (−)s+m+mγ+md T

(tµ)
s,m,mγ ,md

. (19)

This symmetry relation reduces the number of complex

amplitudes from 24 to 12 independent ones. For their

determination one needs 23 real observables since a overall

phase remains arbitrary.

5 Polarization observables

Polarization observables will give additional valuable

information for checking the spin degrees of freedom of the

elementary pion production amplitude of the neutron, provided,

and this is very important, that one has under control all

interfering interaction effects which prevent a simple extraction

of this amplitude. For the definition of these observables in

terms of the transition matrix elements we refer the reader

to [44], in which all possible polarization observables in

d(γ ,N)N with polarized photon beam and/or oriented deuteron

target are derived. We briefly recall here the necessary notations

and definitions.

The cross section for arbitrary polarized photons and initial

deuterons can be computed for a given M -matrix by applying

the density matrix formalism similar to that given by

Arenhövel [44] for deuteron photodisintegration. The most

general expression for all possible polarization observables is

given by

O = Tr (M † Ω M ρ)

= ∑
αα ′

∫
dΩpNN

ρs M
(t ′µ ′) ⋆
s′m′,m′γ m′d

s′m′sm M
(tµ)
sm,mγ md

× ρ
γ
mγ m′γ

ρd
md m′d

, (20)

where we have introduced as a shorthand for the quantum

numbers α ′ = (s′,m′, t ′,m′γ ,m
′
d). ρ

γ
mγ m′γ

and ρd
md m′d

denote the

density matrices of initial photon polarization and deuteron

orientation, respectively, s′m′sm is an operator associated with

the observable, which acts in the two-nucleon spin space and ρs

is a phase space factor given in (7). For further details we refer

to [44,45].

As is shown in [44] all polarization observables can be

expressed in terms of the quantities

VIM =
1

2
√

3
∑

m′d md

∑
smt,mγ

(−)1−m′d
√

2I +1

(
1 1 I

md −m′d −M

)

×
∫

dΩpNN
ρs M

(tµ) ⋆
sm,mγmd

M
(tµ)
sm,mγ m′d

, (21)
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and

WIM =
1

2
√

3
∑

m′d md

∑
smt,mγ

(−)1−m′d
√

2I +1

(
1 1 I

md −m′d −M

)

×
∫

dΩpNN
ρs M

(tµ) ⋆
sm,mγ md

M
(tµ)
s−m,mγ−m′d

, (22)

where we use the convention of Edmonds [46] for the Wigner

3 j-symbols. These quantities have the symmetry properties

V ⋆
IM = (−1)M VI−M ,

W ⋆
IM = (−1)I WIM . (23)

The unpolarized differential cross section is then given by

d3σ

dΩπ dq
= V00 . (24)

The photon asymmetry for linearly polarized photons is given by

Σ
d3σ

dΩπ dq
= −W00 . (25)

The vector target asymmetry is given by

T11
d3σ

dΩπ dq
= 2 ℑmV11 . (26)

The tensor target asymmetries are given by

T2M
d3σ

dΩπ dq
= (2−δM0) ℜeV2M , M = 0,1,2 . (27)

The photon and target double polarization asymmetries are given

by

(i) Circular

T c
1M

d3σ

dΩπ dq
= (2−δM0) ℜeV1M , M = 0,1 ,

T c
2M

d3σ

dΩπ dq
= 2 ℑmV2M , M = 0,1,2 , (28)

(ii) Longitudinal

T ℓ
1M

d3σ

dΩπ dq
= i W1M , M = 0,±1 ,

T ℓ
2M

d3σ

dΩπ dq
= −W2M , M = 0,±1,±2 . (29)

Explicit expressions for unpolarized differential cross section

and single polarization observables which are predicted and

discussed in this work are given in terms of the transition matrix

elements in Appendix A.

6 Results and discussions

In order to do calculations for pion photoproduction on the

deuteron we have to chosen two ingredients for our model: the

deuteron wave function and the operator for pion production on

a single nucleon.

A large variety of deuteron wave functions is available.

They range from simple Hulthén or Yamaguchi-type wave

functions to wave functions obtained from modern NN

potentials. The contribution to the pion production amplitude
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Fig. 6: The π-meson spectra in the d(γ ,π)NN reaction as

a function of the absolute value of pion momentum q at a

photon energy of 330 MeV for four different values of emission

pion angles θπ . The solid curves show the results of the full

calculations while the dotted curves represent the results when

only the ∆ (1232)-resonance is taken into account. The left,

middle and right panels represent the results for γd → π−pp,

π+nn and π0np, respectively.

in (16) is evaluated by taking a realistic NN potential model for

the deuteron wave function. For our calculations we have used

the wave function of the Paris potential [47], which is in

excellent agreement with NN scattering data [48].

The most important ingredient of the model is the operator

for pion photoproduction on a single nucleon. This operator is

obtained in this work by computing the nonrelativistic reduction

of the amplitudes for the Feynman diagrams in Fig. 1. As already

seen in section 2, that our calculations for the elementary process

are in good agreement with recent experimental data as well as

with other theoretical predictions and gave a clear indication that

this elementary operator is quite satisfactory for our purpose.

The discussion of our results is divided into four parts. First,

we will discuss the π-meson spectra as a function of the

absolute value of pion momentum q at forward and backward

emission pion angles θπ for photon energy at the

∆ (1232)-resonance region, i.e. ω lab
γ = 330 MeV. In the second

part, we will then consider the photon asymmetry Σ for linearly

polarized photons. Our results for the vector target asymmetry

T11 will be presented in the third part. In the last part, we will

discuss our results for the tensor target asymmetries T20, T21,
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Fig. 7: Photon asymmetry Σ of d(γ ,π)NN. Notation of the

curves as in Fig. 6.

and T22. In all parts, we will give a calculations for all the three

isospin channels of the d(γ ,π)NN reaction. For comparison, we

will always present the results for the full calculation and the

results when only the ∆ (1232)-resonance contribution is taken

into account.

All the above mentioned observables are calculated, as seen

in Appendix A, by integrating over the polar angle θpNN
and the

azimuthal angle φpNN
of the relative momentum pNN of the two

outgoing nucleons. These integrations are carried out

numerically. The number of integration points was being

increased until the accuracy of calculated observable becomes

good to 1%.

6.1 The π-meson spectra

We start our discussion with the π-meson spectra, i.e., the

unpolarized differential cross section d3σ/(dΩπ dq) which

comes from the fully exclusive differential cross section

d5σ/(dΩπ dqdΩpNN
) by integrating over ΩpNN

. In Fig. 6 we

depict our results for the π-meson spectra as a function of the

absolute value of pion momentum q at four different values of

emission pion angles θπ for each isospin channel of the

γd → πNN reaction for ω lab
γ = 330 MeV. One sees, that when

the absolute value of pion momentum q reaches its maximum,
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Fig. 8: Vector target asymmetry T11 of d(γ ,π)NN. Notation of

the curves as in Fig. 6.

the absolute value of the relative momentum pNN of the two

outgoing nucleons vanishes, and thus a narrow peak is appears

in the forward emission pion angles for charged as well as for

neutral pion photoproduction channels. In the lower part of

Fig. 6 we see, that the unpolarized differential cross section is

small and the narrow peak which appears at forward emission

pion angles is disappears. The same effect appears in the

coherent process of charged pion photo- and electroproduction

on the deuteron [49,50], in deuteron electrodisintegration [51]

as well as in η-photoproduction [52]. It is also clear that the

maximum value of q (when pNN → 0) is decreases with

increasing the emission pion angle. It changes from ∼ 300 MeV

at forward emission angles to ∼ 200 MeV at backward ones. In

principle, the experimental observation of this peak in the high

π-momentum spectrum may serve as another evidence for the

understanding of the π-meson spectra.

In conclusion, one notes that the contributions from Born

terms are important for charged pion production channels but

these are much less important in the case of neutral pion

production.
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Fig. 9: Tensor target asymmetry T20 of d(γ ,π)NN. Notation of

the curves as in Fig. 6.

6.2 Photon asymmetry

Here we discuss our results for the photon asymmetry Σ for

linearly polarized photons for all the different charge states of

the pion of d(γ ,π)NN. The γ-asymmetry for fixed pion angles

of 10◦, 60◦, 120◦, and 150◦ are plotted in Fig. 7 as a function of

the absolute value of pion momentum q at ω lab
γ = 330 MeV. The

dotted curves show the contribution of the ∆ (1232)-resonance

alone in order to clarify the importance of the Born terms. First

of all, we see that the photon asymmetry has always a negative

values at forward and backward emission pion angles for

charged as well as for neutral pion channels. One notes

qualitatively a similar behaviour for charged pion channels

whereas a totally different behaviour is seen for the neutral pion

channel.

For extreme forward and backward pion angles one sees,

that the effect of Born contributions is relatively small in

comparison to the results at θπ = 60◦ and 120◦ . At 60◦ we see a

strong reduction of the photon asymmetry at maximum pion

momentum. This reduction changes to an overestimation at

backward pion angles. One notices also, that the contributions

from Born terms are much important, in particular at q ≃ 200

MeV which is very clear for charged pion channels. We observe

that the interference of the Born terms with the

∆ (1232)-resonance contribution causes considerable changes in
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Fig. 10: Tensor target asymmetry T21 of d(γ ,π)NN. Notation of

the curves as in Fig. 6.

the photon asymmetry. Experimental measurements as well as

other theoretical predictions will give us more valuable

information on the photon asymmetry.

6.3 Vector target asymmetry

In this subsection we present and discuss our results for the

vector target asymmetry T11. Fig. 8 shows these results as a

function of the absolute value of pion momentum q at four

different values of pion angles θπ for ω lab
γ = 330 MeV. The

asymmetry T11 clearly differs in size between charged and

neutral pion photoproduction channels, being even opposite in

phase. For charged pion photoproduction reactions we see from

the left and middle panels of Fig. 8, that the vector target

asymmetry has always a negative values. At forward pion angles

these values come mainly from the Born terms since a small

contribution from the ∆ -resonance was found. At backward

angles, the negative values come from an interference of the

Born terms with the ∆ (1232)-resonance contribution since the

∆ -contribution is large in this case.

With respect to the neutral pion photoproduction reaction,

we see from the solid curves of the right panel of Fig. 8, that the

vector target asymmetry T11 has a very small negative values at

smaller pion momentum and a relatively large positive values at
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Fig. 11: Tensor target asymmetry T22 of d(γ ,π)NN. Notation of

the curves as in Fig. 6.

higher pion momentum. It is interesting to point out the

importance of the Born terms in the charged pion production

reactions in comparison to the contribution of the

∆ (1232)-resonance. The sensitivity of T11 to the Born terms has

also been discussed by Blaazer et al. [53] and Wilhelm and

Arenhövel [54] for the coherent pion photoproduction reaction

on the deuteron. The reason is that T11 depends on the relative

phase of the matrix elements as can be seen from (21) and (26).

It would vanish for a constant overall phase of the t-matrix, a

case which is approximately realized if only the

∆ (1232)-amplitude is considered.

6.4 Tensor target asymmetries

Let us present and discuss now the results of the tensor target

asymmetries T20, T21, and T22 for d(γ ,π)NN. We start from the

tensor asymmetry T20. For γd→ πNN at forward and backward

emission pion angles, the asymmetry T20 allows one to draw

specific conclusions about details of the reaction mechanism.

Results for T20 are plotted in Fig. 9 at four different values of

pion angles as a function of the absolute value of pion

momentum q for ω lab
γ = 330 MeV. The dotted curves represent

our results for the contribution of the ∆ (1232)-resonance and the

solid ones show the results when the Born terms are included. In

general, one notes again the importance of Born terms in the

case of charged pion photoproduction channels (see the left and

middle panels of Fig. 9). In the case of neutral pion production

channel (right panel of Fig. 9) one sees, that the Born terms are

important only at extreme forward pion angles. One sees also

that the contribution of Born terms is very small for backward

pion angles and higher pion momentum, but it is relatively large

for small pion momentum.

Fig. 10 shows our results for the tensor target asymmetry

T21 as a function of q for fixed pion angles θπ = 10◦, 60◦, 120◦,
and 150◦ at ω lab

γ = 330 MeV. The dotted curves are due to

calculations done without the inclusion of the Born terms. One

notices that the T21 asymmetry is sensitive to Born terms, in

particular at forward pion angles. Also in this case one notes the

importance of Born terms in the case of charged pion

photoproduction reactions, in particular at smaller pion

momentum. In the case of π0 channel one sees that the

contribution of Born terms is much less important at all angles.

In Fig. 11 we depict our results for the tensor target

asymmetry T22 as a function of q. We have used here the same

four values of pion angle θπ as in the previous figures. One

readily notes the importance of Born terms, in particular for

charged pion channels. Like the results of Figs. 9 and 10, the T22

asymmetry is sensitive to the values of pion angle θπ . We notice

that the T22 asymmetry changes dramatically if only the

∆ -contribution is taken into account. At θπ = 60◦ we see that

the Born terms are very important, especially for charged pion

photoproduction channels. In the case of neutral pion production

channel these terms are much less important.

7 Conclusions

In this paper we have studied incoherent single pion

photoproduction on the deuteron in the ∆ (1232)-resonance

region with special emphasis on polarization observables. The

γd→ πNN scattering amplitude is given as a linear combination

of the on-shell matrix elements of pion photoproduction on the

two nucleons. For the elementary pion photoproduction operator

an effective Lagrangian model is used which is based on

time-ordered perturbation theory and describes well the

elementary γN→ πN reaction.

Particular attention was paid to π-meson spectra as well as

single polarization observables. We have presented results for

the unpolarized differential cross section d3σ/dΩπ dq, photon

asymmetry Σ for linearly polarized photons, vector target

asymmetry T11 and tensor target asymmetries T20, T21, and T22.

As already noticed in the discussion above, we found that

interference of Born terms and the ∆ (1232)-contribution plays a

significant role. Unfortunately, there are no experimental data

available to be compared to the observables we computed.

We would like to conclude that the results presented here for

polarization observables in the d(γ ,π)NN reaction in the

∆ -resonance region can be used as a basis for the simulation of

the behaviour of polarization observables and for an optimal

planning of new polarization experiments of this reaction. It

would be very interesting to examine our predictions

experimentally.

Finally, we would like to point out that future improvements

of the present model should include further investigations
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including a three-body treatment of the final πNN system for

the lowest and most important partial waves. As future

refinements we consider also the use of a more sophisticated

elementary production operator, which will allow one to extend

the present approach to higher energies, and the role of

irreducible two-body contributions to the electromagnetic pion

production operator.

A Explicit expressions for polarization

observables

In this appendix we give the formal expressions for unpolarized

differential cross section and single polarization observables

which are presented and discussed in this paper. The 3-fold

unpolarized differential cross section is obtained from the fully

exclusive differential cross section (6) by integration over ΩpNN

d3σ

dΩπ dq
=

1

6
F (30)

with

F = ∑
α

∫
dΩpNN

ρs |M (tµ)
smmγmd

|2 . (31)

The photon asymmetry for linearly polarized photons is

given by

Σ =
dσ‖−dσ⊥

dσ‖+dσ⊥

=
2

F
ℜe ∑

s,m,t,md

∫
dΩpNN

ρs M
(tµ)
sm+1md

M
(tµ) ⋆
sm−1md

, (32)

where dσ‖(⊥) is the differential cross section for incoming

photons polarized parallel (perpendicular) to the reaction plane.

The vector target asymmetry T11 is given by

T11 =

√
6

F
ℑm ∑

s,m,t,mγ

∫
dΩpNN

ρs

[
M

(tµ)
smmγ−1−M

(tµ)
smmγ+1

]

×M
(tµ) ⋆
smmγ 0 . (33)

The tensor target asymmetries are expressed in terms of the

amplitudes as follows

T20 =
1√
2F

∑
s,m,t,mγ

∫
dΩpNN

ρs

[
|M (tµ)

smmγ+1|2 + |M
(tµ)
smmγ−1|2

−2 |M (tµ)
smmγ 0|2

]
, (34)

T21 =

√
6

F
ℜe ∑

s,m,t,mγ

∫
dΩpNN

ρs

[
M

(tµ)
smmγ−1−M

(tµ)
smmγ+1

]

×M
(tµ) ⋆
smmγ 0 , (35)

T22 =
2
√

3

F
ℜe ∑

s,m,t,mγ

∫
dΩpNN

ρs M
(tµ)
smmγ−1 M

(tµ) ⋆
smmγ+1 . (36)
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[24] H. Arenhövel, W. Leidemann, and E.L. Tomusiak, Z. Phys.

A 331, 509 (1988).

[25] F. Klein et al., in Proceedings of the 14th International

Conference on Particle and Nuclei, Williamsburg, 1996, ed.

C.E. Carlson and J.J. Domingo (World Scientific, Singapore,

1996) p. 21.
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