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Abstract: Subdivision is one of the most important aspects of graph theory as it enables us to calculate the properties of some
complicated graphs using some of the easier graphs. To understand the different properties of chemicals, laboratory tests must be
performed, and this is extremely expensive. To overcome this problem, many topological indices in theoretical chemistry have been
introduced and defined. In this paper, we calculate the eccentric Zagreb indices for the subdivision graphs of some graphs. Also, these

indices were examined in their predictability of the boiling point of the chemical compounds.
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1 Introduction

Let G = (V,E) be a finite simple connected graph consists
of a set of objects V(G) called vertices, and another set
E(G) whose elements are called edges. The set N(v) of all
neighbors of v € V(G) is called the open neighborhood of
v. Thus N(v) = {u € V(G) :uv € E(G)}. The degree d(u)
of a vertex u in G is define as dg(u) = |[N(v)|. The distance
dg(u,v) between two vertices in a graph G is the length of
the shortest path joining them [1]. For a vertex v € V(G)
its eccentricity £(v) defined as

&6(v) = max,cycydc (v, u)
. The diameter of G is
D(G) = max,cy (G)€c(v)
and the radius of G is
r(G) = minyey(G)€c(v)

. Hence r(G) < gg(u) < D(G), for every u € V(G). We
use the characters Cy,K; 4,S,+1,W,41,K, for the cycle,

compete bipartite, star, wheel, complete graph
respectively. Chemical graph theory is one of the
branches of mathematical chemistry, as it is important and
necessary for a better understanding and explanation of
the nature of the chemical structure. By IUPAC
terminology, a topological index is a numerical value
correlation of chemical structure with different physical
and chemical properties. In an exact phrase, topological
indices are numerical parameters of the graph, such that
these parameters are the same for the graph which they
are isomorphism. We refer to [2,3,4,5,6,7,8,9,10,11,15,
16,17,18] for some characteristics related to topological
indices of graphs and molecular graphs. The beginning of
topological indices was when chemist Wiener 1947 found
the first topological index, known as the Winner index
[12], to search for boiling points of chemical component
and defined as

) dG(uv V)'
{u,v}eV(G)
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Vukicevi¢ et al. [13] and Ghorbani et al. [14] introduced
eccentricity Zagreb indices which are defined as:

MT(G): Z (ec(u) +e6(v)),

uveE(G)

M5(G)= Y, ec(u)ec(v),

uveE(G)

M (G) = Y &)

veV(G)

In this research work, we calculate the eccentric Zagreb
indices for the subdivision of some graphs, and these
indices were examined in their predictability of the
boiling point of the chemical compounds. Also, we
compare the correlation coefficient of eccentric Zagreb
indices with a correlation coefficient of the Wiener index
which is considered as the first index used to predict the
boiling point of the chemical compound.

2 Eccentric Zagreb Indices for the
Subdivision of Some Graphs

Subdivision is one of the most important aspects of graph
theory as it enables us to calculate the properties of some
complicated graphs using some of the easier graphs.
Topological indices have become popular due to their
application in chemistry in studying some chemical and
physical properties of compounds or in related fields. In
this section, we calculate eccentric Zagreb indices for the
subdivision of some graphs.

Theorem 1.For any cycle graph Cy,, n > 3 vertices
M{(S(C)) = 4n®, M53(S(Cy)) = M*(S(Ca)) =20

Proof.Let C, be a cycle, with n > 3 vertices.

Then S(C,) = Cy,. So, the subdivision of C, has 2n
vertices. Thus, for any v € V(S(C,,)) we get, &g(c,)(v) = n.
Hence,

M{(S(Ca)) = 4n”, M3(S(Ca)) = Mi*(S(C)) = 2n°.

Theorem 2.Ler S(S,11) be the subdivision of star graph
Sy+1, r > 3 vertices. Then

MT(S(SrJrI)) = 12r, Mg(S(SrJrl)) =18r,
Mf*(S(SH,l)) =25r+4.

ProofLet S(S,+1) be the subdivision of star graph S, ,
r > 3 vertices. For any v € V(S(S,;+1)) we have,
2, if u is the center vertex;

3,ifds,,,(v) =2;

4, if u is pendent vertex.

Hence, by using the definition of eccentric Zagreb indices
we get the required.

es(s,1) (V) =

Theorem 3.Let S(K.,) be the subdivision of compete
bipartite graph K. 4 , c,d > 2. Then

M3 (S(Ke)) = 16d, M3 (S(Kea)) = 32¢d,
M{*(S(Keq)) = 16(cd +c+d).

ProofLet S(K. 4) be the subdivision of compete bipartite

graph K. 4 , ¢,d > 2. Note that, D(S(K. 4)) = r(S(Kcq)) =

&s(k, ) (V) = 4. Hence, S(K. 4) is self-centered graph and

by using the definition of eccentric Zagreb indices we get
the following:

Mi (S(Kea)) = 16¢d, M;(S(Kea)) = 32¢d,
M7 (S(Keq)) = 16(cd+c+4d).
Theorem 4.For the complete graph K, n > 4 vertices
M (S(Ky)) = Tn(n = 1), My(S(K,)) = 12n(n—1),
Mi*(S(K,)) =n(8n+1).

ProofLet K, be complete graph with n > 4 vertices. Let
A be the set of all original vertices, and B be the set of
entering vertices of S(K,). Hence,

3,ifucA;
Es(k) (V) = { 4,ifu € B.
And,

Mi(S(Kn)) =Tn(n—1), My(S(Ky)) = 12n(n—1),
M (S(K,)) = n(8n+1).

The wheel graph W, | with n+ 1 vertices is defined to be
the join of K and C,,, where K| is the complete graph with
one vertex and C,, is the cycle graph.

Theorem 5.For the wheel graph W, .1, n > 6
Mi(S(Wat1)) = 38n, My (S(Wai1)) = 92n,
M5 (S(Wpt1)) =TTn+9.
Proof.Let W,; | be the wheel graph with n > 6. Let w be
the center vertex, A be the set of original vertices on the

cycle, and B be the set of entering vertices on the cycle of
the graph S(W,,41). Hence,

3, ifu=w;
4, if uw € E(S(Wis1));
&M =95 ifuen
6,ifueB.
And,

M (S(Wns1)) = 38n, M3(S(Way1)) = 92n,

M3 (S(Wpi1)) = TTn +9.
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Table 1: Eccentric Zagreb indices with Wiener index of primary amines.

I Compound | M;(G) | M5(G) | M{*(G) [ W(G) ||
| | n-propylamine | 14 | 16 | 26 | 10 | |
| | 2-aminopropane | 9 | 6 | 13 | 9 ||
|| 2-amino-2-methylproprane | 12 | 8 | 17 | 16 ||
| | 2-aminobutane | 19 | 22 | 35 | 18 | |
| | 2-methylpropylamine | 19 | 22 | 35 | 18 ||
I n-butylamine | 24 ] 36 | 54 [ 20 |
| | 2-amino-2-methylbutane | 24 | 28 | 44 | 28 | |
I 2-aminopentane | 31 [ 48 [ 70 [ 32 ]
| | 3-methylbutylamine | 31 | 48 | 70 | 31 | |
| 2-methylbutylamine | 29 [ 42 [ 63 [ 32 |
|| n-pentylamine | 38 | 73 | 100 | 35 ||
| | 4-methylpentylamine | 47 | 93 | 125 | 50 | |
|| n-hexylamine | 54 | 124 | 163 | 56 ||
| 3-methylpentylamine | 45 | 85 | 116 | 50 |
| | 4-aminoheptane | 61 | 136 | 179 | 75 | |
I 2-aminoheptane | 65 [ 154 [ 19 [ 719 ]
| | n-heptylamine | 74 | 200 | 252 | 84 | |
I n-octylamine | 9% | 296 [ 364 [ 120 |
|| n-nonylamine | 122 | 425 | 510 | 165 ||
| | 2-aminoundecane | 169 | 670 | 785 | 275 | |
I 3-aminopentane | 20 | 42 [ 63 [ 31 ]
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Fig. 1: Linear fitting of (a) M} (G) with pb (b) M}*(G) with pb.
3 The Applications tested. The value of boiling points is listed in Table 2. We
) ) ) calculate the Wiener index and eccentric Zagreb indices
To understand the different properties .of. chemicals, of primary amines and the data listed in Table 1. We get
laboratory tests must be performed, and this is extremely ¢ relationship of eccentric Zagreb indices and Wiener
expensive. To overcome this problem, many topological jpdex with boiling points of primary amines as in Table 2.

indices in thegretica'l chemistry have bee.:n iptroduced and In Table 3, we present correlation coefficient of boiling
deﬁned: In this section, we define the_ s.1gn1ﬁcance O_f the points predicted by eccentric Zagreb indices (r = 0.9908
eccentric Zagreb indices in determining the predicted . —'(.9935) and Wiener index (0.9788) with boiling
b011mg. point of ghemlcal C(.)mpounds'usmg nonlinear points of primary amines (see Fig 1,2). In Table 4, we
regression analysis. The primary amines group Was  jetermined the correlation coefficient of M; (G), M;(G)

adopted as a standard group in which the chemical and and M (G) with W(G). The nonlinear regression
physical applicability of the eccentric Zagreb indices are :
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Fig. 2: Linear fitting of (a) M;(G) with pb (b) W(G) with pb.

Table 2: Relationship of predicted boiling points calculated by eccentric Zagreb indices and Wiener index with boiling points of
primary amines.

|| Compound | boiling point | bpM{ (G | bpM; | p M ( | bpW ||
|| n-propylamine | 49 | 53.27 | 57. 34 | 56. 39 | 46.7 ||
I 2-aminopropane | 33 | 3997 [ 3873 [ 4114 [ 441 |
|| 2-amino-2-methylproprane | 46 | 48.19 | 43.46 | 46.48 | 60.52 ||
I 2-aminobutane | 63 | 6497 | 6513 | 4657 | 6457 |
|| 2-methylpropylamine | 69 | 46.97 | 65.13 | 64.57 | 64.57 ||
I n-butylamine | 77 | 756 | 7931 | 7865 | 6842 |
| 2-amino-2-methylbutane | 78 | 7562 | 7173 | 7165 | 8233 |
|| 2-aminopentane | 92 | 89.31 | 88.99 | 88.51 | 88.6 ||
I 3-methylbutylamine | 96 | 8931 | 8899 | 8851 [ 87.07 ]|
| 2-methylbutylamine | 96 | 852 [ 8436 [ 8436 [ 836 |
|| n-pentylamine | 104 | 101.94 | 105.23 | 104.1 | 93.08 ||
[ 4methylpentylamine | 125 | 117.05 | 11594 | 1152 [ 11325 |
I n-hexylamine [ 130 | 1281 [ 13008 | 130.01 | 12054 |
[ 3-methylpentylamine | 114 | 11379 | 111.84 [ 11137 | 11325 |
I 4-aminoheptane | 139 | 13867 | 13497 | 13567 [ 14155 |
I 2-aminoheptane [ 142 | 1445 [ 14185 | 14237 | 14565 |
I n-heptylamine | 155 | 15722 | 15749 | 1585 [ 150.65 |
I n-octylamine [ 180 [ 1862 | 18422 | 18739 | 1833 |
I n-nonylamine | 201 | 21759 | 2129 | 21847 [ 21839 |
I 2-aminoundecane | 237 | 26893 | 25542 | 26584 [ 289.23 |
|| 3-aminopentane | 91 | 85.52 | 84.36 | 84.36 | 87.07 ||
analysis equations which are used are: 4 Conclusion

In(bp) =2.26 +0.65 In(M (G)), In this article, we have calculated eccentric Zagreb

indices for some subdivisions of some graphs. These
In(bp) =2.94+0.4In(M;(G)), indices were examined in their predictability of the
boiling point of the chemical compounds, as the
correlation coefficients between 0.9908 and 0.9935 were
obtained greater than those obtained in the case of the
Wiener index.

In(bp) = 2.55 4 0.455 In(M;*(G)),

In(bp) = 2.578 +0.55 In(W(G)).
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Table 3: Correlation coefficient of boiling points predicted by eccentric Zagreb indices and Wiener index with boiling points of primary

amines.
I | bp predicted by M} (G) | bp predicted byM; (G) | bp predicted byM;* (G) | bp predicted byW (G) |
[ op | 0.99199 | 0.9935 | 0.9908 | 0.9788 I
Table 4: Correlation coefficients of M{(G), M5 (G) and M;*(G) with W(G).
[ [I06) [ #5G) [ M76) [ WIG) |
I T S O B
[5G [owe [ T [ [ |
[ M (G) | 099938 | 0.9994 | 1 | I
[ W(G) | 09939 | 0.9869 | 0.99068 | 1 |
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