
Appl. Math. Inf. Sci. 16, No. 1, 101-108 (2022) 101

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/160110

Stability of First Order Linear General Quantum

Difference Equations in a Banach Algebra

Enas M. Shehata1,∗, Nashat Faried2 and Rasha M. El Zafarani2

1Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Egypt
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Received: 14 Sep. 2021, Revised: 21 Oct. 2021, Accepted: 21 Dec. 2021

Published online: 1 Jan. 2022

Abstract: The general quantum difference operator Dβ is defined by Dβ y(t) = (y(β (t))−y(t))/(β (t)− t), β (t) 6= t where the

function β (t) is strictly increasing continuous on an interval I ⊆ R and has a unique fixed point s0 ∈ I. In this paper, we establish

the characterizations of stability of the first order linear β -difference equations, associated with Dβ , in a Banach algebra E with a unit

e and norm ‖ · ‖. We prove the uniform stability, asymptotic stability, exponential stability and h-stability of these equations.
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1 Introduction and Preliminaries

Hamza et al. (2015) in [1], introduced the quantum
difference calculus associated with the β -difference
operator defined as:

Dβ f (t) =







f (β (t))− f (t)

β (t)− t
, t 6= s0,

f ′(s0), t = s0.

The function f : I → R is said to be β -differentiable on
the interval I ⊆ R, if f ′(s0) exists, where s0 ∈ I is the
unique fixed point of the function β (t) which is strictly
increasing continuous defined on I. In [1], two
inequalities were presented; the first inequality is
(t − s0)(β (t) − t) ≤ 0 for all t ∈ I, in this case
limk→∞ β k(t) = s0; β k(t) := β ◦β ◦ . . .◦β

︸ ︷︷ ︸

k−times

(t). The

Jackson q-difference operator with β (t) = qt, q ∈ (0,1),
s0 = 0 and the Hahn difference operator with
β (t) = qt +ω , q ∈ (0,1), ω > 0,s0 = ω

1−q
are examples

of quantum operators with β (t) satisfy this inequality. On
the other hand, the second inequality is
(t − s0)(β (t) − t) ≥ 0 for all t ∈ I, in this case
limk→∞ β k(t) = ∞ and the backward Hahn difference
operator with β (t) = qt +ω , q > 1,ω ≥ 0 is an example

of this inequality, see [2,3]. In [4], the different types of
the function β (t) contain finite and denumerable fixed
points that one can construct the associated calculi were
presented. The quantum difference operators deal with
sets of non-differentiable functions. The applications of
these operators can be used in several fields of
mathematics and physics, see, e.g.[5,6,7,8]. In [9], some
properties of the β -exponential functions eA,β (t) and

EA,β (t) were defined in a Banach algebra E with a unit e.
Moreover, it is proved that the first order β -initial value
problems for a mapping A : I → E continuous at s0, with
the form,

Dβ y(t) = A(t)y(t), y(s0) = e, (1)

and

Dβ y(t) =−A(t)y(β (t)), y(s0) = e, (2)

have respectively the unique solutions

eA,β (t) =

[
∞

∏
k=0

[
e−A(β k(t))(β k(t)−β k+1(t))

]

]−1

(3)

and

EA,β (t) =
∞

∏
k=0

[

e+A(β k(t))
(
β k(t)−β k+1(t)

)]

, (4)
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where A(t), A(β k(t)) commute for every k and

e−1
A,β (t) = E−A,β (t), provided that both the infinite

products in (3) and (4) converge. In addition, for a
mapping g : I → E continuous at s0, the
non-homogeneous β -difference equation

Dβ y(t) = A(t)y(t)+ g(t), y(s0) = y0,

has the unique solution

y(t) = eA,β (t)

[

y0 +
∫ t

s0

E−A,β

(
β (τ)

)
g(τ)dβ τ

]

.

Theorem 1.1. ([9]) Let x,y : I → E be β -differentiable on
I. Then:

(i) The product xy : I → E is β -differentiable on I,

Dβ (xy)(t) = (Dβ x(t))y(t)+ x(β (t))Dβ y(t)

= (Dβ x(t))y(β (t))+ x(t)Dβ y(t),

where, (xy)(t) = x(t)y(t).
(ii) Let y be invertible, then xy−1 is β -differentiable at t

and

Dβ (xy−1)(t) = (Dβ x(t))(y(β (t)))−1

− x(t)(y(β (t)))−1(Dβ y(t))(y(t))−1,

provided that for every t ∈ I, (y(t))−1 exists.
(iii) Dβ (y

−1)(t) = −(y(β (t)))−1(Dβ y(t))(y(t))−1,

provided that for every t ∈ I, (y(t))−1 exists.

Lemma 1.2. ([9]) If y : I → E is a continuous mapping at
s0, then the sequence {y(β k(t))}∞

k=0 converges uniformly
to y(s0) on every compact interval J ⊆ I containing s0.

Theorem 1.3. ([9]) If y : I → E is a continuous mapping
at s0, then the series ∑∞

k=0 ‖
(
β k(t)−β k+1(t)

)
y(β k(t))‖ is

uniformly convergent on every compact interval J ⊆ I

containing s0.

Lemma 1.4. ([9]) Let y : I → E be β -differentiable and
Dβ y(t) = 0 for all t ∈ I, then y(t) = y(s0) for all t ∈ I.

In [10], the theory of the linear β -difference equations
was build up. Also, the β -Laplace transform associated
with Dβ was deduced in [11]. Moreover, the β -Sturm
Liouville problem was investigated in [12]. In [13], the
β -variational calculus was presented. Furthermore, the
β -convolution theorem and some properties were proved
in [14]. To proceed the study of the β -calculus, we study
the stability of the linear β -difference equations. Indeed,
the stability of the differential and difference equations
has important role in different fields such as engineering,
mathematical biology, pharmacometrics, control systems
and physical systems, see, e.g. [15,16,17]. Recently, the
characterizations of stability has been studied in
fractional differential equations, dynamic equations and
difference equations, see [18,19,20]. Furthermore, there

are many types of stability such as the uniform stability,
asymptotic stability, uniform asymptotic stability, global
stability, global asymptotic stability, exponential stability,
uniform exponential stability and h-stability. In [21,22],
different types of stability of the linear dynamic equations
were investigated on time scales. Also, Hamza et al
studied the characterizations of stability of the linear
Hahn difference equations in a Banach space and Banach
algebras in [23,24].

In this paper, we introduce in a Banach algebra E with
a unit e and norm ‖ · ‖, the concepts of some types of the
stability of the zero solution, y = 0, of the β -difference
equation:

Dβ y(t) = F(t,y), y(τ) = yτ ∈ E, t,τ ∈ I, t ≥ τ. (5)

We assume F(t,0) = 0 for all t ∈ I, consequently, y = 0 is
a solution of equation (5). Furthermore, we study the
uniform stability, the asymptotic stability, the exponential
stability and the h-stability of the homogeneous
β -difference equation:

Dβ y(t) = A(t)y(t), y(τ) = yτ ∈ E, for all t ≥ τ, t,τ ∈ I,
(6)

and the non-homogeneous β -difference equation:

Dβ y(t)=A(t)y(t)+g(t), y(τ)= yτ ∈E, for all t ≥ τ, t,τ ∈ I,
(7)

where A,g : I → E are continuous mappings at s0.

Throughout this paper, Dβ means applying the
β -derivative with respect to the variable t. Also,

eA,β (t,τ) = eA,β (t)e
−1
A,β (τ) and then eA,β (τ, t) = e−1

A,β (t,τ).

In the following Section 2, we introduce the
definitions of some types of stability for the β -difference
equation (5). Moreover, we study the stability, the
uniform stability, the asymptotic stability, the global
asymptotic stability, the exponential stability, the uniform
exponential stability, the h-stability and the uniform
h-stability of the β -difference equations (6) and (7).

2 Main results

Lemma 2.1. The homogeneous β -difference equation (6)
has a unique solution eA,β (t,τ)yτ and the
non-homogeneous β -difference equation (7) has a unique
solution

y(t) = eA,β (t,τ)

[

yτ +

∫ t

τ
eA,β

(
τ,β (ξ )

)
g(ξ )dβ ξ

]

. (8)
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Proof. By Equation (1), Dβ eA,β (t) = A(t)eA,β (t). Then,

Dβ eA,β (t,τ) = Dβ

[

eA,β (t)e
−1
A,β (τ)

]

= Dβ

[
eA,β (t)

]
e−1

A,β (τ)

= A(t)
[

eA,β (t)e
−1
A,β (τ)

]

= A(t)eA,β (t,τ).

Now,

Dβ (eA,β (t,τ)yτ ) = Dβ (eA,β (t,τ))yτ + eA,β(β (t),τ)Dβ (yτ)

= A(t)eA,β (t,τ)yτ ,

where Dβ (yτ) = 0 since yτ is constant.

Also, eA,β (t,τ)yτ |t=τ = eA,β (τ,τ)yτ = yτ . Thus,

eA,β (t,τ)yτ is a solution of the homogeneous equation
(6). To prove the uniqueness, let equation (6) has another
solution z(t) 6= eA,β (t,τ). Then

Dβ

[
eA,β (τ, t)z(t)

]
= [Dβ eA,β (τ, t)]z(t)

+ eA,β (τ,β (t))Dβ z(t)

= −eA,β (τ,β (t))A(t)z(t)

+ eA,β (τ,β (t))A(t)z(t)

= 0,

and therefore, eA,β (τ, t)z(t) is a constant for all t ∈ I.
Hence, using the initial condition
eA,β (τ, t)z(t)|t=τ = eA,β (τ,τ)z(τ) = yτ .

Consequently, z(t) = eA,β (t,τ)yτ is the unique solution of
the β -IVP (6).
On the other hand, from equation (8)

Dβ y(t) = Dβ

(
eA,β (t,τ)

)
yτ +Dβ

(
eA,β (t,τ)

)

∫ t

τ
eA,β

(
τ,β (ξ )

)
g(ξ )dβ ξ

+ eA,β

(
β (t),τ

)
eA,β

(
τ,β (t)

)
g(t)

= A(t)eA,β (t,τ)yτ +A(t)eA,β (t,τ)
∫ t

τ
eA,β

(
τ,β (ξ )

)
g(ξ )dβ ξ + g(t)

= A(t)y(t)+ g(t).

Then, y(t) is a solution of (7). To prove the uniqueness of
the solution, let x(t) 6= y(t) be another solution of equation
(7). Suppose that z(t) = eA,β (τ, t)x(t), and hence x(t) =
eA,β (t,τ)z(t). Then,

A(t)eA,β (t,τ)z(t)+ g(t) = Dβ

[
eA,β (t,τ)z(t)

]

= Dβ (eA,β (t,τ))z(t)

+ eA,β (β (t),τ)Dβ (z(t))

= A(t)eA,β (t,τ)z(t)

+ eA,β (β (t),τ)Dβ (z(t)).

Consequently,

Dβ (z(t)) = eA,β (τ,β (t))g(t).

This yields that

z(t) = yτ +

∫ t

τ
eA,β

(
τ,β (ξ )

)
g(ξ )dβ ξ ,

z(τ) = eA,β (τ,τ)y(τ) = yτ . Hence, x(t) = y(t). �

Definition 2.2. A solution y(t,τ,yτ) of the β -difference
equation (6) is said to be bounded if there is a constant
κ(τ)> 0 that depends on τ and yτ such that

‖y(t,τ,yτ)‖ ≤ κ(τ)‖yτ‖, t ∈ I.

Definition 2.3. We say that the family {eA,β (t,τ) : t,τ ∈
I, t ≥ τ} is stable if it is bounded i.e. if there is κ(τ) > 0
such that

‖eA,β (t,τ)‖ ≤ κ(τ) for all t,τ ∈ I, t ≥ τ.

2.1 Types of stability

In the following, we introduce the definitions of some
types of stability for the β -difference equation (5).

Definition 2.4. The β -difference equation (5) is called
stable if for all ε > 0,τ ∈ I, there is δ = δ (ε,τ) > 0 such
that for a solution y(t,τ,yτ), if ‖yτ‖ < δ implies that
‖y(t,τ,yτ)‖ < ε , for all t ≥ τ , t,τ ∈ I. The stability of the
β -difference equation (5) is equivalent to the stability of
the zero solution, y = 0. Furthermore, the β -difference
equation (5) is said to be stable if all of its solutions are
stable.

Definition 2.5. The β -difference equation (5) is called
uniformly stable if for all ε > 0, there is δ = δ (ε) > 0
such that if ‖yτ‖ < δ implies that ‖y(t,τ,yτ)‖ < ε , for all
t ≥ τ , t,τ ∈ I.

Definition 2.6. The β -difference equation (5) is called
asymptotically stable if it is stable and there is
δ = δ (τ) > 0 such that if ‖yτ‖ < δ (τ) implies that
limt→∞ ‖y(t,τ,yτ)‖= 0.

Definition 2.7. The β -difference equation (5) is called
uniformly asymptotically stable if it is uniformly stable
and there is δ > 0, such that if ‖yτ‖ < δ implies that
limt→∞ ‖y(t,τ,yτ)‖= 0.

Definition 2.8. The β -difference equation (5) is called
globally asymptotically stable if it is stable and for a
solution y(t) = y(t,τ,yτ ) of equation (5), we have

lim
t→∞

‖y(t,τ,yτ)‖= 0.
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Definition 2.9. The β -difference equation (5) is called
exponentially stable if there exist finite constants λ > 0
and κ = κ(τ)> 0 such that

‖y(t,τ,yτ)‖ ≤ κ‖yτ‖e−λ ,β (t,τ), for all t ≥ τ, t,τ ∈ I.

Definition 2.10. The β -difference equation (5) is called
uniformly exponentially stable if κ independent of τ ∈ I.

Definition 2.11. Let h : I → R be a positive bounded
function. The β -difference equation (5) is called h-stable
if for a solution y(t) = y(t,τ,yτ ) of equation (5), we have

‖y(t,τ,yτ)‖≤ κ(τ)‖yτ‖h(t)h−1(τ), for all t ≥ τ, t,τ ∈ I,

where κ = κ(τ)≥ 1 and h−1(τ) = 1
h(τ) .

Definition 2.12. The β -difference equation (5) is called
h-uniformly stable if κ ≥ 1 independent of τ ∈ I.

2.2 Stability of the β -difference equations

In the following theorems we study the stability and the
uniform stability of the homogeneous β -difference
equation (6) and the non-homogeneous β -difference
equation (7). We show that the β -difference equation (6)
is said to be stable if and only if its solution
y(t) = eA,β (t,τ)yτ is bounded for all t ≥ τ ∈ I.

Theorem 2.13. The following statements are equivalent.

(a) The homogenous β -difference equation (6) is stable.
(b) There is κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ κ(τ) for all t,τ ∈ I, t ≥ τ.

(c) For all τ ∈ I, there is κ(τ) > 0, such that for a
solution y(t) = y(t,τ,yτ ) of the homogenous
β -difference equation (6), we have

‖y(t)‖ ≤ κ(τ)‖yτ‖, t ≥ τ, τ ∈ I.

Proof. (a)⇒ (b). Suppose that equation (6) is stable. Let
ε = 1, there is δ > 0 such that for a solution
y(t) = y(t,τ,yτ ), we have

‖yτ‖< δ ⇒ ‖eA,β (t,τ)yτ‖< 1, for all t ≥ τ, t ∈ I.

Since ‖yτ‖< δ , let 0 6= z0 ∈E, and take yτ = δ z0/(2‖z0‖).
Therefore,

‖eA,β (t,τ)z0‖< 2‖z0‖/δ , t ≥ τ, t ∈ I.

Then, by the uniform bounded-ness theorem, [25], there is
κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ sup
‖z0‖=1

2‖z0‖/δ = κ(τ) for all t,τ ∈ I, t ≥ τ.

(b) ⇒ (c). There is κ(τ) > 0 such that
‖eA,β (t,τ)‖ ≤ κ(τ), for all t ∈ I, t ≥ τ . Therefore, for a

solution y(t) = y(t,τ,yτ ) of equation (6), we have

‖y(t)‖ = ‖eA,β (t,τ)yτ‖

≤ κ(τ)‖yτ‖, for all t ≥ τ, t,τ ∈ I.

(c)⇒ (a). Assume that there is κ(τ)> 0, τ ∈ I such that

‖y(t)‖ ≤ κ(τ)‖yτ‖, t ∈ I.

Let ε > 0, and take δ = ε
κ(τ) , τ ∈ I. For any yτ ∈ E such

that ‖yτ‖< δ , we get

‖y(t)‖ ≤ κ(τ)‖yτ‖

=
ε

δ
‖yτ‖< ε, t ≥ τ, t,τ ∈ I.

�

Corollary 2.14. If there exists γ = γ(τ) ≥ 0 such that

∫ t

τ
‖g(ξ )‖κ(β (ξ ))dβ ξ ≤ γ, t,τ ∈ I.

Then, the homogeneous β -difference equation (6) is
stable if and only if the non-homogeneous β -difference
equation (7) is stable.

Proof. Suppose that equation (6) is stable. Then, by
Theorem 2.13, there is κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ κ(τ) for all t,τ ∈ I, t ≥ τ.

Let yl(t) be a solution of equation (7) with initial value yτ .
Then by using equation (8), we get

‖yl(t)‖ ≤ κ(τ)‖yτ‖+

∫ t

τ
‖g(ξ )‖κ(β (ξ ))dβ ξ

≤ κ‖yτ‖+ γ.

Let ε > 0, and take δ = ε
κ(τ) , τ ∈ I and γ = 0. For any

yτ ∈ E such that ‖yτ‖< δ , we get

‖yl(t)‖ ≤ κ(τ)‖yτ‖

< (
ε

δ
)δ = ε, t ≥ τ, t,τ ∈ I.

Therefore, the non-homogeneous β -difference equation
(7) is stable. Conversely, assume that equation (7) is
stable. Then, for all ε > 0,τ ∈ I, there is δ = δ (ε,τ) > 0
such that for a solution yl(t) of equation (7) if ‖yτ‖ < δ
implies that ‖yl(t)‖< ε , for all t ≥ τ , t,τ ∈ I, and then,

‖yl(t)‖ ≤ ‖eA,β (t,τ)yτ‖+ γ.

Consequently, ‖y(t)‖ = ‖eA,β (t,τ)yτ‖ < ε . Hence, the
homogeneous β -difference equation (6) is stable. �

The proofs of the following Theorem 2.15 and
Corollary 2.16 will be omitted since they are similar to
the proofs of Theorem 2.13 and Corollary 2.14.

Theorem 2.15. The following statements are equivalent
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(i1) The homogeneous β -difference equation (6) is
uniformly stable.

(i2) There is κ > 0 independent of τ such that

‖eA,β (t,τ)‖ ≤ κ for all t,τ ∈ I, t ≥ τ.

(i3) There is κ > 0 such that for a solution
y(t) = y(t,τ,yτ) of the homogeneous β -difference
equation (6), we have

‖y(t)‖ ≤ κ‖yτ‖, t ≥ τ, t ∈ I.

�

Corollary 2.16. If there exists γ ≥ 0 such that

∫ t

τ
κ‖g(ξ )‖dβ ξ ≤ γ, t,τ ∈ I.

Then, the homogeneous β -difference equation (6) is
uniformly stable if and only if the non-homogeneous
β -difference equation (7) is uniformly stable. �

In the following, we present the asymptotic stability
and global asymptotic stability of the β -difference
equations (6) and (7).

Theorem 2.17. The following statements are equivalent

(i) The homogeneous β -difference equation (6) is
asymptotically stable.

(ii) limt→∞ ‖eA,β (t,τ)y‖= 0 for every y ∈ E, τ ∈ I.
(iii) The homogeneous β -difference equation (6) is

globally asymptotically stable.

Proof. (i) ⇒ (ii). Suppose that equation (6) is
asymptotically stable. Then, there is δ (τ) > 0 such that
for a solution y(t) = y(t,τ,yτ) of equation (6), with initial
value yτ , we have

‖yτ‖< δ (τ)⇒ lim
t→∞

‖y(t)‖= 0.

Let 0 6= y ∈ E. Take yτ = δ (τ)y/(2‖y‖). Therefore,

lim
t→∞

‖eA,β (t,τ)δ (τ)y/(2‖y‖)‖= 0.

Then, limt→∞ ‖eA,β (t,τ)y‖= 0.

(ii) ⇒ (iii). Let limt→∞ ‖eA,β (t,τ)y‖ = 0 for every
y ∈ E, τ ∈ I. Then, by the uniform bounded-ness theorem,
there is κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ κ(τ) for all t,τ ∈ I, t ≥ τ.

Thus, by Theorem 2.13, equation (6) is stable. Therefore,
the homogeneous β -difference equation (6) is globally
asymptotically stable.

(iii) ⇒ (i). Assume that equation (6) is globally
asymptotically stable. Then equation (6) is stable and for
a solution y(t) = y(t,τ,yτ ) of equation (6), we have

0 = lim
t→∞

‖y(t,τ,yτ )‖= lim
t→∞

‖eA,β (t,τ)yτ‖,

By Theorem 2.13, we have

‖eA,β (t,τ)yτ‖ ≤ κ(τ)‖yτ‖.

Let ε > 0, and take δ (τ) = ε
κ(τ)

, τ ∈ I. For any yτ ∈E such

that ‖yτ‖< δ (τ), we get

‖eA,β (t,τ)yτ‖< ε.

implies that limt→∞ ‖y(t)‖ = 0. Therefore, the
homogeneous β -difference equation (6) is asymptotically
stable. �

Corollary 2.18. If there exists γ = γ(τ)≥ 0 such that

∫ t

τ
‖g(ξ )‖‖eA,β(t,β (ξ ))‖dβ ξ ≤ γ, t,τ ∈ I.

Then, the homogeneous β -difference equation (6) is
globally asymptotically stable if and only if the
non-homogeneous β -difference equation (7) is globally
asymptotically stable.

Proof. Suppose that equation (6) be globally
asymptotically stable. Then, limt→∞ ‖eA,β (t,τ)‖ = 0 . Let

yl(t) be a solution of equation (7). Therefore,

‖yl(t)‖ ≤ ‖eA,β (t,τ)yτ‖+

∫ t

τ
‖g(ξ )‖‖eA,β(t,β (ξ ))‖dβ ξ

≤ ‖eA,β (t,τ)‖‖yτ‖+ γ,

and then limt→∞ ‖yl(t)‖ = 0. Hence, the
non-homogeneous β -difference equation (7) is globally
asymptotically stable. Conversely, suppose that equation
(7) is globally asymptotically stable. Then, for a solution
yl(t) of equation (7), we have limt→∞ ‖yl(t)‖= 0 and so,

0 = lim
t→∞

‖yl(t)‖ ≤ lim
t→∞

‖eA,β (t,τ)yτ‖+ γ.

Then, limt→∞ ‖eA,β (t,τ)yτ‖ = 0. Therefore, by Theorem
2.17, the homogeneous β -difference equation (6) is
globally asymptotically stable. �

Now, we introduce the exponential stability and the
uniform exponential stability of the β -difference
equations (6) and (7).

Theorem 2.19. The following statements are equivalent

(i) The homogeneous β -difference equation (6) is
exponentially stable.

(ii) There is λ > 0 and κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ κ(τ)e−λ ,β (t,τ) for all t ≥ τ.

Proof. (i)⇒ (ii) Assume that equation (6) is exponentially
stable. Then, there is κ(τ)> 0 such that

‖y(t)‖ = ‖eA,β (t,τ)yτ‖

≤ κ(τ)e−λ ,β (t,τ)‖yτ‖, for all t ≥ τ.
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Hence, ‖eA,β (t,τ)‖ ≤ κ(τ)e−λ ,β (t,τ).
(ii)⇒ (i) Let y(t) = y(t,τ,yτ ) be a solution of equation (6)
with yτ ∈ E. Then, we get

‖y(t)‖ = ‖eA,β (t,τ)yτ‖

≤ κ(τ)e−λ ,β (t,τ)‖yτ‖, for all t ≥ τ.

Therefore, the homogeneous β -difference equation (6) is
exponentially stable. �

Corollary 2.20. If there exists γ = γ(τ)≥ 0 such that

∫ t

τ
‖g(ξ )‖κ(β (ξ ))e−λ ,β(τ,β (ξ ))dβ ξ ≤ γ, t ∈ I.

Then, the homogeneous β -difference equation (6) is
exponentially stable if and only if the non-homogeneous
β -difference equation (7) is exponentially stable.

Proof. Let equation (6) be exponentially stable. By
Theorem 2.19, there is λ > 0 and κ(τ)> 0 such that

‖eA,β (t,τ)‖ ≤ κ(τ)e−λ ,β (t,τ) for all t ≥ τ.

Assume that yl(t) is a solution of equation (7) with initial
value yτ . Using equation (8), we have

‖yl(t)‖ ≤ κ(τ)e−λ ,β (t,τ)‖yτ‖

+

∫ t

τ
‖g(ξ )‖κ(β (ξ ))e−λ ,β(t,β (ξ ))dβ ξ

≤ {κ‖yτ‖+ γ}e−λ ,β(t,τ).

Therefore, the non-homogeneous β -difference equation
(7) is exponentially stable. Conversely, assume that
equation (7) is exponentially stable. Then, there exist
λ > 0 and κ = κ(τ)> 0 such that

‖yl(t)‖ ≤ κ‖yτ‖e−λ ,β (t,τ), for all t ≥ τ, t,τ ∈ I.

Consequently, with γ = 0,

‖y(t)‖= ‖eA,β (t,τ)yτ‖ ≤ κ‖yτ‖e−λ ,β (t,τ).

Then the homogeneous β -difference equation (6) is
exponentially stable. �

The proofs of the following Theorem 2.21 and
Corollary 2.22 are the same technique as the proofs of
Theorem 2.19 and Corollary 2.20, therefore they will be
omitted.

Theorem 2.21. The following statements are equivalent

(i) The homogeneous β -difference equation (6) is
uniformly exponentially stable.

(ii) There is λ > 0 and κ > 0 independent of τ such that

‖eA,β (t,τ)‖ ≤ κe−λ ,β(t,τ), for all t ≥ τ.

�

Corollary 2.22. If there exists γ ≥ 0 such that

∫ t

τ
‖g(ξ )‖κe−λ ,β(τ,β (ξ ))dβ ξ ≤ γ, t ∈ I.

Then, the homogeneous β -difference equation (6) is
uniformly exponentially stable if and only if the
non-homogeneous β -difference equation (7) is uniformly
exponentially stable. �

Next, we present the h-stability and the uniform
h-stability of the homogeneous and non-homogeneous
β -difference equations (6) and (7).

Theorem 2.23. The following statements are equivalent

(a) The homogeneous β -difference equation (6) is
h-stable.

(b) There exists κ = κ(τ)≥ 1 such that

‖eA,β (t,τ)‖ ≤ κ(τ)h(t)h−1(τ), for all t ≥ τ.

Proof. (a) ⇒ (b). Suppose that equation (6) is h-stable.
There exists κ = κ(τ) ≥ 1 such that for a solution y(t) =
y(t,τ,yτ), yτ ∈ E of equation (6) satisfies

‖y(t)‖= ‖eA,β(t,τ)yτ‖≤ κ(τ)‖yτ‖h(t)h−1(τ), for all t ≥ τ.

Therefore, we have

‖eA,β (t,τ)‖ ≤ κ(τ)h(t)h−1(τ).

(b) ⇒ (a). Suppose that ‖eA,β (t,τ)‖ ≤ κ(τ)h(t)h−1(τ).
For κ = κ(τ)≥ 1, then

‖y(t)‖ = ‖eA,β (t,τ)yτ‖

≤ ‖eA,β (t,τ)‖‖yτ‖

≤ κ(τ)‖yτ‖h(t)h−1(τ), for all t ≥ τ.

Hence, the homogeneous β -difference equation (6) is
h-stable. �

Corollary 2.24. If there exists γ = γ(τ) ≥ 0 such that

∫ t

τ
‖g(ξ )‖κ(β (ξ ))h(τ)h−1(β (ξ ))dβ ξ ≤ γ, t ∈ I.

Then, the homogeneous β -difference equation (6) is
h-stable if and only if the non-homogeneous β -difference
equation (7) is h-stable.

Proof. Assume that equation (6) is h-stable.
By Theorem 2.23, there exists κ = κ(τ)≥ 1 such that

‖eA,β (t,τ)‖ ≤ κ(τ)h(t)h−1(τ), for all t ≥ τ.
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Let yl(t) be a solution of equation (7) with initial value yτ .
By using equation (8), we get

‖yl(t)‖ ≤ κ(τ)h(t)h−1(τ)‖yτ‖

+

∫ t

τ
‖g(ξ )‖κ(β (ξ ))h(t)h−1(β (ξ ))dβ ξ

≤ {κ‖yτ‖+ γ}h(t)h−1(τ).

Therefore, the non-homogeneous β -difference equation
(7) is h-stable. Conversely, suppose that equation (7) is
h-stable. Then, for κ = κ(τ)≥ 1 we have

‖yl(t)‖ ≤ κ(τ)‖yτ‖h(t)h−1(τ), for all t ≥ τ, t,τ ∈ I.

Consequently, with γ = 0,

‖y(t)‖= ‖eA,β (t,τ)yτ‖ ≤ κ(τ)‖yτ‖h(t)h−1(τ).

Hence, the homogeneous β -difference equation (6) is
h-stable. �

The proofs of the following Theorem 2.25 and
Corollary 2.26 are the same technique as the proofs of
Theorem 2.23 and Corollary 2.24, accordingly they will
be omitted.

Theorem 2.25. The following statements are equivalent

(a) The homogeneous β -difference equation (6) is
uniformly h-stable.

(b) There exists κ ≥ 1 independent of τ such that

‖eA,β (t,τ)‖ ≤ κh(t)h−1(τ), for all t ≥ τ.

�

Corollary 2.26. If there exists γ ≥ 0 such that

∫ t

τ
‖g(ξ )‖κh(τ)h−1(β (ξ ))dβ ξ ≤ γ, t ∈ I.

Then, the homogeneous β -difference equation (6) is
uniformly h-stable if and only if the non-homogeneous
β -difference equation (7) is uniformly h-stable. �

3 Conclusion

In this paper, we established the characterizations of
stability such as uniform stability, asymptotic stability,
global asymptotic stability, uniform exponential stability
and h-stability of linear quantum difference equations
associated with Dβ in a Banach algebra, where

Dβ f (t) = f (β (t))− f (t)
β (t)−t

, β (t) is strictly increasing and

continuous function has a unique fixed point s0 ∈ I.
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