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Abstract: The purpose of this manuscript is to present some quadruple coincidence point results for ¢ —Geraghty contraction mappings
in metric spaces with a directed graph. In order to highlight the importance of the theoretical results, the existence and uniqueness of
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1 Introduction

After the emergence of Banach’s theorem [1], the
technique and the applications of fixed point became very
important in diverse fields of mathematics, statistics,
chemistry, computer science, biology, engineering,
economics, game theory, theory of differential equations,
theory of integral equations, theory of matrix equations,
mathematical economics, etc. (see, e.g., [2,3,4,5]).

In 1987, the notion of a coupled fixed point is
presented by Guo and Lakshmikantham [6]. Bhaskar and
Lakshmikantham [7] established the concept of the mixed
monotone property for given mappings.

Lakshimikantham and Ciri¢ [8] developed the results
of [7] by defining the mixed 7—monotone and using it to
study the existence and uniqueness of solutions for
boundary value problems in partially ordered metric
spaces (POMSs, for short). Consequently, several coupled
fixed point and coupled coincidence point results have
appeared in the recent literature, for example, see [9, 10,
11,12].

The effect of fixed points on graph theory in metric
spaces was initiated by Jachymski [13]. Chifu and
Petrusel [14] extended the results of [7] in a directed
graph. Many researchers went to study this trend and
some fixed point results in MSs endowed with a directed
graph were obtained, see [15,16,17,18].

Recently, good work on coupled fixed points for
mixed m—monotone mappings via Geraghty-type
condition is presented by Kadelbur et al. [19].

Berinde and Borcut [20,21] were the first to present the
idea of tripled fixed points as a generalization of coupled
fixed points. They also contributed greatly for obtaining
theorems that serve the field of fixed points in POMSs. A
good number has worked in this direction, whether on the
theoretical or the practical side, for further clarification,
see [22,23,24,25,26].

Moreover, a valuable work that has been of great
interest to readers is the idea of the quadruple fixed
points, which was established by Karapinar [27].
Numerous applications have been listed by these points
under appropriate conditions and satisfactory theoretical
results have been deduced. For more details, see [28,29,
30].

Along with the results of Jachymski [13] and
Karapinar [27], we present in this manuscript some
quadruple coincidence point (QCP, for simplicity) results
for ¢—Geraghty contraction mappings in MSs endowed
with a directed graph. Finally, the theoretical results are
used to obtain the solution to a system of integral
equations.
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2 Background and material

In this section, we present some notations and definitions
which are useful for our work.

Assume that (U,3) is a MS and V is a diagonal of 1.
Assume also O is a directed graph so that the set W (©) of
its vertices coincides with U and V C I" (D), where I (D)
denotes the set of the edges of the graph. Let © has no
parallel edges and therefore, we can define © with the pair
W(©),I'©)).

Assume 0~ ! is the graph obtained from O by reversing
the direction of edges. Hence,

reEY={¢s»xet*: (&5ecr®):;.

Definition 1./30] Assume that J,m : U — U are two
mappings defined on a partially ordered set (POS)
(6,X). 3 is called m®—nondecreasing (resp.,
w—nonincreasing) if for each &, € U, & <X mx ie,

JE < Jse (resp., T3 = JE).

Note, if 7 is the identity mapping, then J is called
nondecreasing (resp., nonincreasing).

Definition 2./30] Assume that (U,=) is a POS and
IT:0* - U, m: U — U are two mappings. The mapping

IT have a mw—monotone property if Il is monotone
m—nondecreasing in both of its arguments, that is, for
each &, 3¢, @, N € U, the assumptions below hold:

&,6 € U, & =16
- H(éla%am7n) jn(527%7wan)a

w1, 200 € U, Tx) X T
é H(§7%l,w7n) jn(§7%27w,n),

o,m € U,n0, 1D,
:>H(éa%awlvn)jn(éa%awbn)a

and

Mm,m € U, nn X7
:H(éa%aw7n2)jn(57%7wan2)'

Clearly, if & is the identity map, then we say that IT
has a monotone property.

Definition 3./27] Suppose that O # 0 and I1 : U* — U,
7 : U — U are two mappings. A point (&, 5c,@,1) € U* is
called

(Q1)a quadruple fixed point of IT if
¢ =I(,,m,n), »=1I(x0,1,5),
o =II(®,n,E, %) andn=11(n,&,,);
(Q2)a QCP of 7 and IT if
ne =I1(G,,@,n), T =11 (>,,1,5),
@ = I (®,n,6,%) and tn =11 (N,&,5,0);

(Q3)a common quadruple fixed point (CQFP) of & and IT
if

Definition 4./28] Assume that (U,3) is a MS and
IT:0* = U, n: 0 — U are two mappings. IT and 7 are

called compatible mappings if
)-o
71T (545, @p, Mg, &)

lim 3 0,
psen (H(”%Bv”mﬁv”nﬁvnéﬁ))

lim 3 Il (&g, 55,@p,Mp) ,
B—roo H(néﬁ,nzﬁ,nwﬁ,nnﬁ

, I (@p,Mp. Ep. 225 , >
P (H(”wﬁv”nﬁv”éﬁ’”%ﬁ)

))=0

whenever {éﬁ} , {%ﬁ}, {w[;} and {77[3} are sequences
in O so that

= (),
and

: Il (ng,&p. 25, @p) ,
I%IBLS (H(ﬂﬂﬁ,ﬂ&ﬁ,ﬂ%ﬁ,ﬂﬁ[g

lim IT éﬁ,%ﬁ,w'ﬁ ng) = hm ﬂéﬁ,

B

11m IT = 11m n%ﬁ,

g, @p, Mg Sp

11mH Wp, Mg, 5ﬁ7 ng) = 11m ﬂw[g,

( )
( )
( )
and hm 0 1T (ng, &g, 225, ) = hm 1 7).

Definition 5./13] Assume that (O,3) is a complete MS
and I' (D) is the set of the edges of the graph. The
transitive property for I' (D) is holds if

(€,a),(a,») € (D) implies (£,%) e ' (D),
forall &, ,a €.

Definition 6./19] Suppose that (U,3) is a complete MS
and O is a directed graph. A trio (U,3,0) is called satisfies
the property A, if for each sequence (5ﬁ)BEN C U with
&g — &, as B —ooand (’g’lg,éﬁﬂ) er(©),forB eN, we
get (éﬁ,’g’) er®).

3 Theoretical results
This part is devoted to present some QCP and CQFP

results for ¢—Geraghty contraction mappings in MSs
endowed with directed graphs.
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We indicate the set of all QCPs of the mappings IT :
U* — Uand 7 : U — U by QC(I1, 1) so that

(&,5,m,m) € U*:
(&, ,m,m)=né,
II(c,0,1,&) = mo,
H(w7n5é’%) :nw7
II1(n,&, @) =nn

QC(an"):

We start this part with the following notions:

Definition 7.We say that the mappings IT : 0* — U and
7 : U — U are m—edge preserving if

|(7&.78) (w2, 75%), (0, 76) , (a0, 70) € E ()
= |(1E om0 (E287)),
(MGe@n.8).0 (%wn £)).
(m@.n.6.5.1(5.7.8.%)).
(M(.&.@),11(7.8%8)) er ).
Definition 8.We say that the operator II : U* — U is

O —continuous if for each (E*,s*,@*,n*) € U* and for
any sequence (J;); € N with

(5[31"%131"67[31'777[31') — &, H(%ﬁi’wﬁi’nﬁi’éﬁi) —

H(wﬁi’nﬁi’éﬁi’%ﬁi) - andn(nﬁi’éﬁﬂxﬁﬂwﬁz‘) =1,

as i — o and

( (5[3, %ﬁl wﬁt nﬁl) ’H
(H (%ﬁl wﬁl nﬁl l) ’H
). 11

I

(8+1:58,+1: Bp+1: M +1) )
(%ﬁl+l7wﬁl+l ’ nﬁl+l7 ﬁl+l)) ’
(wﬁl+l ’ nﬁl+l ? éﬁz“"l ? %ﬁz+l))

( +175ﬁ,+17%ﬁ,+lvwﬁ+1))

(H (wﬁz nBl ﬁl %Bl )
(1T (np,. Ep,» 745 G’ﬁ,)v

3

we have

(€. >, @, ’m)
(228, @p; ’7/3, &)
(@, nﬁ, &, %B,)v
(M;» g 725, ;)
%B, a’ﬁ, ’7& &)
ﬁl %ﬁl)7
’7 .. %ﬁ, @p,)
5 76, Of;» Ip;)
(@, np» Epys 725;)
('m &g+ 225, Bp;)
(&6, 75, @, '7[31)7
(56, G’ﬁ, np;:-Ep;)
(1p: Epis 25, G’ﬁ,)v

g %ﬁ, GB, 71;3,37 %H(n*,é*,%*,m*)
(@, 15,1 %ﬁ,)

)

— (5", ", @",n")

)

_>H(%*7w*7n*,€*)

)

H(m*,n*,é*,%*)

Bis
>p;, Op; ’7/3,

)

::::::::::::::::

as i — oo,

Assume that (U,3) is a MS equipped with a directed
graph o verifying the standard conditions.

Consider the set (04) described by

(5 »,@,1m) €Ut
(1= | FEE @), (T 1 (5@ £).
T (ro, 11 (@, é )) (0, IT1(n,E,5,@))
()
Also, consider ¢ is the class of all functions
@ : [0,00) — [0,0) so that the stipulations below hold:

(a;)@ is non-decreasing;
(@)p(c+¢)<¢(o)+
(a3)@ is continuous;
(@) (g) =04 ¢=0.

In addition,
Wi [0,00)F

by (o,¢.7.0) = v(s1,p,0) =
V(p,0,6,7)V 0,5,7,p €[0,);

(by)for any four sequences {G[;} {cg}, {s} and {pp}
of positive real numbers,

?(s);

let ¥ be the class of all functions
— [0,1) so that

v(t,p,0,6) =

v (0p.¢p,T6,pp) — 1 = 0p, 65,75, pp — 0, as f — co.

Definition 9.The mappings I1 : 0% — U and n: U — U
are an y — @—contraction if

(c)II and & are T—edge preserving;
(cp)there exists Yy € ¥ and @ € & so that for each

57%765 n755%757ﬁ S U fulﬁllll’lg
(7&.7E) ,(n¢,7%) , (2@, 7®) , (w0, 70) €T (),

(p(S (n(g,%,a,n),n(é,%,ﬁ,ﬁ)))

< o[ S (.7E) 8 (me73).
B S (@, n®),3 (xn,7N)

X @ (N (né,ng,fr%, ﬂ%,nw,nﬁ,nn,nﬁ)) , (1)
where
X (né,ng, T, W2, nai,mfi,nn,nﬁ)
S (7€, n& ), (s, m3),
N max{ 3((71'2,71'&52) ,S((n:n,ﬂﬁ)) }
Now, our first main result is as follows:

Theorem 1.Assume that (U,3) is a complete MS equipped
with a directed graph O. Assume also IT : 0* — U and
7 : U — U are an y — @—contraction so that the following
postulates hold:

(i)7 is continuous and w(U) is closed;
(i)I1 (U*) C (V) and & and I1 are compatible;
(iii)I1 is O—continuous or the tripled (5,3 ,0) verifies the
property A;
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(iv)[" (D) justifies the transitive property.
Then
QC(IT,m) £ 0iff (%) #0.

ProofLet the QC(II,m) # 0 and (gﬂ,(ﬁﬁ) €
QC(I1, &), we get

(&1 (220.7)) - (sE.5E).
(n%,n(%,ﬁ,ﬁ,é)) = (w3, 75%),
(n&r,n(ﬁ,ﬁ,g,%)) = (283, 73),

and (nn,n (ﬁ,é,%,a)) = (7, 70) €V C (D)

and IT and 7 are T—edge preserving, one can write

(IT (S0, 20, Bo, Mo
(I (520, @0, Mo, Eo
(IT (@0, Mo, &0, >0
(I1 (o, &0, 0, Do

NN N

JI (81, 00,@1,m)) = (761, 78,),

(31, @1,M1,81)) = (T30, T2)

I (@1,m1,81,54)) = (7@, 1@,),

(M1, 81,50, @1)) = (N1, 70)
er Q).

By induction, we get

(m&p-1,78p) s (op1, 7o), (ABp_y,m@p),

(mng_1,7ng) €' (0),V B eN.

Applying (1), we conclude that
o (S (”5[%”5[#1))

Therefore _ 3 H(éﬁ,l,%ﬁ,],wﬁ,],nﬁ,]) ,
e ¢ 11 (&g, 525, @5, Mp)
(2.1 (E257)). (w1(557.5)). e,
~ ~ = B—1> B> B—1> B)>
(w1 (5.0.65)) wa (1 (E20)) cre), v (3 (e LS T o),
this implies that (E, %,5,7]) € (04);T and hence  similarly
(0); #0. ¢ (3 (72, 72911))
Now, let (04);T # 0. Assume that &y, 50, @y, Mo € U —0 (3 (H(%ﬁl,wﬁl,n[slaéﬁl) a))
so that (&g, 3¢, @y, Mo) € (154)?, we obtain H(%ﬁvwﬁ’nﬁ’éﬁ)
3 (ﬂ%ﬁ,l,ﬂ%ﬁ) ,3 (ﬂﬁfﬁ,l,ﬂ'ﬁfﬁ) R
(ﬂ:éo,n( 05%0;0307”0))5 S w( S(7”7[3—177”7[3);3(7[5[371,7?5[3) (p(&)
(775%071—[(%0,&70,770750))7
(m@o, IT (@, Mo, S0, 0)) » =y (S (wEp—1,7Ep) S (Mo, mo2p) ’) P(X), (3
and (1o, IT (o, S0, 0, @o)) € T (9). S (r@p_1,7@p) 3 (A1, 77p)
Because H(U4) C m(U), one can construct sequences
(€5}, {55}, (@} and {n} in O as the following: ¢ (S (2. 70p.1))
=0 g H(wﬁflanﬁflvgﬁfla%ﬁfl)a
7[5[3 :H(‘:ﬁfla%ﬁflawﬁflvnﬁ 1) H(Gﬁ,nﬁ,(gﬁ,%ﬁ)
g = IT (351, @p_1,Mp—1,8p-1) » (S (mwp_y,mwg),3 (Tng_1,7Np) ,)
< X
nwg = I (@g_1,Mp_1,8p—1,p_1) , =V\s (n&p—1,m&p) .3 (w3051, m2p) P )
7”7[3: (77[3 lvgﬁ 1, %B— lamﬁ l)aforﬁzlaza--- :w(s(néﬁ]’ﬂéﬁ)’s(n%ﬁ]’ﬂ%ﬁ)’)(p(;{)’ )
If for some By € N, then 3 (7031, 7). 3 (w1, 71p)
w8y = TGpy—1, WG, = T4By 1, and
g, = 7Dp, -1 and TNg, = g, 1. ¢ (S (7ng,2np11))
Thus, (&g, Mg, 1, TWp _1,ANg,—1) is a QCP of 7 — 0 (3 <H(nﬁ17§[31,%ﬁ1,wp1) ,>)
and IT. So, for each § € N, assume that 11 (nﬁ,éﬁ, %vaﬁ)
np # mEg_y or Waeg # g, <y < 3 (nng_1,7mng),3 (1&p_1,wEp) , > o (X)
or Wy # TW_; Or TN # TNg_. = P\ S (g1, ), 3 (n0p 1, 7Tp)
, S (n&p_1,mEp) ,3 (7 l,n%),)
Since = B—1>75p B B X 5
w(s (n0p_,70p) .S (wng_p.7n) ) ) O
(m&o, IT (&0, >0, Bo, Mo)) = (7o, 7E1)
(TE%O) (% Wy, 770750)) (TE%O) ﬂ%l)v for each ﬁ € N, where
(ﬂﬁo,n(w Mo, o, 0)) (7'[@0,7'[@1), X — X ﬂéﬁ,],ﬂ:éﬁ,ﬂ'%ﬁ,],ﬂ'%ﬁ,
(no, I1 (10,0, >0, @o)) = (wM0, 7M1) €I (D), ~ "\ nw@p_y,nwg, NGy, WM )
@© 2022 NSP
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Form (2)-(5), we obtain
@ (;{ (néﬁaﬂéﬁJrlvn%Baﬂ%ﬁJrla))

g, TWpR1,TNB, TNR+1

_ 3(”§ﬁ’”§ﬁ+l)73(”%B’”%ﬁﬂ)v})
-¢ <max{ S (n@p, n@p11),3 (71p, 7Np41)

3 (ﬂéﬁflvnéﬁ) 73 (ﬂ%ﬁflvn%ﬁ) a)
<
- w<3 (n@p1, n@g) .3 (ANp_1,7Mp)

X (;{ (ngﬁlvnéﬁan%ﬁlvn%ﬁv>)

ﬂwﬁ—laﬂw[h”nﬁ—lv”nﬁ
néﬁfla n-gﬁvn%ﬁflvn%ﬂa
< X VBeN. (6
(p( (nwﬁlvnmﬁannﬁlvnnﬁ ﬁ ©
It follows form (6) that

).
0 <N (ﬂfﬁ,ﬂémbﬂ%ﬁ,ﬂ%ﬁﬂ,))
>.

nwﬁvnwﬁ+la Ng,TNp+1
néﬁfla n-gﬁvn%ﬁflvn%ﬂa )
< X
(p< (nwﬁlvnmﬁannﬁlvnnﬁ
The properties of @ leads to

X ﬂéﬁvnéﬁ+laﬂ%ﬁvn%ﬁ+lv
g, TWB41, NG, TNG+1

< X ﬂéﬁ,[,ﬂéﬁ,ﬂ%ﬁ,l,ﬂ%ﬁ,
”wﬁ—la”wﬁvﬂnﬁ—h”nﬁ '
Then the sequence

S = R (ngﬁhnéﬂan%ﬁlvn%ﬁv)
p nwﬁ717n6ﬁ7nnﬁ717nnﬁ

is decreasing. It follows that 35 — 3 as 8 — oo for some
3>0.

Now, we prove that 3 = 0. Suppose to the contrary,
that is 3 > 0, then from (6), one can get

¢ <N (néﬁanglﬂ»hn%ﬁan%ﬁ{»la))

nwﬁvnwﬁ+la Ng,TNp+1

@ (;{ (néﬁlanf[%n%ﬁlvn%ﬁa))

nwﬁfhnwﬁannﬁfhnnﬁ
S (w&p_1,mEp) .3 (maep_y, wop) ,)
< < 1.
- w(s (@1, 7@), 3 (xMp_1,771p)
Passing B — oo, we have

3 (ﬂéﬁ,[,ﬂ:éﬁ) 73 (ﬂ%ﬁfhn%ﬁ) a)
1.
w<3(”wﬁl’”wﬁ)vs(”nﬁh”nﬁ) -

Since @ € &, we obtain
3 (ﬂgﬁ,l,ﬂ'éﬁ) — 0, 3 (ﬂ%ﬁ,],ﬂ%ﬁ) — 0,
S (nwpg_y, ) — Oand 3 (wng_y,ANE) — O,

as B — oo, therefore

néﬁ*laﬂéﬁv
. T 7'6%[3,1,7'6%[3, -
R e R
nng—1,7Ng

which is inconsistent with the assumption 3 > 0. Hence,
we have

néﬁ],ﬂgﬁ,ﬂ%ﬁl,ﬂ%ﬁ,)
=X 0
Sﬁ (nwﬁlvnmﬁannﬁlvnnﬁ e

as f§ — oo,

Now, we prove that {n&g}, {ns}, {mWp} and
{m]ﬁ} are Cauchy sequences. Suppose on the contrary
that at least one of {n&g}, {75}, {n@p} and {7wng}
is not a Cauchy sequence. Thus there exists an € > 0 for
which we can get subsequences {m&g }, {m&p,} of
(&), () () of {5}, {n0 ), {70}

of {mwg} and {mng}, {ang} of {ang} with
B > §o > k so that

ﬂ'éﬁ ,ﬂgm,ﬂ'%ﬁ,,ﬂ%@,>
x (OB 3 > e, 8
(nwﬁk’ B, TNy > TN, ®

and

”5[3 71,755(@,7?%[3,71@%50 ,>
X k 3 k <e. 9
<”wﬁk1a”wm7”n[skuﬂnm ©)

By (8), (9) and triangle inequality, we get

g, , KW, , TNp, TN,

<X ( néﬁkvﬂ:éﬁkfl ) ﬂ%ﬁkvﬂ'.%ﬁkfl ) )
nop, , TWp, 1, TNp,, TNp, 1

+N ﬂéﬁkfl,ﬂépk,ﬂ%ﬁk,] aﬂ%[ﬂka
g, 1, O, TN —1, TN

X <néﬁk7néﬁklaﬂ%ﬁk7n%ﬁkla) te
np,, 1B, 1, TNB,, TNp,—1

e < %=X (ﬂéﬁk,ﬂém,ﬂ%ﬁwn%@,)

Passing limit as k — oo, we can write

% =X (ngﬁk’ngﬁk’n%ﬁk’n%ﬁk’) €. (10)
ﬂWBk,ﬂw(@k,ﬂnﬁk,ﬂnpk

Since

(n&p-1,78p)  (mog_1,7o0p) , (T, np),
(ng_1,mng) €L (9),VB €N,

@© 2022 NSP
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and I" (D) justifies the transitive property, we have

o (%) = ¢ (N (”‘gﬁk’”gm’n%ﬁk’”%‘“k’))

ﬂwﬁk,nwlgk, nnﬁk, ﬂ:nlgk

S (0] (}z (ngﬁk’ngﬁk+l7n%ﬁk,ﬂ%ﬁk+h))

ﬂwﬁk ; nmﬁﬁ»l ) ﬂnﬁk7 nnﬁﬁ»l

+o n&ﬁ}ﬂrl ) ”éﬁk+17n%ﬁk+l Xt
ﬂkaH y ﬂmerl ) ﬂanJrl ) ﬂnlak+]

+(P ngﬁ]ﬁ»la 7[5[01() 7[%[0](4»177[%50/()
ﬂ"wjﬁkJrl ) ”wgokv TNo+1, TN g,

X
X
( ﬂéﬁka ﬂéﬁkﬂ yUHB, THB 11, > )
X
X

= X
? RWp, s OB, 115 X1, » TN, +1
+ ( (ﬂéerlaﬂéﬁkaﬂ%man%(@ka)>
”wgokJrh”wgaka”nerh”nm
+o T+ 15 WE 1, W32y 41, W41,
nwﬁk+lanw{@{»lannﬁk{»lannﬁﬁ%
< ¢ (& (n&ﬁkangﬁk+l7n%ﬁkan—%ﬁk+lv))
- nOp, , TWB, 11, TN, TNB, +1
+o (X T or+1: M0 W1, W
W41, TD g, TN 41, TN g
+y <S (ﬂéﬁk7ﬂépk) 3 (”%Bk’”%m) 7)
3 (ﬂwﬁk,ﬂw@() 3 (”nﬁk’”nm)

<0 (N néﬁk,ném,n%ﬁwn%@,)>
ﬂﬁfﬁk,ﬂﬁflgk,ﬂnﬁk,ﬂnm

= (P(SﬁkJrl) +‘P(550k+1)

3 (mép,. m&p,) ,S (Mep, gy ,)
V)
—HV(S (nwﬁkvnwlﬁk) 3 (nnﬁk’nnlﬁk) ¢ (%)

<0 (Spi1) T (Spr1) T ().

Hence, we obtain

o) <o (Sﬁkﬂ) +¢ (Smﬂ) + 0 (%h).

Letting k — oo, using (7), (10) and the properties of ¢, we
can write

V/<S (néﬁkvné@k) ’3

(”%ﬁw Txp,) ,>
— 1.
3 (ﬂwﬁk’ ﬂw{ﬂk) )

,3 (ﬂnﬁka N o,
The properties of y leads to
3 (m&p,,mEp,) — 0, S (Mo, Wa2p,) — 0,
3 (nwp,, 7@, ) — 0and 3 (7N, 7Ny ) — 0,

as k — oo. Also, we have

ﬂgﬁk,ﬂgm,
g, , T,
lim ) = lim X Po” "o | =0
kllllc k lm ﬂwﬁk,ﬂ'wm, ’
TN TN,

which contradicts € > 0.

Hence, we get {m&g}, {msg}, {n®@p} and {7mng}
are Cauchy sequences. Since (U,3) is a complete and

7 (U) is a closed subset of U, there are E, ,@,1 € (V)
so that

lim 77:&/3 = hm II éﬁ’%ﬁ’wﬁ T]ﬁ) é

fren

B

lim Tog = 11m IT Wp,Np, éﬁ,%ﬁ)

Bren

(

lim 7565 = hmH(% Dp, 1, 6p,) =
(
(g

and élm g = hm II éﬁ,%ﬁ,wﬁ) = 7~7

Form assumption (i) of our theorem, we can summarize

- Il (&g, >, @, Mp) ,
g’ (H (w8p, moep, g, ) )

: ﬂ.'H(% , O, >N 7& )a
lim 3 B> B> "B 5P =0
B <H(”%B’”wﬁv”nﬁv”éﬁ)

3

, Il (@p,Mp.Ep. 225 , )

1

o (H (w3, mng, 7, wo4p)
and limS( nH(nﬁ {:ﬁ’%ﬁ 67[3) ) 0.

B \ I (mnp, w&p, w355, 7p)

Now, we discuss the two stipulations which listed in (iif) .
(S1) Let IT be o—continuous. Based on the triangle
inequality, we get

:O,

(1)

3 (nE,H(ﬂéﬁvﬂ%ﬁ,”wﬁv”’?ﬁ))
<3 (ng,nn(éﬁ,%ﬁ,wpmp))

.3 < 71 (8. 5. @p,1p) - > _
1 (wép, moep, mWp, TNR)

When B — oo, by using (/1) and the continuity of 7 and
since IT is ©D—continuous, we have

3 (nE,H(E,%,z’z},ﬁ)) —0 nE:H(E,%,&;,ﬁ).
With the same scenario, one can write
3 (n%,H(%,ﬁ,ﬁ,g)) :o@n%zn(%,ﬁ,ﬁ,é,),

3 (né,n(ﬁ,ﬁ,g,%)) =0<:>m5:n(a~r,ﬁ,§,%),
and
3 (nﬁ,n(ﬁ,g,%,ﬁ)) :O@Eﬁzn(ﬁ,g,%,ﬁ).

Thus (E, %,(ffﬁ) is a QCP of the mappings IT and 7.

Hence, QC(I1, ) # 0.
(S2) Assume that the triple (U,3,0) satisfies the
property A. Therefore

nE =, Tx=3 10 =0,
and 71 = 7 for some &, s, @,M € U,

®© 2022 NSP
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and we get
3(86:8), 3 (5, %) . S (@, @) and 3 (. m)
er),vpeN.

From (1), one can obtain

( S (w11 (&, 5,@,1))+3 (752,11 (32,@,n,8))
+3 (@, I1(®@,n,8,5)) + S (7n,I1(n,§,,0))

( 5 ”€ﬁ+1)+3(”€ﬁ+la (éa% 67777))
(77.7% ﬂ%ﬁ+])+3 (ﬂ%ﬁJrl,H(%vwanvé))
(717(17 ﬂwl}+l)+3 (ﬂwﬁ+],n(w 77757%))
(7‘[1‘[ ﬂnBH)-FS(ﬂnﬁﬂan(naéa%a(ﬁ))
( ( (éﬁvxﬁawﬁvnﬁ)’H(éa%awvn)))
I (545, @, g, &) 1T (>, @,1,6)))
IT (@, np. Ep. 55 (a’ n,6,%)))
g, ﬂ5ﬁ+1))+¢(3 (”% ”%ﬁﬂ))
W, A0g.1)) + ¢ (3 (7, 71p41))

S (wsep, 7w32) )

S (znp.7n)

X (X (1&g, nE, Wo2p, W3¢, WO, WW, AN, TN )

+0 (S (78, 78p41)) + ¢ (S (3¢, w3051
(

+o( ”wﬂmﬁﬂ)) +0(3 (ﬂn,ﬂnp+1))
— 0, as B — oo.

I A

+o(3(
+0 (S (
+(S(
+o(3(
+(S(

I /\

o

Enéﬁ,né

3
3
3
3
)
3 (nop, 7o),
X
3
3

Therefore

( w8, I1(§,2,@,1m))
+ (12,11 (,0,1,€)) _0
3 (@, I1(@,n,§, ) '
3(an, 11 (n,§, 5 0))
The properties of ¢ implies that

3 (8,11 (&, @,
+3 (73e,I1 (5c,@0,M
+S (rw,I1 (o, 7,

+3 (20, 11 (n,8, @

3

n))
5)
)

)

o —

0.

Hence

7E = I (.,50.0.1), Te=T1(2,8,1.£).
@ = II(®,n,8,%) andn =11 (n,&,,0).
This finishes the proof.

Corollary 1.Suppose that (U,3,=) is a partially ordered
complete MS and assume that TT : O% — U satisfies the
monotone wt—nondecreasing property and w: G — U is
continuous. Let the assumptions below hold:

(i)there are &y, »¢, @, No € U so that

&y = I (&, 50, @, Mo) s
Ty = 11 (549, @9, Mo, &)
n@y = I1(@o, Mo, S0, 50),

and 719 = IT (1o, S0, 20, @o) ;

)

(ii)there exists y € ¥ and @ € @ so that for each
év”vwanvﬁaé;%;&i S U, we have

(né <&, wx < nx, IO < 1O, 1N =< nﬁ)
or (7:3; < mE, tx = Nk, 1O < O, TN < m])

and

<p(3 (H(é,%,w,n),n(g,%,ﬁ,ﬁ)))

<y 3 (né,ng) ,S(n%,nii),
S (@, n®),3 (7n,77N)
X(p(N (né,ng,n%,n%,nm,nﬁ,nn,nﬁ)),
where
X (né,ng, T, W2, nai,mfi,nn,nﬁ)
~ max] 3 (7€:7E) S (e, |
S (rw,70),3 (xn,7xN)

(iii)(Sy) IT is continuous or,
(S2) if {&p} is an increasing sequence in U and &g —
& as B — oo, then &g < & forall B.

Then IT has a QCP.

Proof.The proof follows immediately from Theorem / if
we take I'(9) = {(&,5) € U : £ < 5},

Now, we shall denote the CQFPs by CQF(IT, 7) so that

(&, @m) €Vt

H(57%7w5n) :7[5 257
I (3,0,1m,8) = T3 = 3,
(o,n,&,%) =0 =0,

n(n,§,»,o)=nn=n

The second main theorem of our results is as follows:

CQF(Il,n) =

Theorem 2.In addition to the postulates of Theorem 1,

assume that

(v)for any two elements (&, 2, @, 1), (E, 3,0, ﬁ) e v
there is (&%, ", @*,n*) € U* so that

(&, mE*), (ng, né*) (T3, ac®) (o2, ™),
(r@,n0*), (1@, 7@*), (70, 70*), (77, 7N*)
eI (9).

Then o
CQF(IT, ) # 0iff () #0.

Proof:-Theorem [ leads to there exists a QCP (&, s, @, n) €
U4,i.e.,

né = H(57%7w)n)) n%:H(%)a;7n’€))

@ = II(®,n,5,%) andn =I1(n,&,,0).
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Let there is another QCP (E, 7,0, ﬁ) € U%, that is

€ — H(E,;,z’z},ﬁ), n%:H(%,{fLﬁ,g),
16 = H(Ex,ﬁ,g,%) andnﬁ:H(ﬁ,g,%,ﬁ).

Assumption (v) implies that there is (£*, ", @*,n*) € U*
so that

(x&,7E7), (wE,x&"

),(n%, ™), (Mo, mac*),
(r@,nw*), (1@, @), (70, 7n*), (70, 2n*) €T

).

Putting §; = &*, s = »*, @) = @, nj = n* and with
the same manner to proof of Theorem /, take sequences

{55}, {%E}, {(Dg} and {ng} in U verifying
(éﬁqv%ﬁqvwﬁf“nﬁq)v

mody = T (3651 @51, M5 1,651 )
7@y = (@15 1,85 1 1)

and g = (nﬁfl,égfl,%gfl,wgfl) , for B e N.

Beginning from &y = &, 3 = 3, Wy = ©, N = N and
&y =&, 359 = 3, By = @, Ny = 1, take sequences {éﬁ},

) {@p) (ma} and (&), (%) (@) (g} in

O verifying

@7).
m.8).
£%).
%),

and 77:1713 I1 for B € N.

Since (&,5c,0,1m)

(&, 565, @5,m8) = (&%, 5 ,@*,n*) € U* therefore
(n€,7&;), (m,7sg), (@, w®;)and (71, 7Ng)

er ).

Because IT and 7 are m—edge preserving, we get

(H(éa%amvn)vn(ég %Oaa).ga g)) (7[5,7'[51*),
(H(%awvnaé)7H(%évwoanoa€g)) (7[%,7'[%?),
(H(wvnaéa%)vn(wganoaéov 8)) (7[6)',7[6)'1*),
(IT(1,6,7,®) 11 (15,8, 79, By )) = (AN, A1N7)
€l(©),

and continuing with the same manner, we have

(né,né*) , (n%, n%*) )
(nw,nwﬁ*) ar[:d (nn,nng)ﬁe I'(©).

Applying (1), we get

and

mép =TI (&g 1,581, B_1,Mp_1) » .

n%l; — n(}ill,;ﬁll,nill,gﬁi), 0 (3 (78 755.))

7@ = I (@51 Mp1.Ep1.751) = o (3(1E=0.m).1 (& 5.@5.05) ))

wg =TT (1p1,8p1,7p1:@p1) , for p €N, 3 (n,78;),3 (w15 )

and =V (Sgnw yap ) g (nn mm))

ﬂgﬁ =11 (gﬁfla%ﬁflvﬁﬁflvﬁﬁfl) ) (N (né,ﬂég,ﬂ%,n%g,nw,nwﬁ*,ﬂn,nng)) ,

T = I1 (%ﬁfhéﬁfhﬁﬁfhgﬁq) ;

nwg = I1 (51371,77[371,513717%[371) ¢ (S (n%’”%l*”l))

ity = 1 (g1, &1, 71, r)  for BN =0 (3 (6o 8).11(5.25.m;.55) ))

Taking into account the characteristics of coincidence <y 3 (ﬂ%’ n%E) 3 (nw,nwﬁ*),

points, easily~we can obtain g = &, s = x, Og = @ 3 (nn,nng) .3 (né,néﬁ*)

Mp =1 and & =&, 55 = % @ = @, 7p = 7, hence, ><(p( (né n8g. M, Moy, AW, TWg, 1], ﬂnﬁ))
m:ﬁ N H(é *@1), B 3 n&,nég) 3 (n% 77:%5)

HEZ:E? -V 3 ﬂwn:w)S(ﬂ:n n:nﬁ)
and nnﬁ I1(n,&,5,m), for p € N. X‘P( (”é meg, W, Mg, MW, WD, 1), 7”7/3))
© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 1, 59-72 (2022) / www.naturalspublishing.com/Journals.asp

%NSI’) 67

(nw,nwﬁ*ﬂ))

(m@.n.&.5).11 (@5.m5.55. ) ))
S(\ro,mw;),3(xn, 7N ),
= ‘I/( 3((7@,77:523 ,3 gnz, nzgg )
x¢(uQﬁﬂﬁgn%n%;nwmwgnmn%))
_ (S (meng) 8 (mamss).
-V (S (nw,nafg) ,3 (nn,nng) )
X(p(N (né,ﬂég,n%,ﬂ%}},nw,ﬂwg,nn,nng)),
and
o5 (mn.273.0)
¢ (S (1(n.8,0).11 (nj.&.5.7;) ) )
S(an,zng).3 né,nég),
(3 En%, ﬂ%ﬁ; ,3 Enw,nwg) )
x¢(uQﬁﬂﬁgn%n%;nwmwgnmn%))

_y (S Ené,ﬂég) ,3 (n%, ﬂ%E) ,)

B 3 nw,nafg) ,3 (nn,nng)

IN
<

X @ (N (né,ﬂéﬁ*,n%, nzﬁ,ﬂw,nwg,nn,nng)) )

This implies that
o x né,négrl,n%,n}fgjl,
RO, WG, TN, AN,

oy [ 3 (mmmng).8 7&,7E5)
- 8 (7,5 .3 nw,nwg)

) (N (ng,n.ﬁg,n%, E%E,nw,ﬂwﬁ,ﬂmm?;))

< (p(& (nn,nnE,né,nég,n%,nzg,nw,nwg)). (12)

Hence, we obtain
0 <N (”57”55*“7”%”%2;1,))
nO, TG, (TN, TN,
<o (N (77:11,n:ng,ﬂ&,nég,n%,nzz,nw,nwﬁ*)) )

The properties of ¢ leads to

X (ﬂé,ﬂé§+],ﬂ%,ﬂ%;+],>

* *
nO, W, TN, TN,

. (nn,nng,né,nég, ) |

T, nz}; , T, nafg

Therefore, the sequence

S =X <n57n€ﬁ+lvn%an%ﬁ+la>
p nwanwﬁ+l7nn7nnﬁ+l

is decreasing, then 35 — S as f — oo for some § > 0.

Now, we show that 3 = 0. Suppose to the contrary that

3 > 0; then from (12), one can get

0 <N <”§v”é§rlv”%’”%2*+w)>
RO, AW, TN, NG,

o x n&,n‘ég,n%, n%zg,
no, ﬂwg,frn, nng

3

< (3 Ené,néﬁ*) 3 (n%,n%E) ,) .

nw,nafg) ,3 (nn,nng)

Passing § — oo, we have

v (3 Ené,néﬁ*) ,3 (n%, n%;;) ,) Ny

3 nw,nwg) ,3 (nn,nng)

Since ¢ € ¢, we obtain

3 (&, nE5) = 0, S (me, w65 ) =0

3 (nw,nwﬁ*) — 0,and 3 (ﬂn,ﬂ:ng) — 0,

as B — oo. Therefore

n&, mE5,
lim 35 = lim X e, Tt =0
ﬁfio B*ﬁfi, o, no;, |~
T, TN,
which contradicts with the assumption 3 > 0. Hence, we
have
n&, mE5,
T, T
lim S = lim X B =0,
B—soo B B—soo nwanwﬁ7
i, wNg

we conclude that
lim (m:,ngg) =0, Jim (m,n%;;) —0,
Jim (m,mg) = Oand Jim (nn,nn,’;) —0.

In similar scenario, we get
lim (nE, ngg) —0, lim (717%, n%g) -0,
B—ree B—oe

lim (m’fx,mg) = Oand Jim (nﬁ,nng) —0.

fren
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By using the triangle inequality, one can get
3 (ng,xE) < (n&,n85) +3 (wgj.nE),
S(mse,m32) <3 (n%, nzﬁ) +3 (nzﬁ,n%) )
3 (@, 7@) < (nw,nwg) +3 (nafg,mfi),
and 3 (7n,7n) <
Passing 3 — oo, we have
3 (né,ng) =0, S(ms,m32) =0,
S (n@,n®) = 0and S (7n,7xn) = 0.
Hence we obtain
nE = 1, Ty = 1%, 7O = 7@ and TN = 7.
Now, letting
EC=m&, » =nsx, @ = O and N° = 7N.

Therefore, we get

7[56 = ﬂ(ﬂ'é) :nn(éa%awvn)a

s = () = nll (c,0,1n,&),

0 = n(rw) =nll(@,n,&, ),
and Tn¢ = 7 (

The definition of sequences (&g
implies that

~—

»g), (@) and (np)

ﬂéﬁ = (&, c,m,m) =TI (&g_y,5¢5_1,@p_1.Mp_1) ,

I (5,@,1,8) =TI (51, @p_1,Mp—1,Ep-1)

”67[3 = (@,1,&,) = I (Bp_1,Mp—1,5p-1,%-1) »
and mng = IT1(N,§,5,@) = (Ng_1,Ep_1, %51, Dp_1) ,

for B € N. So, one can write

lgll;nn(éﬂa%ﬁvwﬁ 77[3) - hm ﬂgﬁ - (55%56717)7
lim IT 0] = ] =11 0]
Jim IT (5, @, 0p,Ep) = lim 7sep =1 (5. 0.7.8).
éim H((D'B,T]ﬁ,éﬁ,%ﬁ) = hm 77.7(D'ﬁ— ((D,T],é,%),
—yo0

and ﬁlim I (ng,&p, »p, @) = llm 1 g = I1(n,6,,0),
—o0

for B € N. Since 7 and IT are compatible, then, we obtain
i3 (o 523y o)) =
This implies that

rIl (&, 3c,0,m) =11 (n&, s, xw,71N),
Hence, we have

n&¢ =nll(&,,@,M)

= H(n57n%’ nw’nn) = H(€C7%C)G;C7nc)7

3 (n&.an;)+3 (znp7il ), VB EN.

Analogoulsy,
" = Il (5,0,1,8)

=1 (nse,x@,wn, w&) = I (3, ®°,n°, ),
OMES nn(wvnaéa%)

= H(ﬂwaﬂnaﬂévﬂ:%) = H(wc7nc7éc7%6)’
and
n-nc = nn(n757%7w)

= (7N, 75, w,70) = I (N, 5, ¢, @°).

This fulfills that (¢, ¢, @°,n°) is also a QCP. This means

that

nl =n€ =8 mx =mx= "

0 = 10 = ®° and 7N° =7 =Nn°.

So,
éC:néC (567%6,676,110)7
%C = n%c - (%C’G;C7nc7gc)
G;C:nmc‘ (6767176,567%6),

andnC:nnC: (nC75C,%C,G;C)-

Therefore (£€, 3¢, @°,M°) is a CQFP of m and IT. The
uniqueness is easy to prove, and thus the proof ends.

4 Solve a system of nonlinear integral
equations

In fact, this section is the pillar of our manuscript because
it represents applications of the obtained theoretical
results where the existence of the solution to a
quadrilateral system of nonlinear integral equations is
studied.

Consider the following system:

§(0) = [3(0.6.8(6). (). B(5) m (£)) s + ().
x(0)= 53(6@,%(;) ,@(5),n(5),¢(g))ds+g(o),
0(0) = [3(0:5.0(6).1(6).£ (5).(6)) ds + ().
1(0)= [3(0.6.1(6).£(6).(5).0(6))ds +5(0).

(13)
where o € [0,71] and 1> 0.
Assume that U = C ([0, 7T],RP) endowed with

€]l = max £ ()], for& € ([0.7,B).

Define a partial order relation < as follows:

E, €D, E<xeE(0)<x(c), foroe0,].

®© 2022 NSP
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Clearly if 3 is the metric induced by the norm, then (U, 3)
is a complete MS equipped with a directed graph o, where
a graph O is defined as

r©)={(.

then I" (D) fulfills the transitive property and the diagonal
V of ¥3? is induced in I" (). In addition to, (U,3,0) has
the property A. In this situation, we put

#) €V? 1 E <5},

(&,@,1) €U
(64)1-[: (ﬂ’g’,H(é,%, an))a(ﬂxvn(%awvnaé))v
r (@, I1(@,1,8,)), (7N, 11(n,5, 5, 0))
er (®)
for é = (é],éz,ég,,...,éﬁ) and » = (%1,%2,%3,...,%ﬁ) S
RA,

é = %<:>§i = %i7Vi: 152535"'7ﬁ'

Now, our first basic results here are ready for
presentation.

Theorem 3.Consider
postulates below:

the problem (13) under the

(i)the functions I : [0, T]* x (Rﬁ)4 —RPandg:[0,7] —
RP are contiuolls; B

(ii)for &, 5¢,@,1,8,52,0, N €RP withE <& %<3, @ <
o,n <1, we have

1(0,6.¢.5@m)<1(0,6,8,28,7), V0,6 €[0,7T);

(iii)there are k € [0,1) and T > 0 so that
(G,g75,;{76’ﬁ)‘

< s (|- &+ -+ o8]+ -7

‘J g Gaéa%aw7n)_:‘

for each 0,6 € [0,7], 5,%,&7,1},5,%,&7,1} € RP and
§<éx<x@<mN<T;
(iv)there is (&g, 20, @o, No) € U* so that

6 (0) < [3(0.6.8().70(6). 00 (6).  (€))ds
: +g(0),

#9(0) < gJ(G,Q%o(G),Gfo(G),no(g),éo(g))dg
g +g(0),

@ (0) < JJ(G,g,wo (6),m0(5).80(g), >0 (5))ds
_ +5(0),

no(G)S({J(mg,no( 6).%0(5),50(5), @0 (5))dg
+5(0),

where o € [0,7].

Then the system (/3) has at least one solution in U.

Proof Define an operator IT : 5* — U by
I1(§,,m,n)(0)

!
= [1(0,6.£(6),%().@(€).n(6))ds +8(0),
0

as 0 € [0,7]. And 7 : U — U is the identity mapping.
Therefore, the problem (/3) can be written as

‘: = H(‘:v%vwan)v %ZH(%G’,W@),
o =I(@,1,8,%), n=11(n,§,0).

Supposethaté,%,w,n,g,%,(ff,ﬁEUso that & gng,
Ty < w3z, 70 < 7@ and 7N < 7N For & < &, 3 < &,
@ < @ and 1 < 1, we have for each ¢ € [0, 7],

(8, o,n) (o)

:
- [1e.5.86).
O'!
/
0

x#(6),®(5),n(¢g))ds+g(o)
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and

nmn,s,» o) (o)

1(o,6,m(6),&(5),x(5),@(5))ds +g(0)

1(0.6,71(6).€(6),2(6),@(5) ) ds + (o)

IN

I
St~ °—

11(8.%8.7) (o).

Hence, if 7& < &, 3¢ < 7%z, 7@ < 7@ and 7 < 77,
then

(é%wn)gn(ézwn)
MGemn,8) <1 (%8,7.8),
(@08, < 1(8,7.85%),

and I1(1,&,,0) < I (7,6, %)

Based on the definition of I (D), we obtain II and 7 are
T—preserving.

On the other hand,

(& =0m)(0)-11(828.7) (0)
_ ] 30.68().%().@(<).m ()
—/ 0.6.£(5),%(¢).8(5).7(g)) |7

>\+|%< )= 5(c)| )dg
©]+In(e)—n(s)

L ‘l
EO/ +|w

kX 77:3; né T, W32, A0, T0, 71, m]) for o €10,7].

7r.§ 7r.§ + || — ||

!m ”G’H+Hﬂn ||

Hence, there is ¢ (0) = o and y € ¥ with v (0,6,7,p) =
k, for 0,6,7,p € [0,00) and k € [0, 1) so that

o[ )1 (£.25.3))

<v(|

X @ (N (mﬁ,ng,n%, n, nw,nﬁ,nn,nﬁ)) ,

)

where

X (né,ﬂg, T, M2, nw,ﬂﬁ,nn,nﬁ)

= max{ ni—ﬂgH,

This implies that IT and 7 are an ¥ — @ —contraction.
Ultimately, hypothesis (iv) leads to

(&, x@
(&I (¢,
(7¢I (3¢,
(no,I1 (@,
(wn, I (n

U4
M)
<)

)

o)

,n)
)
)

(6%) =
)
)

S
7,0 ,
B,1.8)). ¢ #0.
n,8,%)),

&, x,

Therefore (£, s, @*,n*) € U* is a CQFP of IT and 7,
which is the solution to the problem (73).

If a slight change is made in one of the conditions of
Theorem 3, we get the following theorem:

Theorem 4.If we replaced the postulate (iii) of Theorem

3 with the following hypothesis with remain rest of the

assumptions:

(h)for each ¢,¢ € [0,7], 5,%,w,n,g,%,5,ﬁ € RP and
§ <& %<5 ®<®m N <N, wehave

’j(g@,i,%,ﬁ,ﬂ)—J(G,Q,ga%vﬁvﬁ)‘
&-¢

< %m <1+max{ B l’|%%~|’}>.
o—o|,[n-n

Then the system (/3) has at least one solution in U.

Proof Assume that on : vt = v,
(§,72,0,m) =~ I1(§,,@,n), where

(g, o,n)(o)

!
= [3(6.:6.6(0).#(5).@ () n () ds +8(o),
0

for 0 € 0,77 and 7 : U — U by w& (o) = & (o).
According to Theorem 3, we obtain that II and 7 are
m—edge preserving.

On the other hand,

1(0,6,5(5), (), @ (5),n () J

e 0,6,£(6),%().B(c). 1 (5)) | ¢
T HEEHGI

<Ll 1emad 202 4|4

“'-0/ e -a0) (|
|17(€)—77(€)|

-
(

=In 1+x(”5 RE, M, 15, )) celo,.

o, o, 7N, 7N

|5 — 75| }
7@ — 7, |an 7l
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where

X (m:,ng, T, W2, nai,mfi,nn,nﬁ)

max{ né—ng

,||n%—n;f||,}
n® — o, ||xn — 77|
So,
n(|11(&.@.m)(0) - 11 (£,2.8.7) (o) +1)
<Tn <ln <1+ X <”57”5¢”%v”52>) +1)
TO,TO, 7N, TN

In (ln (1 4+ X (”é’”é”%’”;ﬁ)) + 1)
7 O, A0, N, TN

In (1 + X (né,ng,n%, n%,nm,nﬁ,nn,nﬁ))

x In (1 + X (né,ng, n%,n%,nw,nﬁ,nn,nﬁ)) .
Thus, there is ¢ () =1In (& + 1) and y € ¥ where

v(0,6,7.p)
{ In(In(1+max{o.¢,7,0}))

o>0org>00r7>0,
G=0,6=0,7=0,p=0,

In(1+max{c,5,7,p}) ’
pelo,1),

so that
(,,(s (n(g,%,w,n)ﬂ(gﬂﬁ”ﬁ)))
—p(|n o -n(E26.0)|)

< w(S (m:,ng) S (nx,7%),3 (n@,70) ,3 (nn,nﬁ))

X Q (N (né,ng, n%,n%,nw,nﬁ,nn,nﬁ)) ,
where
X (n&,né, T, M2, nw,mfr,ﬂn,ﬂﬁ)
= max{ 75 —7t§~ 7||7[%_7[%~|| ’ } .
@ —no||,||zn — =1
This leads to IT and 7 are an Y — ¢ —contraction.
Finally, assumption (iv) implies that

(&,3c,0,m) €U*:

N (m€,I1(&,,@,M))
(%), =9 (wo6,11(3c,0.1,&))
(n@, I (@,n,§,))

(7, II1(n,&,,@))

Therefore (E£*,s*,@*,n*) € U* is a CQFP of IT and ,
which is the solution to the problem (13).
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