

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/160308

The Eccentric Zagreb Indices for the Subdivision of Some Graphs and Their Applications

Hanan Ahmed^{1,2,*}, Ammar Alsinai³, Aysha Khan⁴ and Hakeem A. Othman ^{5,6}

¹ Department of Mathematics, Yuvaraja's College, University of Mysore, India

² Department of Mathematics, Ibb University, Ibb, Yemen

³ Department of Mathematics, University of Mysore, India

⁴ Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, KSA

⁵ Department of Mathematics, Al-Qunfudhah University College, Umm Al-Qura University, Mecca, KSA

⁶ Department of Mathematics, Rada a College of Education and Science, Albaydha University, Albaydha, Yemen

Received: 2 Mar. 2022, Revised: 2 Apr. 2022, Accepted: 12 Apr. 2022 Published online: 1 May 2022

Abstract: Subdivision is one of the most important aspects of graph theory as it enables us to calculate the properties of some complicated graphs using some of the easier graphs. To understand the different properties of chemicals, laboratory tests must be performed, and this is extremely expensive. To overcome this problem, many topological indices in theoretical chemistry have been introduced and defined. In this paper, we calculate the eccentric Zagreb indices for the subdivision graphs of some graphs. Also, these indices were examined in their predictability of the boiling point of the chemical compounds.

Keywords: Eccentric Zagreb indices, Subdivision of graphs, Eccentricity of a vertex, Boiling point, Chemical compounds

1 Introduction

Let G = (V, E) be a finite simple connected graph consists of a set of objects V(G) called vertices, and another set E(G) whose elements are called edges. The set N(v) of all neighbors of $v \in V(G)$ is called the open neighborhood of v. Thus $N(v) = \{u \in V(G) : uv \in E(G)\}$. The degree $d_G(u)$ of a vertex u in G is define as $d_G(u) = |N(v)|$. The distance $d_G(u, v)$ between two vertices in a graph G is the length of the shortest path joining them [1]. For a vertex $v \in V(G)$ its eccentricity $\varepsilon_G(v)$ defined as

$$\varepsilon_G(v) = max_{u \in V(G)} d_G(v, u)$$

. The diameter of G is

$$D(G) = max_{v \in V(G)} \varepsilon_G(v)$$

and the radius of G is

$$r(G) = min_{v \in V(G)} \varepsilon_G(v)$$

. Hence $r(G) \leq \varepsilon_G(u) \leq D(G)$, for every $u \in V(G)$. We use the characters $C_n, K_{c,d}, S_{r+1}, W_{r+1}, K_n$ for the cycle,

compete bipartite, star, wheel, complete graph respectively. Chemical graph theory is one of the branches of mathematical chemistry, as it is important and necessary for a better understanding and explanation of the nature of the chemical structure. By IUPAC terminology, a topological index is a numerical value correlation of chemical structure with different physical and chemical properties. In an exact phrase, topological indices are numerical parameters of the graph, such that these parameters are the same for the graph which they are isomorphism. We refer to [2,3,4,5,6,7,8,9,10,11,15, 16,17,18] for some characteristics related to topological indices of graphs and molecular graphs. The beginning of topological indices was when chemist Wiener 1947 found the first topological index, known as the Winner index [12], to search for boiling points of chemical component and defined as

$$W(G) = \frac{1}{2} \sum_{\{u,v\} \in V(G)} d_G(u,v).$$

^{*} Corresponding author e-mail: hananahmed1a@gmail.com

Vukičević et al. [13] and Ghorbani et al. [14] introduced eccentricity Zagreb indices which are defined as:

$$egin{aligned} &M_1^*(G) = \sum_{uv \in E(G)} (arepsilon_G(u) + arepsilon_G(v)), \ &M_2^*(G) = \sum_{uv \in E(G)} arepsilon_G(u) arepsilon_G(v), \ &M_1^{**}(G) = \sum_{v \in V(G)} arepsilon_G^2(v). \end{aligned}$$

In this research work, we calculate the eccentric Zagreb indices for the subdivision of some graphs, and these indices were examined in their predictability of the boiling point of the chemical compounds. Also, we compare the correlation coefficient of eccentric Zagreb indices with a correlation coefficient of the Wiener index which is considered as the first index used to predict the boiling point of the chemical compound.

2 Eccentric Zagreb Indices for the Subdivision of Some Graphs

Subdivision is one of the most important aspects of graph theory as it enables us to calculate the properties of some complicated graphs using some of the easier graphs. Topological indices have become popular due to their application in chemistry in studying some chemical and physical properties of compounds or in related fields. In this section, we calculate eccentric Zagreb indices for the subdivision of some graphs.

Theorem 1.*For any cycle graph* C_n , $n \ge 3$ *vertices*

$$M_1^*(S(C_n)) = 4n^2, \ M_2^*(S(C_n)) = M_1^{**}(S(C_n)) = 2n^3.$$

Proof.Let C_n be a cycle, with $n \ge 3$ vertices.

Then $S(C_n) = C_{2n}$. So, the subdivision of C_n has 2n vertices. Thus, for any $v \in V(S(C_n))$ we get, $\varepsilon_{S(C_n)}(v) = n$. Hence,

$$M_1^*(S(C_n)) = 4n^2, \ M_2^*(S(C_n)) = M_1^{**}(S(C_n)) = 2n^3$$

Theorem 2.Let $S(S_{r+1})$ be the subdivision of star graph S_{r+1} , $r \ge 3$ vertices. Then

$$M_1^*(S(S_{r+1})) = 12r, \ M_2^*(S(S_{r+1})) = 18r,$$

 $M_1^{**}(S(S_{r+1})) = 25r + 4.$

*Proof.*Let $S(S_{r+1})$ be the subdivision of star graph S_{r+1} , $r \ge 3$ vertices. For any $v \in V(S(S_{r+1}))$ we have,

$$\varepsilon_{S(S_{r+1})}(v) = \begin{cases} 2, \text{ if } u \text{ is the center vertex;} \\ 3, \text{ if } d_{S_{r+1}}(v) = 2; \\ 4, \text{ if } u \text{ is pendent vertex.} \end{cases}$$

Hence, by using the definition of eccentric Zagreb indices we get the required.

Theorem 3.Let $S(K_{c,d})$ be the subdivision of compete bipartite graph $K_{c,d}$, $c, d \ge 2$. Then

$$M_1^*(S(K_{c,d})) = 16cd, \ M_2^*(S(K_{c,d})) = 32cd,$$

 $M_1^{**}(S(K_{c,d})) = 16(cd + c + d).$

Proof:Let $S(K_{c,d})$ be the subdivision of compete bipartite graph $K_{c,d}$, $c, d \ge 2$. Note that, $D(S(K_{c,d})) = r(S(K_{c,d})) = \varepsilon_{S(K_{c,d})}(v) = 4$. Hence, $S(K_{c,d})$ is self-centered graph and by using the definition of eccentric Zagreb indices we get the following:

$$M_1^*(S(K_{c,d})) = 16cd, \ M_2^*(S(K_{c,d})) = 32cd,$$
$$M_1^{**}(S(K_{c,d})) = 16(cd + c + d).$$

Theorem 4.*For the complete graph* K_n , $n \ge 4$ *vertices*

$$M_1^*(S(K_n)) = 7n(n-1), \ M_2^*(S(K_n)) = 12n(n-1),$$

 $M_1^{**}(S(K_n)) = n(8n+1).$

Proof.Let K_n be complete graph with $n \ge 4$ vertices. Let A be the set of all original vertices, and B be the set of entering vertices of $S(K_n)$. Hence,

$$\varepsilon_{S(K_n)}(v) = \begin{cases} 3, \text{ if } u \in A; \\ 4, \text{ if } u \in B. \end{cases}$$
And,

$$M_1^*(S(K_n)) = 7n(n-1), \ M_2^*(S(K_n)) = 12n(n-1),$$

 $M_1^{**}(S(K_n)) = n(8n+1).$

The wheel graph W_{n+1} with n+1 vertices is defined to be the join of K_1 and C_n , where K_1 is the complete graph with one vertex and C_n is the cycle graph.

Theorem 5.*For the wheel graph* W_{n+1} , $n \ge 6$

$$M_1^*(S(W_{n+1})) = 38n, \ M_2^*(S(W_{n+1})) = 92n,$$

 $M_2^*(S(W_{n+1})) = 77n + 9.$

*Proof.*Let W_{n+1} be the wheel graph with $n \ge 6$. Let *w* be the center vertex, *A* be the set of original vertices on the cycle, and *B* be the set of entering vertices on the cycle of the graph $S(W_{n+1})$. Hence,

$$\varepsilon_{S(W_{n+1})}(v) = \begin{cases} 3, \text{ if } u = w; \\ 4, \text{ if } uw \in E(S(W_{n+1})); \\ 5, \text{ if } u \in A; \\ 6, \text{ if } u \in B. \end{cases}$$

And,

$$M_1^*(S(W_{n+1})) = 38n, \ M_2^*(S(W_{n+1})) = 92n,$$

 $M_2^*(S(W_{n+1})) = 77n + 9.$

Compound	$M_1^*(G)$	$M_2^*(G)$	$M_1^{**}(G)$	W(G)
n-propylamine	14	16	26	10
2-aminopropane	9	6	13	9
2-amino-2-methylproprane	12	8	17	16
2-aminobutane	19	22	35	18
2-methylpropylamine	19	22	35	18
n-butylamine	24	36	54	20
2-amino-2-methylbutane	24	28	44	28
2-aminopentane	31	48	70	32
3-methylbutylamine	31	48	70	31
2-methylbutylamine	29	42	63	32
n-pentylamine	38	73	100	35
4-methylpentylamine	47	93	125	50
n-hexylamine	54	124	163	56
3-methylpentylamine	45	85	116	50
4-aminoheptane	61	136	179	75
2-aminoheptane	65	154	199	79
n-heptylamine	74	200	252	84
n-octylamine	96	296	364	120
n-nonylamine	122	425	510	165
2-aminoundecane	169	670	785	275
3-aminopentane	29	42	63	31

Table 1: Eccentric Zagreb indices with Wiener index of primary amines.

Fig. 1: Linear fitting of (a) $M_1^*(G)$ with pb (b) $M_1^{**}(G)$ with pb.

3 The Applications

To understand the different properties of chemicals, laboratory tests must be performed, and this is extremely expensive. To overcome this problem, many topological indices in theoretical chemistry have been introduced and defined. In this section, we define the significance of the eccentric Zagreb indices in determining the predicted boiling point of chemical compounds using nonlinear regression analysis. The primary amines group was adopted as a standard group in which the chemical and physical applicability of the eccentric Zagreb indices are tested. The value of boiling points is listed in Table 2. We calculate the Wiener index and eccentric Zagreb indices of primary amines and the data listed in Table 1. We get the relationship of eccentric Zagreb indices and Wiener index with boiling points of primary amines as in Table 2. In Table 3, we present correlation coefficient of boiling points predicted by eccentric Zagreb indices (r = 0.9908 to r = 0.9935) and Wiener index (0.9788) with boiling points of primary amines (see Fig 1,2). In Table 4, we determined the correlation coefficient of $M_1^*(G)$, $M_2^*(G)$ and $M_1^{**}(G)$ with W(G). The nonlinear regression

Fig. 2: Linear fitting of (a) $M_2^*(G)$ with pb (b) W(G) with pb.

Table 2: Relationship of predicted boiling points calculated by eccentric Zagreb indices and Wiener index with boiling points of primary amines.

Compound	boiling point	$bpM_1^*(G)$	$bpM_2^*(G)$	bp $M_1^{**}(G)$	bpW(G)
n-propylamine	49	53.27	57.34	56.39	46.7
2-aminopropane	33	39.97	38.73	41.14	44.1
2-amino-2-methylproprane	46	48.19	43.46	46.48	60.52
2-aminobutane	63	64.97	65.13	46.57	64.57
2-methylpropylamine	69	46.97	65.13	64.57	64.57
n-butylamine	77	75.6	79.31	78.65	68.42
2-amino-2-methylbutane	78	75.62	71.73	71.65	82.33
2-aminopentane	92	89.31	88.99	88.51	88.6
3-methylbutylamine	96	89.31	88.99	88.51	87.07
2-methylbutylamine	96	85.52	84.36	84.36	88.6
n-pentylamine	104	101.94	105.23	104.1	93.08
4-methylpentylamine	125	117.05	115.94	115.2	113.25
n-hexylamine	130	128.1	130.08	130.01	120.54
3-methylpentylamine	114	113.79	111.84	111.37	113.25
4-aminoheptane	139	138.67	134.97	135.67	141.55
2-aminoheptane	142	144.5	141.85	142.37	145.65
n-heptylamine	155	157.22	157.49	158.5	150.65
n-octylamine	180	186.2	184.22	187.39	183.3
n-nonylamine	201	217.59	212.9	218.47	218.39
2-aminoundecane	237	268.93	255.42	265.84	289.23
3-aminopentane	91	85.52	84.36	84.36	87.07

analysis equations which are used are:

 $ln(bp) = 2.26 + 0.65 \, ln(M_1^*(G)),$

 $ln(bp) = 2.94 + 0.4 ln(M_2^*(G)),$

$$ln(bp) = 2.55 + 0.455 \, ln(M_1^{**}(G)),$$

ln(bp) = 2.578 + 0.55 ln(W(G)).

4 Conclusion

In this article, we have calculated eccentric Zagreb indices for some subdivisions of some graphs. These indices were examined in their predictability of the boiling point of the chemical compounds, as the correlation coefficients between 0.9908 and 0.9935 were obtained greater than those obtained in the case of the Wiener index.

Table 3: Correlation coefficient of boiling points predicted by eccentric Zagreb indices and Wiener index with boiling points of primary amines.

	bp predicted by $M_1^*(G)$	bp predicted by $M_2^*(G)$	bp predicted by $M_1^{**}(G)$	bp predicted by $W(G)$
bp	0.99199	0.9935	0.9908	0.9788

Table 4: Correlation coefficients of $M_1^*(G)$, $M_2^*(G)$ and $M_1^{**}(G)$ with W(G).

		1	2 · · ·	1
	$M_1^*(G)$	$M_2^*(G)$	$M_1^{**}(G)$	W(G)
$M_1^*(G)$	1			
$M_2^*(G)$	0.9986	1		
$M_1^{**}(G)$	0.99938	0.9994	1	
W(G)	0.9939	0.9869	0.99068	1

5 Acknowledgment

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant code: 22UQU4330052DSR03.

Conflicts of Interests

The authors declare that they have no conflicts of interests.

References

- F. Harary, *Graph Theory*, Narosa Publishing House, New Delhi, 2001.
- [2] H. Ahmed, A. Alwardi, R.M Salestina, Domination, γ -Domination Topological Indices and φ_P -Polynomial of Some Chemical Structures Applied for the Treatment of COVID-19 Patients, Biointerface research in Applide Chemistry 5, 13290 - 13302 (2021).

DOI: 10.33263/BRIAC115.1329013302

- [3] S. Javaraju, A. Alsinai, A. Alwardi, H. Ahmed, and N.D. Soner, *Reciprocal leap indices of some wheel related graphs*, Journal of Prime Research in Mathematics **17(2)**, 100-110 (2021).
- [4] H. Ahmed, A. Alwardi, R.M. Salestina, N.D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, Journal of Discrete Mathematical Sciences and Cryptography 24(2), 353-368 (2021).

https://doi.org/10.1080/09720529.2021.1885805

- [5] A. Ayache, A. Alameri, M. Alsharafi and H. Ahmed, *The Second Hyper-Zagreb Coindex of Chemical Graphs and Some Applications*, Journal of Chemistry 2, 8 pages (2021). https://doi.org/10.1155/2021/3687533
- [6] H. Ahmed, A. Alwardi, R.M Salestina , *Domination topological indices and their polynomials of a firefly graph*, Journal of Discrete Mathematical Sciences and Cryptography 24(2), 325-341 (2021). https://doi.org/10.1080/09720529.2021.1882155

- [7] A. Alsinai, H. Ahmed, A. Alwardi, S. D. Nandappa, *HDR Degree Bassed Indices and Mhr -Polynomial for the Treatment of COVID-19*, Biointerface Research in Applied Chemistry 12(6), 7214 - 7225 (2021).
 DOI: 10.33263/BRIAC126.72147225
- [8] A.M. Hanan Ahmed, A. Anwar, R.M. Salestina, On Domination Topological Indices of Graphs, Int. J. Anal. Appl., 19, 47-64, (2021). DOI: 10.28004/2020.18.0201.47
 - DOI: 10.28924/2291-8639-19-2021-47.
- [9] H. Ahmed, M. Reza Farahani, A. Alwardi, R. M. Salestina, *Domination topological properties of some chemical structures using φ_P-polynomial approach*, Eurasian Chemical Communications **3(4)**, 210-218 (2021). DOI: 10.22034/ecc.2021.271992.1133.
- [10] D.H. Rouvray, *The modeling of chemical phenomena using topological indices*, Journal of computational chemistry 8, 470-480 1987. DOI:10.1002/jcc.540080427
- [11] H. Ahmed, A. Alwardi, S.Wazzan, Nanosystems Physics Chemistry Mathematics, **12(6)** 664-671 (2021).
 DOI: 10.17586/2220-8054-2021-12-6-664-671
- [12] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69, 17-20, (1947).
- [13] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57, 524-528 (2010).
- [14] M. Ghorbani, M.A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26(1), 93-100 (2012).
- [15] A. Alsinai, A. Saleh, H. Ahmed, L.N. Mishra, N.D. Soner, On fourth leap Zagreb index of graphs, Discrete Mathematics, Algorithms and Applications, https://doi.org/10.1142/S179383092250077X.
- [16] S. Javaraju, H. Ahmed, A. Alsinai, N.D. Soner, Domination topological properties of carbidopa-levodopa used for treatment Parkinson's disease by using φ_P-polynomial, 3, 614-621 (2021). DOI: 10.22034/ecc.2021.295039.1203.
- [17] A. Hasan, M. H. A. Qasmi, A. Alsinai, M. Alaeiyan, M. R. Farahani, M. Cancan, *Distance and Degree Based Topological Polynomial and Indices of X-Level Wheel Graph*, Journal of Prime Research in Mathematics, **17**, (2021).
- [18] A. Alsinai, A. Alwardi, H. Ahmed, N.D. Soner, *Leap Zagreb indices for the Central graph of graph*, Journal of Prime Research in Mathematics, 73-78 (2021).

Hanan Ahmed Hanan

Ahmed is a researcher at the Department of Mathematics University of Mysore India. She did her B.S in Mathematics from IBB University, IBB, Yemen, also she did B.S in Mathematics and computer sciences from the same institution. She worked as a teacher of mathematics at the Department of Mathematics, IBB University, IBB, Yemen. After that, she did M.S.C in mathematics from Savitribai Phule Pune University, Pune, Maharashtra, India. After completing her master's degree, she continued her work to do her Ph.D. at the University of Mysore, India. Her area of research is graph theory and its applications. Her major contribution to research is in the polynomial of a graph, domination, topological indices, and its applications. In this area, she published more than 18 research papers in international reputed journals (Scopus and web of science) ...

analysis.

60

Aysha khan is an assistant professor of mathematics in prince sattam bin Abdulaziz University KSA. She received her ph.d in Graph theory in 2013 from meerut University, India. Her research interest is in the field of graph theory, dominatin in graph theory, Functional

Hakeem Othman Α is a professor of mathematics. Received his Ph.D in Pure Mathematics 2011 Mysore University -India. His main research interests lie in the field of Topology, Fuzzy Topology, Quantum Probability, and White Noise. More recently he interested in Fractional Integral Equation,

Topological Algebra, and Topological Graph. He was the Head of Mathematics Department of Alqunfudah University College, Umm Al-Qura University. He has published research articles in reputed and impacted international journals.

Ammar Alsinai received the MS.C degree in Mathematics Savitribai Phule Pune University. Pune.India. His research interests are in the areas of applied mathematics and Discrete mathematics (Recent topic in graph theory and its Application), he

published more than 17 papers in Scopus and web of science journal, he is research scholar in Dos in mathematics,University of Mysore,India

