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Abstract: The nonlinear time fractional order coupled differential equations are considered in the present investigation. In 
particular, homogeneous advection equation coupled Burger’s equations, and coupled Schrodinger-Kdv equations are taken 
care of for the several fraction orders.   The novelty of the current investigation is the explicit and analytical solution of these 
equations by employing a new approach called “Reduced Differential Transform Method” (RDTM) in association with the 
“Adomian Decomposition Method” (ADM). Finally, the method’s efficiency and convergence are obtained by comparing 
the fractional order’s exact solution through particular examples. These are presented via surface and contour plots. 
Keywords: Fractional advection equation, Burger’s equations, Schrodinger equations, ADM, RDTM. 
 
 
1 Introduction  

The most generalized form of standard calculus is fractional that deals with the various forms of differential and integrals of 
order in fractional form. Now a day it is vastly used due to its wide applications in engineering i.e. chemistry, ecology, 
biology, solid-state physics, signal processing, finance related to stochastic process, economics, control theory, and many 
other. In all these areas the problem is transformed converted into models in mathematical form via fractional orders 
employing various operators of fractional differentials. 
 Fractional calculus theory is originally developed by “Leibniz, Liouville, Riemann, Grunwald, and Letnikov”, and many 
others [1-6]. For the sake of physical and engineering interests many mathematicians has given main attention for the solution 
of these differential equations either ordinary or partial, and integral equations (IEs). However, it is quite hard to explore the 
closed form resolution of the fractional differential equations; therefore, researchers are always trying to find analytical and 
numerical methods to find their approximation solutions. Whereas many researchers have adopted various concepts of the 
solutions and methods that derived for the fractional differential equations. Some classical methods are, “Fourier transform 
technique [7], special methods for fractional DEs [8], Laplace transform technique [9] and the operational calculus method 
[10]”. 
Now a days to solve the fractional DEs several mathematical methods have been used for example the approximate analytical 
method so called “Adomian decomposition method (ADM) [11], differential transform method (DTM) [12], classical matrix 
method known as operational matrix method [13], variational iteration method (VIM) [14], Homotopy perturbation method 
(HPM) [15], Homotopy analysis method (HAM) [16] and the residual power series method (RPSM) [17-22]”. Employing 
these methods, not only the governing problems are transformed into simple but also the solution either in closed form or the 
simple power series forms are obtained to get the convergence of the solutions. Moreover, analytical technique using RPSM 
used for both fractional and non-fractional DEs [17-22] in which the power series coefficients are obtained. The crux of the 
methodology is used to get the approximate or the closed form solutions various linear and nonlinear equations. By RPS 
method we can successfully solve many types of “fractional ordinary or partial DEs, neutrons diffusion equations [19] used 
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in multi-energy groups, fractional KDV-Burgers equation [20], fractional Schrödinger equations [21] and fractional multi-
pantograph system [22]”.  
One of the traditional techniques is “Laplace transform method” but is still proposed to handle fractional differential 
equations. Here the original expression is distorted from one space to another, and solution is obtained purely algebraic 
process and taken back by using inverse Laplace transform. Unfortunately, for a small class of Des this method is applicable, 
as finding inverse Laplace transform for higher differential equations leads to non-integrable functions. The electric 
locomotive process forms a particular form of model called pantograph equations [23]. Various physical phenomena were 
described due to their application in electrodynamics [24-25]. For the nanoscale flow phenomena Liu et al. [26] presented 
an application of fractional calculus. Recently, Anjum and Ain [27], Wang and Yao [28] have employed differential approach 
and particular transformation for the fractional Camssa-Holm and evolution equations respectively. Further, Wang et al. [29] 
imposed the same concept for the Snow’s thermal insulation properties. Moreover, Ahmad et al. [30] employed “local 
meshless method” for the solution of multi-term time fractional PDEs. Exact solution for the class of stochastic Benjamin–
Bona–Mahony equation is obtained by Agarwal et al. [31]. Cesarano [32] and Assante et al. [33] have presented a generalized 
special function for the fractional diffusive equation. Further, numerical treatment on the different types of differential 
equations was presented in several papers [34-39]. For more about fractional calculus and its developments, one can be 
referred to [40-48].  
In the present work, an effective and new analytical technique is introduced to get solutions of time-fractional and non-
fractional DEs employing Reduced Differential Transformation Method in association with Adomian Decomposition 
Method. For the efficiency of the method, we have considered various types of coupled nonlinear equations such as 
homogeneous advection equation, Burger’s equations, and Schrodinger equations etc. Validation with non-fractional order 
is exhibited with their closed form solutions accordingly. Finally, for different fractional order within the domain of [0, 1] 
the surface plots and the contour plot are presented graphically and discussed. 
 
2 Basic idea of fractional calculus  
To know about the fractional calculus, it is essential to start by considering a simple example such as . The above 

expression is presented as  (zero-order) and the next differentiation of this function is . 

A simple question can arise, what is ?, where . It represents the gradient of  (Fig.1). The function may be 
continuous but not differentiable anywhere. “A fractal medium has certainly a fractal boundary, however a differential 
equation cannot be established within that” (He [49])  

 
Fig.1: Geometrical interpretation of  for . 

2.1 Fractional derivative 
 

From various definitions on fractional derivatives however here few are described as follows.  
Consider the nth order linear equation, . 
The iteration formula employing variational iteration method (VIM), is expressed as 
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Since the equation is linear its solution becomes 

 

Here,  is a guess solution, obtained using specified initial condition. Introducing an operator defined by  

 

 with . 

Definition 2.1: The standard form of the fractional derivative is, 

 

Definition 2.2: The “Caputo-fractional derivative” is  

 

Definition 2.3: The Riemann-Lioville fractional derivative is  

 

3 Methodology (reduced differential transform method) 

Class of fractional differential equations for the function consisting of both time and space variables and combination 
of two distinct functions of single variables i.e. are solved using a new approach of Reduced Differential 
Transform Method (RDTM) in association with “Adomian Decomposition Method” (ADM) is described in this section. The 
equation can be articulated as  

         (1) 

Where 𝛼	indicates the Caputo time-fractional order derivative and  represents t-dimensional spectrum equation for the 
function . 

Definition 3.1: Let us consider the continuously differentiable function  with respect to  and in a certain domain 
then,  

       (2) 

Here,  is the transformation of  and therefore  is the inverse transformed function. 

Therefore, the inverse transformed function is expressed as  

      (3) 
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      (4) 

Subject to  

          (5) 

Here , the linear operator employed for the conformable derivative of order , , , the remaining part of 
the linear operator, indicates the nonlinear terms and is the non-homogenous function appears in the equation.  

Here, the operator is defined as  

   

Hence the transformed equation using RDTM is  

     (6) 

And the initial condition becomes 

         (7) 

The approximate solution is obtained from the iterative formula by using several values of  from to  i.e.  

         (8) 

Therefore, exact solution is approximated by  

        (9) 

4 Applications using various problems 

The proposed technique effectively used in several models known as homogeneous advection equation, coupled Berger’s 
equations, and coupled Schrodinger equations are described and their properties have significant role in engineering 
Mathematics and physics. 
Problem-4.1: 
Time-fractional nonlinear homogeneous advection equation 
Consider the homogeneous advection equation  

      (10) 

Introducing RDTM defined earlier the equation (10) can be expressed as 

.
       (11) 

Assuming nonlinear operator  in Adomian polynomial given by 

.
         (12) 

Where are called Adomian polynomials and calculated as   
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        (13) 

Using above expression, we get 

        (14) 

Using the Adomian polynomial the iterative expression (14) is represented as  

 with      (15) 

For various values of ,  

 

and so on. 

Therefore, the approximate solution is  

                                                           (16) 

For the fractional order , the exact solution for the homogenous advection equation is  

.

         (17) 

(a) (b)  
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Fig. 2 Surface plot of the solution using RDTM for the orders  (a)  (b)  (c) (d)  
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Fig. 3 Contour for the exact result of Advection equation for . 

 

 

Fig.4: Surface plot for the exact result of  when . 
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Problem-4.2: Time-fractional coupled nonlinear Burger’s equations 

Consider the Burger’s equations: 

              (18) 

            (19) 

The corresponding initial conditions are  

     (20) 

Introducing RDTM defined earlier the system of equations (18) and (19) can be expressed as 

                                 (21) 

 

                                     (22) 

considering the nonlinear operator ,  and  the Adomian polynomials 
given by 

, , and 
.
    (23) 

The Adomian polynomials are calculated and presented as 
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Using the Adomian polynomials the iterative expressions (21) and (22) are represented as  
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       (25)
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                 (28) 

                  (29) 

For the fractional order , the closed-form solutions for the coupled nonlinear homogenous Burger’s equations are   

, (30) 

.     (31) 

(a) (b)  

(c) (d)  
Fig. 5 Surface plot of the solution of Burger’s equation using RDTM for the fractional orders of  (a)  (b)  (c) 
(d) . 
 

 

Problem-4.3: Schrodinger equations (nonlinear coupled Time-fractional)  
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Considering the time-fractional Schrodinger equations: 

                        (32) 

The corresponding initial condition is 

.       (33) 

 

Fig.6: Surface plot for  when . 

 

Fig.7: Contour for the exact solution of Burger’s equation for . 

Introducing RDTM defined earlier the equation (32) can be expressed as 
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    (34) 

Let us consider the nonlinear operator , used in Adomian polynomials given by 

.
       (35) 

Where called Adomain polynomials and the expression is 

     (36) 

Using the Adomian polynomials the iterative expression (34) is represented as  
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Hence, the approximate result is  
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(a) (b)  

(c) (d)  

Fig.8: Surface plot of the solution of nonlinear Schrodinger equation using RDTM for the fractional orders of  (a)  
(b)  (c) (d) . 

 
Fig.9: Surface plot for the exact solution  when . 
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Fig.10: Contour for the Schrodinger equation with . 

5 Description and conclusion 

Attempt has been made to analyze the behavior of approximate analytical solution as well as the exact result of nonlinear 
equations with time-fractional derivative. It is quite complicated to handle this equation using analytical methods in 
comparison to linear differential equations. Earlier various approximate methods like the perturbation method, asymptotic 
methods were employed for the solution of these types of weakly nonlinear problems. There are various perturbation 
parameters are used depending upon the application to various fields of engineering and the ranges of these parameter must 
be very small. Now a day because of several engineering applications the models have been developed comprised of nonlinear 
time-fractional differential equations. In the present analysis, we have considered homogeneous nonlinear advection 
equation, coupled nonlinear Burgers’ equations and coupled nonlinear Schrödinger equations. Solutions of these equations 
are obtained analytically using Reduced Differential Transformation Method accompanied with Adomian Decomposition 
Method for various fractional orders. The basic steps followed by definition of the RDTM is described elaborately in articles-
2 and 3 respectively. Fig.2 exhibits the surface plot for the solution obtained in Example-1, for the advection equations for 
the fractional orders 𝛼 = 0.1,0.3,0.5 and  respectively within the domain −2 ≤ 𝑥 ≤ 2 and 0 ≤ 𝑡 ≤ 1. Fig.3 exhibits the 
closed form solution in particular case of fractional order 𝛼 = 1 and Fig.4 presents the contour plot of the same solution. 
However, Fig.5 portrays the surface plots of the coupled nonlinear Burger’s equations for the fractional orders 

 and . The mesh grid for both  and  are similar to Fig.2. Moreover Figs. 6 and 7 display the surface 
and the contour scheme of the accurate solution in the particular fraction order  respectively. Finally, Fig. 8 portrays 
the surface design of the result of Schrodinger equation for a variety of values of time-fractional orders 𝛼 = 0.1,0.3,0.5 and 

 within the ranges −5 ≤ 𝑥 ≤ 5 and 0 ≤ 𝑡 ≤ 1. The surface and the contour plots of the exact analytical solution in 
particular case of 𝛼 = 1 for the Schrodinger equation is exhibited in Figs. 9 and 10 respectively. Further, we conclude that 
these nonlinear equations can be solved by using Laplace transformation technique followed by several fractional methods 
like fractional power series method. 
 
 
 
Acknowledgment 

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through 
the Fast-track Research Funding Program. 

 
 
 
 
 

1a =

0.9

0.1,0.3,0.5a = 0.9 x t
1a =

0.9



 Progr. Fract. Differ. Appl. 8, No. 1, 191-204 (2022) / http://www.naturalspublishing.com/Journals.asp                203 

 
        © 2022 NSP 
         Natural Sciences Publishing Cor. 

 

References 
 
[1] K. Oldham and J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, 

Academic Press, New York, 1974.  
[2] I. Podlubny,  Fractional differential equations, Academic Press, San Diego, 1999. 
[3] A. Kilbas, H. M. Srivastava  and J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. 
[4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010. 
[5] R. Almeida, D. Tavares and D.F.M. Torres, The variable-order fractional calculus of variations, Springer, Switzerland, 2019. 
[6] K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. 
[7] R. Bagley, On the fractional order initial value problem and its engineering applications In: Fractional Calculus and its Applications, 

K. Nishimoto, Ed., College of Engineering, Nihon University, Tokyo, Japan 12–20,1990.  
[8] A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Int. Transf.  

Spec. Funct. 4(4), 355–370(1996).  
[9] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16(1) 3-11(2013).  
[10] Y. Luchko and H.  M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus, 

Comput. Math. Appl., 29(8),73–85(1995).  
[11] S. Momani, Non-perturbative analytical solutions of the space- and time- fractional Burgers equations, Chaos Solit. Fract. 28(4), 

930–937(2006).  
[12] A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Solit. Fract. 

34(5) 1473–1481(2007).  
[13] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional- order differential equations, Comput. Math. 

Appl.  59(3), 1326–1336 (2010). 
[14] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl.  57(3),483–4 87 

(2009).  
[15] S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear 

fractional partial differential equations, Comput. Math. Appl. 54(7-8), 910–919 (2007).  
[16] A. El-Ajou and O. Abu Arqub, Solving fractional two-point boundary value problems using continuous analytic method, Ain Shams 

Eng. J. 4(3), 539–547 (2013).  
[17] A. El-Ajou, M. Al-Smadi, M. Oqielat, M. Momani and S. Hadid, Smooth expansion to solve high-order linear conformable fractional 

PDEs via residual power series method: Applications to physical and engineering equations Ain Shams Eng. J. 11(4), 1243-1254 
(2020). 

[18] A. El-Ajou, M. Oqielat, Z. Al-Zhour and Momani, A class of linear non-homogenous higher order matrix fractional differential 
equations: analytical solutions and new technique, Fract. Calc. Appl. Anal. 23(2), 356–377 (2020).  

[19] M. Shqair, A. El-Ajou and M. Nairat, Analytical solution for multi-energy groups of neutron diffusion equations by a residual power 
series method, Mathematics  7(7), 633 (2019).  

[20] A. El-Ajou, Z. Al-Zhour, M. Oqielat, S. Momani and T. Hayat, Series solutions of non- linear conformable fractional KdV-Burgers 
equation with some applications, Eur. Phys. J. Plus 134(8), 402 (2019).  

[21] M. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh and H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger 
equations: Comparisons between conformable and Caputo derivatives, Alexandria Eng. J.  59(4), 2101-2114  (2020).  

[22] A. El-Ajou, M. Oqielat M, Z. Al-Zhour and S. Momani, Analytical numerical solutions of the fractional multi-pantograph system: 
Two attractive methods and comparisons, Results Phys. 14(1), 102500 (2019).  

[23] J. Ockendon and A. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London. A 322 
(1551), 447-468 (1971).  

[24] P. Rahimkhani, Y. Ordokhani and E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized 
fractional-order Bernoulli wavelet, J. Comput. Appl. Math. 309(1), 493–510 (2017).  

[25] L. Shi, X. Ding, Z. Chen and Q. Ma, A new class of operational matrices method for solving fractional neutral pantograph differential 
equations, Adv. Differ. Equ. 2018, 94 (2018).  

[26] H-Y. Liu, J-H. He and  Z-B. Li., Fractional calculus for nano scale flow and heat transfer, Int. J. Numer. Meth.  Heat Fluid Flow 
24(6), 1227-1250 (2014). 

[27] N. Anjum and Q. T. Ain, Application of He's fractional derivative and fractional complex transform for time fractional Camassa-
Holm equation, Therm. Sci. 24 (5A), 3023-3030 (2020).  

[28] K .L. Wang and S. W. Yao, He's fractional derivative for the evolution equation, Therm. Sci.  24(4),  2507-2513 (2020).  
[29] Y. Wang, S. W. Yao and H. W.Yang, A fractal derivative model for Snow's thermal insulation property, Therm. Sci. 23(4),2351-2354 

(2019).  
[30] I. Ahmad,  H. Ahmad, P. Thounthong, Y-M. Chu and C. Cesarano, Solution of multi-term time-fractional PDE models arising in 

mathematical biology and physics by local meshless method, Symmetry  12, 1-11 (2020).  
[31] P. Agarwal, A.  Hyder, M. Zakarya, G. AlNemer, C. Cesarano and D. Assante, Exact solutions for a class ofwick-type stochastic 

(3+1)-dimensional modified Benjamin–Bona–Mahony equations, Axioms  8, 1-15(2019).  
[32] C. Cesarano, Generalized special functions in the description of fractional diffusive equations, Commun. Appl. Ind. Math. 10, 31-40 

(2019).  
[33] H. Ahmad, T. A. Khan and C. Cesarano, Numerical solutions of coupled Burgers′ equations, Axioms  8(4), 119 (2019).  
[34] D. Assante, C. Cesarano, C. Fornaro and L. Vazquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev. 8(5), 

202-204 (2015). 



204        P. Jena  et al: The Solution of nonlinear time … 

 
 
© 2022 NSP 
Natural Sciences Publishing Cor. 
 

[35] A.-H. Abdel-Aty, H. Kadry, M. Zidan, Y. Al-Sbou, E. A. Zanaty and M. Abdel-Aty, A quantum classification algorithm for 
classification incomplete patterns based on entanglement measure, J. Intell. Fuzzy Syst. 38, 2817-2822  (2020). 

[36] A.-H. Abdel-Aty, M. M. A. Khater, D. Baleanu, E.M. Khalil, J. Bouslimi and M. Omri, Abundant distinct types of solutions for the 
nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes, Adv. Differ. Equ. 2020, 476 (2020).  

[37] A .M. Ahmed, L.Y. Cheong, N. Zakaria and N. Metwally, Dynamics of information coded in a single cooper pair box, Int. J. Theor. 
Phys  52 (6), 1979-1988  (2013). 

[38] A. M. Ahmed,  N. Zakaria and N. Metwally, Teleportation in the presence of technical defects in transmission stations, Appl. Math. 
Inf. Sci. 6 (3), 781-787 (2012). 

[39] N. Raza, M. S. Osman, A.-H. Abdel-Aty, S. Abdel-Khalek and H. R. Besbes., Optical solitons of space-time fractional Fokas–Lenells 
equation with two versatile integration architectures, Adv. Differ. Equ. 2020, 517 (2020). 

[40] J. Olumuyiwa, A .S. Peter, A. Shaikh, M. O. Ibrahim, K.S. Nisar, D. Baleanu, I. Khan and A.I. Abioye, Analysis and dynamics of 
fractional order mathematical model of COVID-19 in Nigeria Using Atangana-Baleanu operator, Comput.  Mat. Cont. 66(2), 1823-
1848  (2021). 

[41] L. Zada, R. Nawaz, S. Ahsan,  K. S. Nisar and D. Baleanu, New iterative approach for the solutions of fractional order inhomogeneous 
partial differential equations , AIMS Math. 6 (2), 1348-1365 (2021).   

[42] A. Ghaffar, A. Ali, S. Ahmed, S. Akram, M. D. Junjua, D. Baleanu and K. S. Nisar, A novel analytical technique to obtain the solitary 
solutions for nonlinear evolution equation of fractional order, Adv. Differ. Equ. 2020,  308 (2020). 

[43] O. Khan, N. U. Khan, D. Baleanu and K. S. Nisar, Computable solution of fractional kinetic equations using Mathieu-type series, 
Adv. Differ. Equ. 2019, 234 (2019). 

[44] A. Shaikh, A. Tassaddiq, K. S. Nisar and D. Baleanu, Analysis of differential equations involving Caputo-Fabrizio fractional operator 
and its applications to reaction diffusion equations, Adv.  Differ. Equ. 178 (2019). 

[45] U. Farooq, H. Khan, F. Tchier, E. Hincal, D. Baleanu and H.B. Jebreen, New approximate analytical technique for the solution of 
time fractional fluid flow models, Adv. Differ. Equ. 2021, 81(2021). 

[46] R. Roy, M. A. Akbar, A. R. Seadawy and D. Baleanu, Search for adequate closed form wave solutions to space–time fractional 
nonlinear equations, Partial Differ. Equ. Appl. Math. 3, 100025 (2021). 

[47] A. Majeed, M. Kamran, N. Asghar and D. Baleanu, Numerical approximation of inhomogeneous time fractional Burgers–Huxley 
equation with B-spline functions and Caputo derivative, Eng Comput. 1-16 (2021).  

[48] P. Pandey, S. Kumar, J. F. Gómez-Aguilar and D. Baleanu, An efficient technique for solving the space-time fractional reaction-
diffusion equation in porous media, Chinese J. Phys. 68(6), 483-492 (2020). 

[49] J-H. He, A tutorial review on fractal space-time and fractional calculus, Int J Theor Phys.  53, 3698-3718 (2014). 
 
 
 


