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Abstract: The signature is the legal guarantor of the authorship of the document. With the wide distribution in the modern world

of electronic forms of workflow, including confidential ones, the problem of establishing the authenticity and authorship of paperless

electronic documentation has become especially urgent in the telecommunications network. The basic mechanism for solving such

problems is an electronic digital signature. Based on the analysis of the development of digital signature standards, the article proposes

and proves the correctness of new digital signature algorithms based on the complexity of the discrete logarithm on elliptic curves.
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1 Introduction

Cryptosystems on elliptic curves (EC) were proposed
in 1985 by W. Miller and N. Koblitz [1,2,3,4].

The advantages of cryptographic algorithms on
elliptic curves from a practical point of view are the large
possibilities of choosing the group in which calculations
are performed, the absence of a subexponential discrete
logarithm algorithm in a group of points on an elliptic
curve (with the exception of some special cases), that is,

the lack of an algorithm O
(

e
√

n
)

is a complexity, since

the exponential function that determines the basis of the
cryptographic algorithm is not used here.

Nevertheless, most cryptographic algorithms, the
durability of which is based on the complexity of discrete
logarithm in a finite field, are quite easily transferred to
the case of applications of elliptic curves.

The advantage of using EC to digitally sign messages,
along with higher cryptographic strength, is that the
signature length can be shortened (when using EC of a
certain type over the GF(q) field).

This statement is based on the fact that, that the y

coordinate of a point is uniquely determined by its sign
and the value of the x coordinate . The sign of the y
coordinate is found from the condition: if y>(p-1)/2,
that’s a plus, otherwise a minus. Therefore, instead of
transmitting both coordinates of the point R EC, only the
x coordinate and the sign of the y coordinate can be
transmitted.

At the receiving end, to restore the value of the
coordinate y, it is necessary to extract the square root
from the right side of the equation EC f(x) modulo p and
take the corresponding root value in the ring of integers
Zp.

If we compare the complexity of the problem of
factorization of integers, discrete logarithm in
multiplicative groups and discrete logarithm in the
additive Abelian group of points EC, the latter look
preferable.

This is shown in table 1, where is a comparison of
approximate estimates of the complexity of cryptanalysis
presented, based on the decomposition of integers (DI),
discrete logarithm in a finite field (DLFF) and discrete
logarithm in a group of points (DLGP) EC for different
characteristics of fields and depending on the length of
the key.

Taking into account that the complexity of performing
the transformation in the Abelian group EC is estimated
by the value O(log2 q), and in the multiplicative group of

the field- O(log3 q) , the advantages of using the former to
build cryptosystems become obvious.

It should also be noted that cryptographic
constructions whose complexity of analysis exceeds the
value of 1050, it is impractical to apply in practice [4,8],
since these values exceed the capabilities of modern
information processing technologies. Therefore, it is
necessary to limit the key length to 400 bits in the EC.
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Table 1: Comparison of the complexity of cryptanalysis

Key

length

DI∀p DLFF DLFF DLGP ∀p

(bit) f orp = 2 f orp6=2

100 1,3∗107 1,3∗107 1,6∗1011 1,3∗1015

200 7,2∗109 7,2∗109 9,6∗1016 1,3∗1030

300 7,1∗1011 7,1∗1011 3,8∗1021 1,4∗1045

400 3∗1013 3∗1013 3,4∗1025 1,6∗1060

500 7,5∗1014 7,5∗1014 1,2∗1029 1,8∗1075

600 1,3∗1016 1,3∗1016 2,1∗1032 2∗1090

700 1,7∗1017 1,7∗1017 2,1∗1035 2,3∗10105

800 1,8∗1018 1,8∗1018 1,4∗1038 2,6∗10120

900 1,7∗1019 1,7∗1019 6,5∗1040 2,9∗10135

1000 1,3∗1020 1,3∗1020 2,3∗1043 3,3∗10150

Thus, the durability of cryptographic transformation
methods based on the use of the group law of addition of
elements of an additive abelian group on the EC
significantly exceeds the durability of similar methods
based on the use of multiplicative fields.

The gain in durability is especially noticeable with
large key sizes. This circumstance makes it possible to
use cryptographic constructions of this type to build
cryptographic protocols for various purposes.

Data encryption and digital signature algorithms based
on elliptic curves and other mathematical complexities are
proposed in [5,6,7,8,?,11,12,13,14,15,16].

In the article on the analysis of standards for
electronic digital signatures of developed countries, new
EDS algorithms on elliptic curves are proposed.

2 Main part

Let a prime number be given p>3. Then an elliptic
curve E defined over a finite prime field Fp is the set of
pairs of numbers (x,y),x,y ∈ Fp, satisfying the identity

y2 ≡ x3 + ax+ b(mod p),(1)

where a,b ∈ Fp and 4a3 + 27b2 is not comparable to
zero mod p.

An invariant of an elliptic curve is a magnitude J (E)
that satisfies the identity

J(E) = 1728
4a3

4a3+ 27b2
(mod p),(2)

The coefficients a, b of the elliptic curve E, according
to the known invariant J (E) are determined as follows

{
a ≡ 3k(mod p)
b ≡ 2k(mod p),

(3)

where, k =
J(E)

1728−J(E)(mod p), J(E) 6= 0 or 1728.

Pairs (x, y) that satisfy identity (1) are called points of
the elliptic curve E; x and y are the x- and y-coordinates of
the point, respectively.

The points of the elliptic curve will be denoted by G (x,
y) or G. Two points of an elliptic curve are equal if their
corresponding x- and y-coordinates are equal.

On the set of all points of the elliptic curve E we
introduce the addition operation, which we will denote by
the “+” sign. For two arbitrary points G1(x1, y1) and
G2(x2, y2) of the elliptic curve E, we consider several
options.

Let the coordinates of the points G1(x1, y1) and G2(x2,

y2) satisfy the condition x1 6= x2. In this case, their sum will
be called the point G3(x3, y3), the coordinates of which are
determined by the following formula

{

x3 ≡ λ 2 − x1 − x2(mod p),
y3 ≡ λ (x1 − x3)− y1(mod p),

(4)

where, λ ≡ y2−y1
x2−x1

(mod p).

If the equalities hold x1 = x2 and y1 = y2 6= 0 , then we
define the coordinates of the point G3 , as follows

{

x3 ≡ λ 2 − 2x1(mod p),
y3 ≡ λ (x1 − x3)− y1(mod p),

(5)

where, λ ≡ 3x2
1+a

2y1
(mod p).

In the case when the condition x1=x2 and
y1=-y2 (mod p) is satisfied sum of the points G1 and G2

will be called the zero point 0, without determining its x-
and y-coordinates. In this case, the point G2 is called the
negation of the point G1. For the zero point 0, the
equalities holds.

G“+”0=0“+”G=G,(6)

where G is an arbitrary point of the elliptic curve E.

On the set of all points of the elliptic curve E, we
introduce the subtraction operation which we denote by
the sign “-”. By the properties of points on elliptic curves,
for an arbitrary point G (x, y) of an elliptic curve, the
following equality holds:

– G(x, y) = G(x, –y) ,(7)

In accordance with equality (7), for two arbitrary points
G1(x1, y1) and G2(x2, y2) of the elliptic curve E, the
subtraction operation is defined as follows:

G1(x1, y1) – G2(x2, y2)=G1(x1, y1) + G2(x2, –y2), (8)

i.e. a subtraction operation can be converted to an
addition operation.

With respect to the introduced operation of addition,
the set of all points of the elliptic curve E, together with
the zero point form a finite abelian (commutative) group
of order w, for which the inequality [4] holds.

p+ 1− 2
√

p 6 w 6 p+ 1+ 2
√

p,(9)
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A point T is called a point of multiplicity k, or simply
a multiple point of an elliptic curve E, if for some point N

the equality

T = N′′+′′ ...′′+′′ N
︸ ︷︷ ︸

k

= [k]N,(10)

The cryptographic stability of the proposed EDS
scheme is based on the complexity of solving the discrete
logarithm problem in a group of EC points [8, 13-16], and
also on the durability of the hash function used [9].

Digital Signature Parameters:

–prime number p>2 -module EC;
–EQ E, given by coefficients a, b GF(p) or invariant
J(E);

–integer m = E(GF(p)) the order of the group of points
EC;

–a prime number q is the order of a cyclic subgroup of
a group of points EC whose value satisfies the
conditions:

m = nq,n ∈ Z,n > 1,2254 < q < 2256;

–point P ∈ E(GF(p)) with coordinates (xp,yp) : P 6=
O, [q]P = O;

–the signature key is an integer d : 0 < d < q;
–signature verification key point Q ∈ E(GF(p)) with
coordinates (xq,yq) : [d]P = Q.

Restrictions are imposed on the parameters of the EDS
scheme:

–fulfilling the condition pt 6= 1(modq), for everyone
t = 1,2, ...,B , where B satisfies the inequality B > 31;

–fulfilling the inequality m 6= p;
–fulfillment of the condition J(E) 6= 0 or J(E) 6= 1728,
where is the invariant J(E) = 1728(4a)3/∆ , and ∆ =
−16(4a3 + 27b2).

3 1st Signature generation algorithm

Input data: message M, initial parameters (related to
the elliptic curve) and the secret signature key. Output
data: signature (r, s).

Steps of the signature generation algorithm:

1.Select a random number k in the interval 16 k 6 q−1,
where q is the order of the base point G on a certain EC

of the finite field.
2.Calculate (x1,y1) = [k]G, that is, we add the point G,

k times on a certain EC one.
3.Calculate r = x1 mod q. If r=0, then another k is

generated and the calculation is performed anew.
4.Calculate the value of the ”hash function” by the

message M, that is, h=H(M). If the value
H (M)mod q = 0, then it is installed
H (M)mod q = 1.

5.Calculate s = (H (M)d + kr), where the parameter d

is the secret key is known only to the signatory.
6.If s = 0, then go back to step 1.
7.Output a pair (r, s) - signature to M.

Signature verification algorithm. Input data:
message M, initial parameters (associated with an elliptic
curve), public signature verification key and signature to
M – pair (r, s). Output: a statement that the signature is
valid or invalid.

Signature Verification Algorithm Steps:

1.If the conditions 1 6 r,s 6 q− 1, if they are violated,
then output ”the signature is fake” and terminate the
algorithm.

2.Calculate h= H(M).
3.Calculate w = r −1 mod q.
4.Calculate u1 = sw mod q.
5.Calculate u2 = (q−H(M))w mod q.
6.Calculate X = [ u1]G+[ u2]Q = (x2,y2).
7.If x2 mod q = r = x1 mod q, then output ”the

signature is valid”, otherwise - ”the signature is not
valid”, and terminate the algorithm.

Correctness of the 1-signature algorithm. The
difference between this scheme and GOST R 34.10-2001
is that in the proposed modification, the expression
s = (H(M)d + kr)mod q, which will involve their
different corresponding validation equations. Let’s prove
that any signature generated by the described algorithm
will be ”valid”.

First of all, note that the parameters r and s do not
exceed q-1, as residuals when dividing by q integers. At
steps 3 and 6 of the signature generation algorithm, a
check is performed that, that r, s 6= 0. Therefore, the
conditions of step 1 will be met whenever r and s are
obtained by the signature generation algorithm.

Next, according to step 5 of the signature generation
algorithm, we have s = (H(M)d + kr) mod q.

From here, we get (H(M)d+kr−s)/q= t or k = (qt+
s−H(M)d)r−1.

These last three equalities are equivalent for an
arbitrary non-negative integer t, including for t=d. Then
for t=d from the last equality we get

k = sr−1 +(q−H(M))dr−1.

The point G has the order q, that is [q]G = 0 and for
everyone k < q takes place [k]G 6= O.

The following equality holds:

[k]G =
[
sr−1 +(q−H(M))dr−1

]
G =

=
[
sr−1

]
G+

[

(q−H(M))r −1
]

[d]G =

= [sw]G+[(q−H(M))w]Q = [u1]G+[u2]Q = X .

Where [d]G = Q, that is, the public key of the
signatory subscriber.
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This means that the point X obtained at step 6 of the
signature verification algorithm coincides with the point
[k]G, generated upon receipt of the signature by the
generation algorithm. The first X coordinate will be equal
to x1, and its remainder mod q will be equal to r, that is
x1mod q = r , according to step 3 of the signature
generation algorithm. Thus, the correctness of the
algorithm is proved.

4 2nd Signature generation algorithm

Input data: message M, initial parameters (related to
the elliptic curve) and the secret signature key. Output
data: signature (r, s).

Steps of the signature generation algorithm:

1.Select a random number k in the interval 16 k 6 q−1,
where q is the order of the base point G on a certain EC
of the finite field.

2.Calculate (x1,y1) = [k]G, that is, we add the point G,
k times on a certain EC one.

3.Calculate r = x1 mod q. If r=0 or k = 2dr (mod q),
then another k is generated and the calculation is
performed anew.

4.Calculate the value of the ”hash function” by the
message M, that is, h = H(M). If the value
H (M) mod q = 0, then it is installed
H (M) mod q = 1.

5.Calculate e := h(M||r).
6.Calculate z := e−1 (mod q).
7.Calculate s := (k− dr)z mod q, where the parameter

d is the secret key is known only to the signatory.
8.If s = 0, then go back to step 1.
9.Output a pair (r, s) - signature to M.

Signature verification algorithm. Input data:
message M, initial parameters (associated with an elliptic
curve), public signature verification key and signature to
M – pair (r, s). Output: a statement that the signature is
valid or invalid.

Signature Verification Algorithm Steps:

1.If the conditions 1 6 r,s 6 q− 1, if they are violated,
then output ”the signature is fake” and terminate the
algorithm.

2.Calculate e := h(M||r).
3.Calculate u = e · s (mod q).
4.Calculate X = [ u]G+[ r]Q = (x2,y2) .
5.If x2 mod q = r = x1 mod q, then output ”the signature

is valid”, otherwise - ”the signature is not valid”, and
terminate the algorithm.

Correctness of the 2-signature algorithm. It needs
to be proven that an arbitrary signature created using a
generation algorithm must be verified the same in the
verification algorithm.

r and s parameters from signature generation
algorithm are taken as remainder of q, thus both are less

than q-1. Furthermore, according to the third and seventh
steps these parameters have values different than zero. In
this case, for r and s parameters the first condition of
signature verification algorithm is always true.

Using 6th and 7th steps of signature generation
algorithm we derive es = k - dr (mod q) equation. This
yields k = (es+dr) mod q. As per algorithm, point G has
nth order:

[k]G = [se+ dr]G = [se]G+[r][d]G = [u]G+[r]Q = X .

The point X from the 4th step of the signature
verification algorithm is equal to [k]G. The first X

coordinate will be equal to x1, and its remainder mod q

will be equal to r, that is x1 mod q= r , according to step 3
of the signature generation algorithm. Thus, the
correctness of the algorithm is proved.
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