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Abstract: In this paper, we proposed two quadratic convergence numerical technique which are very accurate and fast for finding the

approximate solution of an initial value problem (IVP) of the linear as well as non-linear fractional differential equations (FDEs) of

arbitrary order ρ,where 0 < ρ ≤ 1. Here, our fractional derivative are taken in the Caputo sense. In this suggested work, we provides the

numerical solution which is comparatively faster and accurate than the Euler method (EM), Improved Euler method (IEM), and many

other linear, quadratic convergence methods. Also, here we have been found the numerical solution without the help of any kind of

linearisation, perturbations or any other assumptions. Illustrated example shows the numerical comparisons in sense of efficiency and

accuracy between the our proposed scheme and the exact solution, Euler method and the Improved Euler method of the IVP of FDEs.

Our both the proposed scheme Ralston’s method and Ralston’s method of minimum local error bound has quadratic convergence which

is more accurate and faster than the Euler method and Improved Euler method, while Improved Euler has also quadratic convergence

rate.

Keywords: Initial value problem, fractional world population growth model, fractional midpoint method, fractional Ralston’s

method, fractional Ralston’s method with minimum local error bound.

1 Introduction

The word fractional calculus (FC) indicates the generalization of differentiation and integration of arbitrary order which is
not necessarily the integer order. This fractional differential and integral have attracted many research field of engineering,
science, economics and many more. Some interesting research areas of fractional calculus can found in viscoelastic
theory, control theory, chaotic systems, electromagnetic waves, electronic chemicals fractal theory, nonlinear dynamical
systems and many more [1,2,3,4,5]. Nevertheless, the concept of fractional calculus arose when L’Hopital questioned
Leibniz about the differentiation of half-order in the year 1695. This inquiry marked the beginning of the exploration into
fractional calculus and its fascinating properties. In his reply, Leibniz wrote to L’Hopital dated 30 Sept, 1695, “This is an
apparent Paradox from which, one day, useful consequences will be drawn” [6,7,8]. Fractional calculus, after its initial
inquiry by L’Hopital and Leibniz in 1695, has undergone further generalization by several, mathematicians and eminent
researchers. In recent decades, the study of IVP of FDEs has garnered significant importance in comprehending various
physical phenomena. Numerous researchers have contributed to establishing the existence and uniqueness conditions for
IVPs of FDEs of arbitrary order [9,10,11].
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Now a days, developing the exact and numerical solution of IVP of FDEs of arbitrary order becomes a popular and
challenging research in the field of FDEs [12,13]. But a huge number of FDEs specially non-linear FDEs don’t have
exact solutions, so for that many author proposed the different numerical technique to find the approximate result of such
IVP of FDEs. These method includes variational iteration method [14,15], homotopy perturbation scheme, homotopy
analysis scheme [16], Adomain decomposition scheme [17,18,19], fractional differential transform scheme [20,21],
fractional finite difference scheme [22], fractional Adams scheme [23], spectral collocation scheme [24], and many
others. It is also found from the literature [17,18,19,20,21,22,23,24], some numerical scheme have some drawback
which enhance the derivative of Riemann Liouville. In our work, we provide some novel scheme to remove such
drawback.
In recent research, Kumar et al. introduced several numerical schemes to investigate the numerical solution of IVP
associated with FDEs [25,26,27]. One of these methods is the midpoint method, which exhibits quadratic convergence
rate. Additionally, Tong et al. [28] introduced an improved Euler method with a quadratic convergence rate. Apart from
these, from the last few decades many researchers proposed the several iterative numerical technique [29,30]. Here, in
our suggested work, we proposed the two new explicit numerical technique, one is Ralston method (RM)[31] and
another is Ralston method two stage with minimum local error bound (RME) [32,33,34] which is conventionally known
as Ralston method 1 and Ralston method 2. The suggested method has better approximation results in comparison to
fractional EM, fractional IEM and fractional midpoint method (MPM) for obtaining the numerical solution of FDEs
which is of the form,

C
D
ρ

a+
u = ̥(t,u), together with u(a) = u0, and t ∈ [a, tend]. (1)

Here, 0 < ρ ≤ 1 and CD
ρ

a+
represent the fractional order derivative in Caputo sense.

In this paper, our main objective is to propose two novel and accurate method for approximating the solution of the IVP
of FDEs (1). We aim to propose a method that can effectively handle FDEs and provide reliable results for various physical
and engineering problems. For that, we explore the two new scheme of single step such as RM and RME. In the classical
ODE, RME scheme was first proposed by Anthony Ralston in the year 1962 [32] and later one equivalent method was
found which is similar as RME which is conventionally know as RM [31]. These two method is the type of Runge-Kutta
second order method in which RME contains the minimum local error bound [32,35] compare to other RK2 method. With
this fact, now a question arises: can we have such method in the IVP of FDEs ? This question motivate us to establish
such accurate scheme for (1). Theses scheme encompasses the algorithm, convergence results, and numerical examples
for both linear and non-linear cases. It demonstrates the method’s accuracy, and versatility across various scenarios. These
methods also known as the type of RK2 method and this is explicit “One-Step” method.
This paper is structured as in the following manner. In Section 2, we state and provide some necessary result, definition
and properties of FDEs in both Riemann and Caputo derivative sense. In Section 3, we proposed our IVP of FDEs and
our two suggested algorithm Ralston method and Ralston method two stage with minimum local error bound and also we
prove the convergence of the suggested method and then the analysis of error of both scheme. In Section 4 , we gave four
example in which the first one is our real world example of world population growth model and then next three one are the
specific IVP of FDEs in linear as well as non-linear form which is estimated with figures and tables. In the final Section
5, we summarize and conclude our findings and contributions.

2 Preliminaries

In this section, we explore the basic of fractional differential and integral calculus, along with the Mittag-Leffler function.
These concepts serve as natural generalizations of ordinary calculus and have wide applications in various scientific and
engineering fields. We reference essential works such as [36,37,38,39,40,41,42,43,44,45,46,47] to provide
comprehensive insights into these topics, enabling us to advance our understanding of FC and its practical applications.

Definition 1. The Riemann-Liouville fractional order integral, defined for a function η ∈ (L1[a,b],R) with an arbitrary
order ρ > 0, can be expressed as:

I
ρ
a+η(ζ) =

1

Γ(ρ)

∫ ζ

a

(ζ − s)ρ−1η(s)ds, ζ > a,

and

I
ρ

b−η(ζ) =
1

Γ(ρ)

∫ b

ζ

(s− ζ)ρ−1η(s)ds, ζ < b.

These integrals are commonly referred to as the left and right Riemann-Liouville integrals, respectively.
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Definition 2. The Riemann-Liouville fractional order derivative applies to a function η ∈ (L1[a,b],R) with an order ρ > 0
and is given by:

RL
D
ρ
a+η(ζ) =

1

Γ(n−ρ)

dn

dζn

∫ ζ

a

(ζ − s)n−ρ−1η(s)ds, ζ > a,

and

RL
D
ρ

b−η(ζ) =
(−1)n

Γ(n−ρ)

dn

dζn

∫ b

ζ

(s− ζ)n−ρ−1η(s)ds, ζ < b.

These derivatives are referred as the left and right Riemann-Liouville derivatives, respectively. The value of n is integer
satisfying n−1 < ρ ≤ n. In the specific case when 0 < ρ < 1, the derivatives can be expressed as:

RL
D
ρ
a+η(ζ) =

1

Γ(1−ρ)

d

dζ

∫ ζ

a

(ζ − s)−ρη(s)ds, ζ > a,

and

RL
D
ρ

b−η(ζ) = − 1

Γ(1−ρ)

d

dζ

∫ b

ζ

(s− ζ)−ρη(s)ds, ζ < b.

Definition 3. The Caputo fractional order derivatives are applicable to a function η ∈ (L1[a,b],R) with an order ρ > 0, and
they are defined as follows:

C
D
ρ
a+η(ζ) =

1

Γ(n−ρ)

∫ ζ

a

(ζ − s)n−ρ−1ηn(s)ds, ζ > a,

and

C
D
ρ

b−η(ζ) =
(−1)n

Γ(n−ρ)

∫ b

ζ

(s− ζ)n−ρ−1ηn(s)ds, ζ < b.

These derivatives are known as the left Caputo and right Caputo fractional derivatives respectively, with n = 1+ [ρ]. In the
specific case of 0 < ρ < 1, the derivatives can be expressed as:

C
D
ρ
a+η(ζ) =

1

Γ(1−ρ)

∫ ζ

a

(ζ − s)−ρη′(s)ds, ζ > a,

and

C
D
ρ

b−η(ζ) = − 1

Γ(1−ρ)

∫ b

ζ

(s− ζ)−ρη′(s)ds, ζ < b.

The connection between the fractional order derivatives in the Caputo and Riemann-Liouville sense is established by the
following equations:

For the left-sided derivatives:

C
D
ρ
a+η(ζ) = RL

D
ρ
a+η(ζ)−

n−1
∑

k=0

η(k)(a)
(ζ −a)k−ρ

Γ(k−ρ+1)
,

For the right-sided derivatives:

C
D
ρ

b−η(ζ) = RL
D
ρ

b−η(ζ)−
n−1
∑

k=0

η(k)(b)
(b− ζ)k−ρ

Γ(k−ρ+1)
,

where n = 1+ [ρ].

Definition 4. The Mittag-Leffler function for the one and two parameter family are represented by

Eρ(ζ) =

∞
∑

k=0

ζk

Γ(ρk+1)
ζ ∈ C; ρ > 0,

and

Eρ,γ(ζ) =

∞
∑

k=0

ζk

Γ(ρk+γ)
ζ ∈ C; ρ,γ > 0,
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respectively.

Lemma 1. If ρ and γ are both non-negative, and ̥ is a function in the space L1 [a,b], then the following identities hold:

I
ρ

a+
I
γ

a+
g = I

ρ+γ

a+
g, I

ρ

b−I
γ

b−̥ = I
ρ+γ

b− ̥,

valid across the entire interval [a,b]. Furthermore, if ̥(t) is a continuous function on [a,b], or if ρ+ γ ≥ 1, then these
identities are valid throughout [a,b].

Lemma 2.[38] If ρ and γ are both positive such that there exists an integer m with m ≤ k, and ρ and ρ+γ lie within the
interval [m−1,m], and if g is a function in Ck[a,b] for some a < b and k ∈ N, then the equality holds:

C
D
ρ

a+
C
D
γ

a+
̥ = C

D
ρ+γ

a+
̥.

Theorem 1(Existence). [28] If the function ̥(t,u) satisfies the condition ̥(t0,u(t0)) = 0 and is continuous on the region
D : 0 ≤ t− t0 ≤ c, |u−u0| ≤ d, then the FDE,

C
D
ρ

a+
u = ̥(t,u), with u(a) = u0 and, t ∈ [a, tend], (2)

has at least one solution within the interval 0 ≤ t − t0 ≤ L, where L is the minimum value between c and
d

M
. Here, M

represents the maximum value of CD
1−ρ
a+
̥(t,u) for all possible (t,u) in the real domain.

Theorem 2(Uniqueness). [28] In connection with Theorem 1, if the function ̥t(t,u) satisfies the Lipschitz condition with
a Lipschitz constant P > 0, given by:

|̥t(t,u2)−̥t(t,u1)| ≤ P |u2−u1| ,
then the FDE (2) possess a unique solution.

3 Proposed Scheme

In this proposed study, our primary focus is on numerically solving the IVP of FDEs given by:

C
D
ρ

a+
u = ̥(t,u), with u(a) = u0, and t ∈ [a, tend]. (3)

To proceed with our numerical approach, we utilize Lemma 2 to perform an analogous transformation. This results in
obtaining the fractional order Caputo derivative of order (1−ρ):

u′ = C
D

1−ρ
a+
̥(t,u), with u(a) = u0, and t ∈ [a, tend]. (4)

To achieve an accurate numerical technique for solving the corresponding (3), we are interested in finding the
numerical solution of the IVP of FDEs (4). For this purpose, we have designed two numerical methods: Ralston’s
method (RM) and Ralston’s method with two stages and minimum local error bound (RME). These methods have
demonstrated higher accuracy and faster convergence compared to the existing methods EM and IEM.

3.1 Ralston Method of FDE

To obtain the approximate solution of (4) over the interval J = [a,b], we propose an algorithm known as the Ralston
method [31], which is a type of Runge-Kutta second-order scheme. The algorithm utilizes a set of equally spaced points
(tk,uk) within the interval J, where the step length is denoted as h = tk+1 − tk for k = 0 to N. The Ralston method scheme
is as follows:















































tk = t0+ kh for each k = 0 to N,

step length, h = tk+1 − tk,

uk+1 = uk +
h
3
(l1+2l2), where

l1 =
CD

1−ρ
a+
̥(t,uk)

∣

∣

∣t=tk ,

l2 =
C
D

1−ρ
a+
̥(t+ 3h

4
,uk +

3h
4

l1)
∣

∣

∣t=tk .

We use Matlab to demonstrate the efficiency and accuracy of the Ralston method algorithm. Before proceeding with the
convergence results of our proposed method, we will present a few relevant lemmas that will be instrumental in proving
the convergence.
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Lemma 3. [28] If the function ̥t(t,u) satisfies the Lipschitz condition with a Lipschitz constant P > 0, given by:

|̥t(t,u2)−̥t(t,u1)| ≤ P |u2−u1| ,

and also meets the conditions stated in Theorem 1, then the function G(t,u) = CD
1−ρ
a+
̥(t,u) also holds the Lipschitz

condition with another Lipschitz constant M > 0,

|G(t,u2)−G(t,u1)| ≤ M |u2−u1| .

Lemma 4. If the function G(t,u) satisfies the Lipschitz condition with respect to the variable u and also meets the
conditions stated in Theorem 1, then the expression

Θ =
1

3
G(t,u)+

2

3
G

(

t+
3h

4
,u+

3h

4
G(t,u)

)

also satisfies the Lipschitz condition.

Proof.

|Θ(t,u2)−Θ(t,u1)| ≤ 1

3
|G(t,u2)−G(t,u1)|+ 2

3

∣

∣

∣

∣

∣

∣

G
(

t+
3h

4
,u2+

3h

4
G(t,u2)

)

−G
(

t+
3h

4
,u1+

3h

4
G(t,u1)

)
∣

∣

∣

∣

∣

∣

≤
M

3
|u2−u1|+

2M

3
|u2−u1|+

hM2

2
|u2−u1|

= M

(

1+
hM

2

)

|u2−u1|

= PΘ |u2−u1| ,

So, |Θ(t,u2)−Θ(t,u1)| ≤ PΘ |u2−u1|, where PΘ = M(1+ hM
2

).

Theorem 3. Consider the function ̥t(t,u), which satisfies the Lipschitz condition with a Lipschitz constant P > 0:

|̥t(t,u2)−̥t(t,u1)| ≤ P |u2−u1| .

Let u(t) be the unique solution of (4). Suppose we use Ralston’s method to generate the approximation uk for each non-
negative integer k from 0 to N. Then for each k,

u (tk)−uk = O(h2).

Proof. Let the Ralston iterative scheme is based on uk = u(tk), we have

ūk+1 = u(tk)+
h

3

[

C
D

1−ρ
a+
̥(t,uk)

∣

∣

∣

∣

t=tk

+ 2 C
D

1−ρ
a+
̥

(

t+
3h

4
,uk +

3h

4
C
D

1−ρ
a+
̥ (t,uk)

∣

∣

∣

∣

t=tk

)
∣

∣

∣

∣

∣

∣

t=tk















.

Let us assume, G(t,u) = C
D

1−ρ
a+
̥(t,u), then

ūk+1 = u(tk)+
h

3

[

G (tk,uk)+2G
(

tk +
3h

4
,uk +

3h

4
u′(tk)

)]

= u(tk)+
h

3
G(tk,uk)+

2h

3

[

G(tk,uk)+
3h

4

(

Gt(tk,uk)+Gu(tk,uk)u′(tk)
)

+

1

2!

(

3h

4

)2
(

Gtt(ξ,η)+2u′(tk) Gtu(ξ,η)+
(

u′(tk)
)2Guu(ξ,η)

)















,

= u(tk)+hu′(tk)+
h2

2
u′′(tk)+

3h3

16

[

Gtt(ξ,η)+2u′(tk)Gtu(ξ,η)+
(

u′(tk)
)2Guu(ξ,η)

]

. (5)
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The exact form of the solution with the use of Taylor’s series:

u(tk+1) = u(tk)+hu′(tk)+
h2

2!
u′′(tk)+

h3

3!
u′′′(tk)+ . . . (6)

Using the expression (5) and (6), we get u(tk+1)− ūk+1 = O(h3).

So, |u(tk+1)− ūk+1| ≤ ch3.

Let us assume that, Θ = 1
3
G(t,u)+ 2

3
G

(

t+ 3h
4
,u+ 3h

4
G(t,u)

)

, then using the stated lemma (3) and (4), we have

|ūk+1−uk+1| ≤ |u(tk)−uk|+h |Θ(tk,u(tk))−Θ(tk,uk)| ,
≤ (1+hPΘ) |u(tk)−uk| .

Now, |u(tk+1)−uk+1| ≤ |u(tk+1)− ūk+1|+ |ūk+1−uk+1|
≤ ch3+ (1+hPΘ) |u(tk)−uk| .

So we get the estimation, |ǫk+1 | = (1+hPΘ) |ǫk |+ ch3. Thus, we get,

|ǫk | ≤ (1+hPΘ)k |e0|+
ch2

PΘ

[

(1+hPΘ)k −1
]

.

As, tk − t0 = hk, and ǫ0 = 0 then, (1+hPΘ)k ≤ ekhPΘ = ψΘ.

So we have, |ǫk| ≤ ch2

PΘ
(ψΘ−1).

Hence, u(tk)−uk = O(h2).
This signifies that order of convergence of Ralston’s method is quadratic.

3.2 Ralston Method with Minimum Local Error Bound of FDE

This is also a second order Runge-Kutta method which is proposed by Anthony Ralston[32] where the local error bound
of this scheme is minimum compare to other RK2 methods. According to RME, we obtain the following scheme for the
IVP of FDEs (4):















































tk = t0+ kh for each k = 0 to N,

step length, h = tk+1 − tk,

uk+1 = uk +
h
4
(l1+3l2), where

l1 =
CD

1−ρ
a+
̥(t,uk)

∣

∣

∣t=tk ,

l2 =
CD

1−ρ
a+
̥(t+ 2h

3
,uk +

2h
3

l1)
∣

∣

∣t=tk .

This scheme improves the accuracy and the algorithm is more appropriate and accurate. In addition of this, this algorithm
is better than the other numerical scheme of second order convergence for IVP (4) scheme and also in this scheme the
amount of computation is very less to obtain the accurate result.

Lemma 5. If the function G(t,u) satisfies the Lipschitz condition with respect to the variable u and also meets the
conditions stated in Theorem 1, then the expression

Θ =
1

4
G(t,u)+

3

4
G

(

t+
2h

3
,u+

2h

3
G(t,u)

)

also satisfies the Lipschitz condition.
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Proof:

|Θ(t,u2)−Θ(t,u1)| ≤ 1

4
|G(t,u2)−G(t,u1)|+ 3

4

∣

∣

∣

∣

∣

∣

G
(

t+
2h

3
,u2+

2h

3
G(t,u2)

)

−G
(

t+
2h

3
,u1+

2h

3
G(t,u1)

)
∣

∣

∣

∣

∣

∣

≤
M

4
|u2−u1|+

3M

4
|u2−u1|+

hM2

2
|u2−u1|

= M

(

1+
hM

2

)

|u2−u1|

= PΘ |u2−u1| ,

So, |Θ(t,u2)−Θ(t,u1)| ≤ PΘ |u2−u1|, where PΘ = M(1+ hM
2

).

Theorem 4. Consider the function ̥t(t,u), which satisfies the Lipschitz condition with respect to the variable u and a
Lipschitz constant P > 0:

|̥t(t,u2)−̥t(t,u1)| ≤ P |u2−u1| ,

Let u(t) posses the unique solution of (4). Suppose we use Ralston’s method to generate the approximation uk with
minimum local error bound for each non-negative integer k from 0 to N. Then, for each k,

u (tk)−uk = O(h2).

Proof. Based on the assumption that the Ralston iterative scheme has a minimum local error bound, and considering uk as
u(tk), then we have

ūk+1 = u(tk)+
h

4

[

C
D

1−ρ
a+
̥(t,uk)

∣

∣

∣

∣

t=tk

+3 C
D

1−ρ
a+
̥

(

t+
2h

3
,uk +

2h

3
C
D

1−ρ
a+
̥ (t,uk)

∣

∣

∣

∣

t=tk

)
∣

∣

∣

∣

∣

∣

t=tk















.

Let us assume, G(t,u) = C
D

1−ρ
a+
̥(t,u), then

ūk+1 = u(tk)+
h

4

[

G (tk,uk)+3G
(

tk +
2h

3
,uk +

2h

3
u′(tk)

)]

= u(tk)+
h

4
G(tk,uk)+

3h

4

[

G(tk,uk)+
2h

3

(

Gt(tk,uk)+Gu(tk,uk)u′(tn)
)

+

1

2!

(

2h

3

)2
(

Gtt(ξ,η)+2u′(tk) Gtu(ξ,η)+
(

u′(tk)
)2Guu(ξ,η)

)















= u(tk)+hu′(tk)+
h2

2
u′′(tk)+

h3

6

[

Gtt(ξ,η)+2u′(tk)Gtu(ξ,η)+
(

u′(tk)
)2Guu(ξ,η)

]

(7)

The exact form of the solution with the use of Taylor series:

u(tk+1) = u(tk)+hu′(tk)+
h2

2!
u′′(tk)+

h3

3!
u′′′(tk)+ . . . (8)

Using the expression (7) and (8), we get u(tk+1)− ūk+1 = O(h3).

So, |u(tk+1)− ūk+1| ≤ ch3.

Let us assume that, Θ = 1
4
G(t,u)+ 3

4
G

(

t+ 2h
3
,u+ 2h

3
G(t,u)

)

, then using the stated lemma (3) and (5), we have

|ūk+1−uk+1| ≤ |u(tk)−uk|+h |Θ(tk,u(tk))−Θ(tk,uk)|
≤ (1+hPΘ) |u(tk)−uk| .
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Now, |u(tk+1)−uk+1| ≤ |u(tk+1)− ūk+1|+ |ūk+1−uk+1|
≤ ch3+ (1+hPΘ) |u(tk)−uk| .

So, we get the estimation, |ǫk+1 | = (1+hPΘ) |ǫk |+ ch3.

Thus,

|ǫk | ≤ (1+hPΘ)k |e0|+
ch2

PΘ

[

(1+hPΘ)k −1
]

.

As, tk − t0 = hk, and ǫ0 = 0 then, (1+hPΘ)k ≤ ekhPΘ = ψΘ.

So we have, |ǫk| ≤ ch2

PΘ
(ψΘ−1).

Hence, u(tk)−uk = O(h2).
This signifies that order of convergence of the Ralston’s method with minimum local error bound is quadratic.

4 Numerical Discussion

In this part of section, we have considered four numerical examples IVP of FDEs and which are numerically investigated
with our proposed technique using Matlab. In such four problem, the first IVP of FDE is our world population growth
model and after that the next two IVP of FDEs are based on linear FDEs ant at the last one example is based on non-linear
FDE. Basically, we illustrate the numerical stability, convergence and order of EM, IEM, and our suggested algorithmic
RM and RME by the comparison of the exact and numerical solution of FDEs in both tabular and graphical form.

Example 1(Population Growth Model). Consider the IVP of a FDE for the population growth model as given in [48]:,

C
D
ρ

0+
�(t) = P�(t), t ≥ 0, (9)

�(0) =�0.

Here, the individuals population is denoted by �(t) at given time t, while P = B−M indicating the production rate in
which M is the mortality rate, and B is the birth rate. When ρ = 1, the model simplifies to the classical linear population
growth model. The classical model of population growth described by (9) has an exact solution given by:
�(t) =�0 exp(Pt), t ≥ 0.

However, in our fractional model, we observe that the statistical population data collected from various sources
matches well with our model for ρ = 1.39329875484. The fractional model of population growth described by (9) has an
exact solution given by:�(t) =�0 Eρ(Pt), t ≥ 0, where Eρ is the Mittag-Leffler function.

By applying our proposed numerical methodology, we obtain the numerical results for (9) with different values of ρ
and step length h = 1. The results are graphically illustrated in Figure 1 and Figure 2, and tabulated in Table 1 and 2.
Additionally, the absolute error is shown in Figure 3. It can be clearly seen that our suggested methods RM and RME
outperform EM and IEM in terms of accuracy.

Table 1: Numerical result of Example 1 for ρ = 1, 1.39329875484, and h = 1.

Exact EM IEM RM

Year �linear � f rac �EM |�EM −� f rac | �IEM |�IEM −� f rac| �RM |�RM −� f rac |
1920 1860.0000 1860.0000 1860.0000 0.0000 1860.0000 0.0000 1860.0000 0.0000

1930 2128.8597 1990.9106 1979.8511 11.0596 1989.1791 1.7315 1989.9802 0.9304

1940 2436.5826 2216.9054 2201.9843 14.9211 2215.1641 1.7413 2215.9724 0.9330

1950 2788.7863 2517.3204 2498.6957 18.6247 2515.5814 1.7390 2516.3880 0.9324

1960 3191.9004 2894.3102 2871.6952 22.6150 2892.5781 1.7320 2893.3795 0.9307

1970 3653.2840 3356.0765 3328.9598 27.1167 3354.3545 1.7219 3355.1482 0.9282

1980 4181.3597 3914.7154 3882.4076 32.3078 3913.0065 1.7090 3913.7904 0.9250

1990 4785.7679 4585.8060 4547.4431 38.3629 4584.1130 1.6930 4584.8850 0.9210

2000 5477.5422 5388.5478 5343.0767 45.4711 5386.8741 1.6737 5387.6315 0.9162

2010 6269.3112 6346.1698 6292.3229 53.8468 6344.5192 1.6505 6345.2593 0.9105

2020 7175.5290 7486.5286 7422.7899 63.7388 7484.9057 1.6229 7485.6250 0.9036
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Fig. 1: World population data from 1920 to 2018
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Fig. 2: Exact and numerical result of Example 1
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Table 2: Numerical result of Example 1 for ρ = 1, 1.39329875484, and h = 1.

Exact EM IEM RME

Year �linear � f rac �EM |�EM −� f rac| �IEM |�IEM −� f rac | �RME |�RME −� f rac |
1920 1860.0000 1860.0000 1860.0000 0.0000 1860.0000 0.0000 1860.0000 0.0000

1930 2128.8597 1990.9106 1979.8511 11.0596 1989.1791 1.7315 1990.3391 0.5715

1940 2436.5826 2216.9054 2201.9843 14.9211 2215.1641 1.7413 2216.3337 0.5717

1950 2788.7863 2517.3204 2498.6957 18.6247 2515.5814 1.7390 2516.7487 0.5717

1960 3191.9004 2894.3102 2871.6952 22.6150 2892.5781 1.7320 2893.7385 0.5717

1970 3653.2840 3356.0765 3328.9598 27.1167 3354.3545 1.7219 3355.5047 0.5717

1980 4181.3597 3914.7154 3882.4076 32.3078 3913.0065 1.7090 3914.1437 0.5718

1990 4785.7679 4585.8060 4547.4431 38.3629 4584.1130 1.6930 4585.2342 0.5718

2000 5477.5422 5388.5478 5343.0767 45.4711 5386.8741 1.6737 5387.9760 0.5718

2010 6269.3112 6346.1698 6292.3229 53.8468 6344.5192 1.6505 6345.5980 0.5718

2020 7175.5290 7486.5286 7422.7899 63.7388 7484.9057 1.6229 7485.9568 0.5718
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Fig. 3: Abs. error plot for Example 1

As of June 2018, The Census Bureau’s International Data Base estimated the world population to be around 7500
million, which closely aligns with our fractional model’s estimate when we assume ρ = 1.39329875484. The numerical
results obtained through RM and RME demonstrate higher accuracy and efficiency compared to other numerical schemes
like EM and IEM. This highlights the reliability and effectiveness of our proposed methodology in approximating the
population growth model.

Example 2. Consider the below IVP of linear FDE,

C
D
ρ

0+
u = t3, t ∈ [0,1], (10)

u(0) = 0.

For ρ = 0.5, exact solution of (10) is,

u(t) =
32

35
√
π

t3.5.
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With the assistance of the suggested methodology using Matlab, we have obtained the numerical results for ρ = 0.5
with a step length of h = 0.1. The graphical representation of the numerical and exact solutions of (10) is presented
in Figure 4, which shows a comparison between the suggested method, EM, and IEM. Tables 3 and 4 provide a detailed
comparison of the exact values, approximate values, and absolute errors obtained using EM, IEM, RM, and RME methods.
It is evident from the tables that the numerical solutions obtained from RM and RME are highly accurate and closely
approximate the exact solution of the problem. Figure 5 displays the absolute errors of EM, IEM, RM, and RME. It is
evident that RM and RME exhibit the minimum absolute error compared to EM and IEM, while IEM, RM, and RME
have the same order of convergence. Additionally, RME performs better than RM since RME incorporates a minimum
local error bound.

The estimated order of convergence (EOC) for EM, IEM, RM, and RME is summarized in Table 5 and depicted
graphically in Figure 6. The figure illustrates the linear convergence of EM (blue color) and the quadratic convergence
of IEM (magenta color), RM (red color), and RME (green color). Overall, the results demonstrate that our suggested
methods RM and RME offer quadratic convergence and are more accurate than EM and IEM. From the results obtained in
Example 2, we can conclude that both RM and RME are significantly more accurate compared to EM and IEM. Among
the two methods, RME exhibits even higher accuracy as it incorporates a minimum local error bound, surpassing all other
second-order convergence methods.

Similar conclusions can be drawn from the results of Example 3 and Example 4, where RM and RME once again
outperform EM and IEM in terms of accuracy and efficiency. RME consistently demonstrates superior accuracy due to its
minimum local error bound.

Table 3: Numerical result of Example 2 for ρ = 0.5 and h = 0.1.

EM IEM RM

x u uEM |u−uEM | uIEM |u−uIEM | uRM |u−uRM |
.00 .00000 .00000 .00000000 .00000 .00000000 .00000 .00000000

.10 .00016 .00000 .00016312 .00029 .00012234 .00019 .00002229

.20 .00185 .00057 .00127457 .00219 .00034023 .00192 .00007221

.30 .00763 .00380 .00382783 .00825 .00062204 .00777 .00013914

.40 .02088 .01270 .00817906 .02184 .00095565 .02110 .00021956

.50 .04559 .03097 .01462369 .04693 .00133401 .04590 .00031152

.60 .08631 .06289 .02341998 .08806 .00175233 .08672 .00041373

.70 .14803 .11323 .03480040 .15024 .00220713 .14856 .00052524

.80 .23622 .18724 .04897808 .23892 .00269568 .23687 .00064535

.90 .35674 .29059 .06615096 .35996 .00321579 .35752 .00077346

1.00 .51583 .42933 .08650468 .51960 .00376566 .51674 .00090912

Table 4: Numerical result of Example 2 for ρ = 0.5 and h = 0.1.

EM IEM RME

x u uEM |u−uEM | uIEM |u−uIEM | uRME |u−uRME |
.00 .00000 .00000 .00000000 .00000 .00000000 .00000 .00000000

.10 .00016 .00000 .00016312 .00029 .00012234 .00016 .00000774

.20 .00185 .00057 .00127457 .00219 .00034023 .00183 .00001185

.30 .00763 .00380 .00382783 .00825 .00062204 .00761 .00001501

.40 .02088 .01270 .00817906 .02184 .00095565 .02086 .00001767

.50 .04559 .03097 .01462369 .04693 .00133401 .04557 .00002002

.60 .08631 .06289 .02341998 .08806 .00175233 .08628 .00002214

.70 .14803 .11323 .03480040 .15024 .00220713 .14801 .00002409

.80 .23622 .18724 .04897808 .23892 .00269568 .23620 .00002590

.90 .35674 .29059 .06615096 .35996 .00321579 .35672 .00002761

1.00 .51583 .42933 .08650468 .51960 .00376566 .51580 .00002922
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Fig. 4: Exact and numerical result of Example 2
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Fig. 5: Abs. error plot for Example 2
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Table 5: Table of order for Example 2

EM IEM RM RME

n |u−uEM | EOC |u−uIEM | EOC |u−uRM | EOC |u−uRME | EOC

10 .086505 — .003766 — .000909 — .0018842235 —

20 .044194 .968913 .000941 2.001070 .000231 1.976364 .0004704861 2.00174617

40 .022332 .984723 .000235 2.000392 .000058 1.987750 .0001175692 2.00064236

80 .011225 .992425 .000059 2.000142 .000015 1.993707 .0000293875 2.00023330

160 .005627 .996228 .000015 2.000051 .000004 1.996790 .0000073465 2.00008403

320 .002817 .998118 .000004 2.000018 .000001 1.998371 .0000018366 2.00003009

640 .001410 .999060 .000001 2.000007 .000000 1.999177 .0000004591 2.00001073

1280 .000705 .999530 .000000 2.000002 .000000 1.999585 .0000001148 2.00000381
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Fig. 6: Order graph of Example 2

Example 3. Let us consider the following IVP of linear FDE [49]:

C
D
ρ

0+
u = −u, t ∈ [0.1,1], (11)

u(0.1) = Eρ(−(0.1)ρ).

For ρ = 0.5, exact solution of (11) is,
u(t) = Eρ(−tρ).

The numerical results of (11) for ρ = 0.5 with a step length of h = 0.1 are graphically presented in Figure 7. The exact and
approximate solutions are tabulated in Table 6 and Table 7 for comparison.

Moreover, the error plot in Figure 8 illustrates the absolute error of EM, IEM, RM, and RME. It is evident that RM
and RME demonstrate smaller absolute errors compared to EM and IEM. Additionally, the EOC for each method is listed
in Table 8. Figure 9 visually displays the convergence behavior of the numerical methods. The blue color indicates the
convergence of EM which is linear, while the magenta, red, and green colors signify the quadratic convergence of IEM,
RM, and RME, respectively. It is evident from the figure that EM has a linear, whereas IEM, RM, and RME exhibit a
faster quadratic convergence rate.
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Table 6: Numerical result of Example 3 for ρ = 0.5 and h = 0.1.

EM IEM RM

x u uEM |u−uEM | uIEM |u−uIEM | uRM |u−uRM |
.10 .72358 .72358 .00000000 .72358 .00000000 .72358 .00000000

.20 .64379 .61752 .02626440 .63966 .00412602 .64232 .00146708

.30 .59202 .55575 .03627234 .58687 .00514736 .59023 .00178836

.40 .55361 .51194 .04166479 .54805 .00556030 .55170 .00191094

.50 .52316 .47810 .04506071 .51739 .00576982 .52119 .00197107

.60 .49802 .45062 .04740149 .49213 .00589126 .49602 .00200514

.70 .47670 .42759 .04911376 .47073 .00596811 .47468 .00202636

.80 .45825 .40783 .05042033 .45223 .00601990 .45621 .00204049

.90 .44202 .39057 .05144943 .43596 .00605647 .43997 .00205038

1.00 .42758 .37530 .05228025 .42150 .00608327 .42553 .00205757

Table 7: Numerical result of Example 3 for ρ = 0.5 and h = 0.1.

EM IEM RME

x u uEM |u−uEM | uIEM |u−uIEM | uRME |u−uRME |
.10 .72358 .72358 .00000000 .72358 .00000000 .72358 .00000000

.20 .64379 .61752 .02626440 .63966 .00412602 .64336 .00042650

.30 .59202 .55575 .03627234 .58687 .00514736 .59153 .00048880

.40 .55361 .51194 .04166479 .54805 .00556030 .55310 .00050679

.50 .52316 .47810 .04506071 .51739 .00576982 .52264 .00051392

.60 .49802 .45062 .04740149 .49213 .00589126 .49751 .00051732

.70 .47670 .42759 .04911376 .47073 .00596811 .47618 .00051915

.80 .45825 .40783 .05042033 .45223 .00601990 .45773 .00052022

.90 .44202 .39057 .05144943 .43596 .00605647 .44150 .00052090

1.00 .42758 .37530 .05228025 .42150 .00608327 .42706 .00052134
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Fig. 7: Exact & approximate solution of Example 3

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 4, 545-564 (2023) / www.naturalspublishing.com/Journals.asp 559

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06
Abs. Error Plot

Abs.error of Euler

Abs. error of Improved Euler

Abs. error of Raltson

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

Abs. error of Euler

Abs. error of Improved

Abs.error of Raltson with minimum error bound

Fig. 8: Abs. error plot for Example 3

Table 8: Table of order for Example 3

EM IEM RM RME

n |u−uEM | EOC |u−uIEM | EOC |u−uRM | EOC |u−uRME | EOC

15 .065838 — .003230 — .001596 — .0009330781 —

30 .033717 .965436 .000817 1.983248 .000407 1.970917 .0002209644 2.07818372

60 .017062 .982680 .000205 1.995398 .000102 1.991965 .0000533592 2.05000516

120 .008582 .991370 .000051 1.998817 .000026 1.997931 .0000130857 2.02774084

240 .004304 .995698 .000013 1.999702 .000006 1.999479 .0000032387 2.01452211

480 .002155 .997853 .000003 1.999925 .000002 1.999869 .0000008055 2.00741740

960 .001078 .998928 .000001 1.999981 .000000 1.999967 .0000002009 2.00374679

1920 .000539 .999464 .000000 1.999995 .000000 1.999992 .0000000501 2.00188327

Example 4. Let us consider the following IVP of nonlinear FDE:

C
D
ρ

1+
u =

(

Γ(4.5)

6

)
6
7

u
6
7 , t ∈ [1,2], (12)

u(1) =
6

Γ (4.5)
.

For ρ = 0.5, exact solution of (12) is,

u(t) =
6

Γ(4.5)
t

7
2 .

The numerical results of (12) for ρ= 0.5 with a step length of h= 0.1 are depicted in Figure 10. The exact and approximate
solutions are presented in Table 6 and Table 10 for comparison.

Additionally, the error plot in Figure 11 shows the absolute error of EM, IEM, RM, and RME. It is evident that RM
and RME exhibit smaller absolute errors compared to EM and IEM. The EOC for each method is provided in Table 11.
Figure 12 visually displays the convergence behavior of the numerical methods. The blue color indicates the convergence
of EM which is linear, while the magenta, red, and green colors signify the quadratic convergence of IEM, RM, and RME,
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Fig. 9: Order graph of Example 3

respectively. It is evident from the figure that EM has a linear, whereas IEM, RM, and RME exhibit a faster quadratic
convergence rate.

Table 9: Numerical result of Example 4 for ρ = 0.5 and h = 0.1.

EM IEM RM

x u uEM |u−uEM | uIEM |u−uIEM | uRM |u−uRM |
1.00 .51583 .51583 .00000000 .51583 .00000000 .51583 .00000000

1.10 .72008 .69637 .02370993 .71795 .00212908 .71818 .00190563

1.20 .97643 .92007 .05635703 .97154 .00488883 .97206 .00437240

1.30 1.29214 1.19303 .09911207 1.28381 .00832293 1.28470 .00743877

1.40 1.67477 1.52163 .15313726 1.66230 .01247259 1.66363 .01114106

1.50 2.13219 1.91261 .21958539 2.11482 .01737686 2.11668 .01551372

1.60 2.67256 2.37296 .29959937 2.64948 .02307300 2.65197 .02058958

1.70 3.30429 2.90998 .39431192 3.27469 .02959667 3.27789 .02640011

1.80 4.03609 3.53124 .50484549 3.99911 .03698208 4.00311 .03297551

1.90 4.87691 4.24460 .63231224 4.83165 .04526220 4.83656 .04034487

2.00 5.83596 5.05814 .77781415 5.78149 .05446886 5.78742 .04853629
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Table 10: Numerical result of Example 4 when ρ = 0.5 and h = 0.1.

EM IEM RME

x u uEM |u−uEM | uIEM |u−uIEM | uRME |u−uRME |
1.00 .51583 .51583 .00000000 .51583 .00000000 .51583 .00000000

1.10 .72008 .69637 .02370993 .71795 .00212908 .71825 .00182808

1.20 .97643 .92007 .05635703 .97154 .00488883 .97224 .00419342

1.30 1.29214 1.19303 .09911207 1.28381 .00832293 1.28500 .00713272

1.40 1.67477 1.52163 .15313726 1.66230 .01247259 1.66409 .01068063

1.50 2.13219 1.91261 .21958539 2.11482 .01737686 2.11732 .01487005

1.60 2.67256 2.37296 .29959937 2.64948 .02307300 2.65282 .01973234

1.70 3.30429 2.90998 .39431192 3.27469 .02959667 3.27899 .02529752

1.80 4.03609 3.53124 .50484549 3.99911 .03698208 4.00449 .03159445

1.90 4.87691 4.24460 .63231224 4.83165 .04526220 4.83826 .03865090

2.00 5.83596 5.05814 .77781415 5.78149 .05446886 5.78946 .04649372
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Fig. 10: Analytical & approximate solution of Example 4

Table 11: Table of order for Example 4

EM IEM RM RME

n |u−uEM | EOC |u−uIEM | EOC |u−uRM | EOC |u−uRME | EOC

10 .777814 — .054469 — .048536 — .046493724 —

20 .414226 .909007 .014722 1.887456 .013007 1.899750 .012425634 1.9037164

40 .213974 .952986 .003831 1.942365 .003369 1.949119 .003213153 1.9512578

80 .108774 .976105 .000977 1.970811 .000857 1.974362 .000817060 1.9754746

160 .054843 .987954 .000247 1.985308 .000216 1.987130 .000206014 1.9876980

320 .027537 .993952 .000062 1.992629 .000054 1.993552 .000051724 1.9938391

640 .013797 .996970 .000016 1.996308 .000014 1.996773 .000012958 1.9969170

1280 .006906 .998483 .000004 1.998152 .000003 1.998386 .000003243 1.9984579
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Fig. 11: Abs. error plot for Example 4
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Fig. 12: Order graph of Example 4
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5 Conclusion

Through out the present paper, we focused the two new technique RM and RME which is conventionally known as the
Ralston method 1 and Ralston method 2 where both the method has quadratic convergence rate. The method presented
in this paper is designed to compute the numerical solution of the IVP of FDEs with arbitrary order ρ, where 0 < ρ ≤ 1.
To achieve this, we transform the Caputo fractional derivative into a classical fractional derivative of order one and
apply the proposed numerical scheme to the revised FDEs. This transformation allows us to handle the fractional order
derivatives in a way that is amenable to classical numerical techniques, enabling accurate approximation of the solutions.
From our proposed scheme and numerical result, we recommend that is is more fast, and accurate compare to other
linear convergence method like EM and quadratic convergence method like IEM, while our both methods has quadratic
convergence rate. Also, we conclude that RME is fast and accurate compare to RM as RME has minimum local error
bound in the comparison of all quadratic convergence method. We also conduct a comparative study between our proposed
method and existing methods such as EM and IEM for the world growth model of population. Through this study, we aim
to highlight the advantages of our proposed schemes, RM and RME, in solving FDEs.

The main advantages of our proposed schemes, RM and RME, can be summarized as follows:

• Our both method are more accurate, and comparatively fast comparing to other numerical technique like EM and
IEM.
• Our work gives an idea to apply the analogously transform of the arbitrary FDEs into a classical ODE.
• The way of computation is quite well compare to other scheme and we can get more appropriate results by increasing
the mesh points.

In conclusion, our proposed algorithms have demonstrated their effectiveness in obtaining numerical solutions for
IVPs of FDEs. These methods have found accurate and faster.
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