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1 Introduction

A function φ : I → R, I := [ξ1,ξ2] is said to be convex
if φ
(

λ x+(1−λ )y
)

≤ λ φ(x)+ (1−λ )φ(y) holds for all
x,y ∈ I and λ ∈ [0,1]. If the above inequality is reversed,
then the function φ will be the concave on [ξ1,ξ2].

From a geometric point of view, this means that if we
take three different points on the graph of φ , for example,
A, B and C, with B between A and C, then B is located
below the chord AC .

Convex functions have been the object of attention in
recent decades and the original notion has been extended
and generalized in various directions. Readers interested
in the aforementioned development, can consult [1],
where a panorama, practically complete, of these
branches is presented.

One of the most important inequalities, for convex
functions, is the famous Hermite–Hadamard inequality:

φ

(

ξ1 + ξ2

2

)

≤
1

ξ2 − ξ1

∫ ξ2

ξ1

φ(x)dx ≤
φ(ξ1)+φ(ξ2)

2
(1)

holds for any function φ convex on the interval [ξ1,ξ2].
This inequality was published by Hermite ([2]) in 1883
and, independently, by Hadamard in 1893 ([3]). It gives an
estimation of the mean value of a convex function, and it

is important to note that it also provides a refinement to the
Jensen inequality. Several results can be consulted in [4,5,
6,7,8,9,10,11,12,13,14,15,16,17] and references therein
for more information and other extensions of the Hermite–
Hadamard inequality.

Toader defined m-convexity in the following way:

Definition 1. [18] The function φ : [0,ξ2] → R, ξ2 > 0,

is said to be m-convex, where m ∈ [0,1], if

φ (tx+(1− t)y)≤ tφ(x)+m(1− t)φ(y)

holds for all x,y ∈ [0,ξ2] and t ∈ [0,1].

If the above inequality holds in reverse, then we say
that the function φ is m-concave.

The following definitions are successive extensions of
the concept of convex function and, as we will see later,
they are particular cases of our Definition.

In [19], Hudzik and Maligranda introduced the
following definitions.

Definition 2. Let s∈ (0,1]. A function φ : [0,ξ2]→ [0,∞)
with ξ2 > 0, is said to be s-convex in the first sense if

φ(tx+(1− t)y)≤ tsφ(x)+ (1− ts)φ(y),

for all x,y ∈ [0,ξ2] and t ∈ [0,1].
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Definition 3. Let s∈ (0,1]. A function φ : [0,ξ2]→ [0,∞)
with ξ2 > 0, is said to be s-convex in the second sense if

φ(tx+(1− t)y)≤ tsφ(x)+ (1− t)sφ(y)

for all x,y ∈ [0,ξ2] and t ∈ [0,1].

An extended definition is given in [20].

Definition 4. Let s ∈ [−1,1]. A function

φ : [0,ξ2] → [0,∞) with ξ2 > 0 is said to be extended

s-convex if

φ(tx+(1− t)y)≤ tsφ(x)+ (1− t)sφ(y)

for all x,y ∈ [0,ξ2] and t ∈ (0,1).

Mihesan [21] present the class of (a,m)-convex
functions as follows.

Definition 5. The function φ : [0,ξ2]→ [0,∞) with ξ2 >
0, is said to be (a,m)-convex, where a,m ∈ [0,1], if, for

every x,y ∈ [0,ξ2] and t ∈ [0,1]

φ(tx+m(1− t)y)≤ taφ(x)+m(1− ta)φ(y).

In [22] the following definition is introduced.

Definition 6. Let h : [0,1]→R be a nonnegative function

and h 6≡ 0. The nonnegative function φ : [0,ξ2] → [0,∞)
with ξ2 > 0, is said to be (h,m)-convex on [0,ξ2] if

φ (tx+(1− t)y)≤ h(t)φ(x)+mh(1− t)φ(y)

is fulfilled for m, t ∈ [0,1] and for all x,y ∈ [0,ξ2].

If the above inequality is reversed, then φ is said to
be (h,m)-concave. Note that if h(t) = t then the φ above
definition reduces to the definition of m-convex function,
if in addition, we put m = 1 then we obtain the definition
of convex function.

In [23] the authors presented the class of
s-(a,m)-convex functions as follows:

Definition 7. A function φ : [0,∞)→ [0,∞) is said to be

s− (a,m)-convex in the first sense, if for all x,y ∈ [0,∞)
and t ∈ [0,1], we obtain

φ
(

tx+m(1− t)y
)

≤ tasφ(x)+m
(

1− tas
)

φ
( y

m

)

,

where a,m ∈ [0,1] and for some fixed s ∈ (0,1].

Definition 8. A function φ : [0,∞)→ [0,∞) is said to be

s− (a,m)-convex in the second sense, if for all x,y ∈ [0,∞)
and t ∈ [0,1], we obtain

φ
(

tx+m(1− t)y
)

≤
(

ta
)s

φ(x)+m
(

1− ta
)s

φ
( y

m

)

,

where a,m ∈ [0,1] and for some fixed s ∈ (0,1].

On the basis of these definitions, we will present the
classes of functions that will be the basis of our work (see
[24]).

Definition 9. Let h : [0,1]→R be a nonnegative function

and h 6≡ 0. The nonnegative function φ : [0,∞)→ [0,∞) is

said to be s− (h,m)-convex modified of first type on [0,∞)
if inequality

φ (tx+m(1− t)y)≤ hs(t)φ(x)+m(1− hs(t))φ(y)

is fulfilled for m, t ∈ [0,1],s ∈ [−1,1] and for all

x,y ∈ [0,∞).

Definition 10. Let h : [0,1] → R be a positive function.

The nonnegative function

φ : [0,∞)→ [0,∞) is said to be s− (h,m)-convex modified

of second type on [0,∞) if inequality

φ (tx+m(1− t)y)≤ hs(t)φ(x)+m(1− h(t))sφ(y)

is fulfilled for m, t ∈ [0,1], s ∈ [−1,1] and for all x,y ∈
[0,∞).

Remark. From Definitions 9 and 10 we have

1.If h(t) = t, then φ is a m-convex function on [0,∞) .
2.If h(t) = ta with a∈ (0,1], then φ is a s−(a,m)-convex

function on [0,∞).
3.If s = 1, then φ is an (h,m)-convex function on [0,∞).
4.If h(t) = t, s ∈ (0,1] and m = 1, then φ is a s-convex

function on [0,∞).
5.If h(t) = t, s ∈ [−1,1] and m = 1, then φ is an extended

s-convex function on [0,∞).
6.If h(t) = t and s = m = 1, then φ is a convex function

on [0,∞).

All through the work we utilize the functions Γ (see
[25,26]) and Γk (see [27]):

Γ (z) =

∫ ∞

0
tz−1e−tdt,

Γk(z) =

∫ ∞

0
tz−1e−tk/kdt.

where z ∈ C, with Re(z)> 0 and k > 0.
Note that if k → 1, then Γk(z) → Γ (z),

Γk(z) = (k)
z−k

k Γ
(

z
k

)

and Γk(z+ k) = zΓk(z).

The following functions will also be required:

Bx(a,b) =

∫ x

0
ta−1(1− t)b−1dt,

B1(a,b) = B(a,b) =

∫ 1

0
ta−1(1− t)b−1dt.

To encourage comprehension of the subject, we
present the definition of Riemann-Liouville fractional
integral (with 0 ≤ ξ1 < t < ξ2 < ∞). The first is the
classic Riemann-Liouville fractional integrals.
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Definition 11. [28] Let φ ∈ L1

[

ξ1,ξ2

]

. The

Riemann-Liouville fractional integrals of order

α ∈ C, Re(α) > 0 are defined by (right and left

respectively)

α Iξ+
1

(

φ(x)
)

=
1

Γ (α)

∫ x

ξ1

(x− t)α−1φ(t)dt, x > ξ1

α Iξ−
2

(

φ(x)
)

=
1

Γ (α)

∫ ξ2

x
(t − x)α−1φ(t)dt, x < ξ2.

Next we present the weighted integral operators, which
will be the basis of our work.

Definition 12. Let φ ∈ L1

(

ξ1,ξ2

)

and let

w : [0,∞)→ [0,∞) be a continuous function with first and

second order derivatives piecewise continuous on [0,∞).
The weighted fractional integrals are defined by (right

and left, respectively)

(n+1)Iw
ξ+

1

(

φ(x)
)

=

∫ x

ξ1

w′

(

n+ 1

ξ2 − ξ1

(x− t)

)

φ(t)dt, x > ξ1,

(n+1)Iw

ξ−
2

(

φ(x)
)

=

∫ ξ2

x
w′

(

n+ 1

ξ2 − ξ1

(t − x)

)

φ(t)dt, x < ξ2.

Remark. If w′(t) = (ξ2−ξ1)t
α−1

Γ (α) and n = 0, then we

obtain the Riemann-Liouville fractional integral, right
and left respectively.

Remark. Putting w′(t) ≡ 1 and n = 0, we obtain the
classical Riemann integral.

In this work, we present some variants of the
inequality (1), for (h,m)-convex modified functions,
within the framework of the generalized integral
operators of the Definition 12.

2 Hermite-Hadamard type inequalities for

(h,m)-convex modified functions

To establish our results, we need the following Lemma.

Lemma 1. Let φ be a real function defined on some

interval [ξ1,ξ2] ⊂ R, and differentiable on (ξ1,ξ2). If

φ ′ ∈ L1(a,b), then we have the following equality

ξ2 − ξ1

n+ 1
×

{

w(1)
[

φ(ξ2)−φ(ξ1)
]

−w(0)

[

φ

(

ξ1 + nξ2

n+ 1

)

−φ

(

nξ1 + ξ2

n+ 1

)]}

+ (n+1)Iw

ξ+
1

(

φ

(

nξ1 + ξ2

n+ 1

))

− (n+1)Iw

ξ−
2

(

φ

(

ξ1 + nξ2

n+ 1

))

=

(

ξ2 − ξ1

n+ 1

)2

×

∫ 1

0
w(t)

[

φ ′

(

(1− t)ξ1+(n+ t)ξ2

n+ 1

)

+φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+ 1

)]

dt.

(2)

Proof. First note that

∫ 1

0
w(t)

[

φ ′

(

(1− t)ξ1+(n+ t)ξ2

n+ 1

)

+φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+ 1

)]

dt

=

∫ 1

0
w(t)φ ′

(

(1− t)ξ1+(n+ t)ξ2

n+ 1

)

dt

+

∫ 1

0
w(t)φ ′

(

(n+ t)ξ1+(1− t)ξ2

n+ 1

)

dt

= I1 + I2.

Integrating by parts, we have

I1 =
n+ 1

ξ2 − ξ1

[

w(1)φ(ξ2)−w(0)φ

(

ξ1 + nξ2

n+ 1

)]

−
n+ 1

ξ2 − ξ1

∫ 1

0
w′(t)φ

(

1− t

n+ 1
ξ1 +

n+ t

n+ 1
ξ2

)

dt

=
n+ 1

ξ2 − ξ1

[

w(1)φ(ξ2)−w(0)φ

(

ξ1 + nξ2

n+ 1

)]

−

(

n+ 1

ξ2 − ξ1

)2∫ ξ2

ξ1+nξ2
n+1

w′

(

T − ξ1+nξ2
n+1

ξ2−ξ1
n+1

)

φ(T )dT

=
n+ 1

ξ2 − ξ1

[

w(1)φ(ξ2)−w(0)φ

(

ξ1 + nξ2

n+ 1

)]

−

(

n+ 1

ξ2 − ξ1

)2
(n+1)Iw

ξ−
2

(

φ
(ξ1 + nξ2

n+ 1

))

.

Analogously

I2 =−
n+ 1

ξ2 − ξ1

[

w(1)φ(ξ1)−w(0)φ

(

nξ1 + ξ2

n+ 1

)]

+

(

n+ 1

ξ2 − ξ1

)2
(n+1)Iw

ξ+
1

(

φ
(nξ1 + ξ2

n+ 1

))

.
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After adding I1 + I2, and grouping appropriately, we
obtain the inequality sought.

To realize the scope and generality of our previous
result, we will present several particular cases, known
from the literature.

Let’s consider n = 0. If we take w(t) = w1(t)+w2(t)
and write the right side of (2) as

I1 =

∫ 1

0
w1(t)φ

′

(

(1− t)ξ1 +(n+ t)ξ2

n+ 1

)

dt and

I2 =

∫ 1

0
w2(t)φ

′

(

(n+ t)ξ1 +(1− t)ξ2

n+ 1

)

dt,

where w1 = Bt(n+1,α −n)−B(n+1,α−n) and w2 =
B(n+ 1,α − n)−Bt(n+ 1,α − n), we get Lemma 1 of
[39].

If we use only I2 and consider w(t) = 1
2

[

Bt(n+ 1,α −

n)−Bt(n+ 1,α − n)
]

the Lemma 3.1 of [52] is obtained.
If we only work with I2 and consider w(t) defined by

w(t) =







t, [0,1/2)

t − 1, [1/2,1]

so we have Lemma 2.1 of [40].

Similarly, putting w(t) =
1− 2t

2
we will have Lemma

2.1 of [34] (also see Lemma 2.1 of [38]).
Working only with I2, n = 0 and using w(t) = (1−

t)α/k− tα/k, the Lemma 1 of [37] is obtained from Lemma
1.

Lemma 2 of [50] (see also [43]) is obtained from the

previous result taking w(t) =
(1− t)α − tα

2
.

In the same way, putting w(t) =
(1− t)α/k − tα/k

2
and

using I1, we get Lemma 1 of [41], if we use I2, then Lemma
2.3 of [36] is obtained.

Working with I2 and defining

w(t) =























t, t ∈

[

0,
ξ2 − x

ξ2 − ξ1

]

t − 1, t ∈

[

ξ2 − x

ξ2 − ξ1

,1

]

,

a variant of Lemma 1 of [31] is obtained.
Lemma 1 of [44] is derived from our result, putting

w(t) =























t −
ξ2 − x

ξ2 − ξ1

λ , t ∈

[

0,
ξ2 − x

ξ2 − ξ1

]

t − 1+
ξ2 − x

ξ2 − ξ1

λ , t ∈

[

ξ2 − x

ξ2 − ξ1

,1

]

,

λ ∈ [0,1] and considering I2.

The reader will be able to verify, without much
difficulty, that under different variants of the function
w(t) we can obtain Lemma 2 of [45], Lemma 1.1 of [53]
(see also Lemma 2 of [42]), Lemma 2.1 from [49],
Lemma 2.1 from [60], Lemma 2.1 from [57], Lemma 1.6
from [48], Lemma 2.1 from [29], Lemma 1 of [32],
Lemma 2.1 of [51], and Lemma 2.1 of [47].

With w(t) = (1−t)α and n= 0, we obtain a new result,
for Riemann-Liouville integrals.

If n = 1, Lemma 1 of [30] and Lemma 1 of [56] can be
obtained from our result, under the appropriate definition
of w(t) = w1 +w2 (see also [55]).

Our first main result is the following.

Theorem 1. Let φ : I ⊂ R −→ R be a differentiable

function on I◦(interior of I) such that φ ′ ∈ L1[ξ1,ξ2/m].
Under the assumptions of Lemma 1 if

∣

∣φ ′
∣

∣ is

s-(h,m)-convex modified of second type on [ξ1,ξ2/m], we

have the following inequality

∣

∣

∣

∣

A + (n+1)Iw

ξ+
1

φ

(

nξ1 + ξ2

n+ 1

)

− (n+1)Iw

ξ−
2

φ

(

ξ1 + nξ2

n+ 1

)
∣

∣

∣

∣

≤

(

ξ2 − ξ1

n+ 1

)2(
∣

∣φ ′(ξ1)
∣

∣B+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

C

)

,

where

A =
ξ2 −ξ1

n+1

{

w(1)
(

φ(ξ1)+φ(ξ2)
)

−w(0)

(

φ

(

ξ1 +nξ2

n+1

)

−φ

(

nξ1 +ξ2

n+1

))}

,

B =

∫ 1

0
w(t)

[

hs

(

n+ t

n+1

)

+hs

(

1− t

n+1

)]

dt,

C =
∫ 1

0
w(t)

[(

1−h

(

1− t

n+1

))s

+

(

1−h

(

n+ t

n+1

))s]

dt.
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Proof. From (2) and the s-(h,m)-convex modified of
second type of

∣

∣φ ′
∣

∣, we obtain

∣

∣

∣

∣

A + (n+1)Iw
ξ+

1
φ

(

nξ1 + ξ2

n+ 1

)

− (n+1)Iw
ξ−

2
φ

(

ξ1 + nξ2

n+ 1

)∣

∣

∣

∣

≤

(

ξ2 − ξ1

n+ 1

)2

×

[

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(1− t)ξ1+(n+ t)ξ2

n+ 1

)∣

∣

∣

∣

dt

+
∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+ 1

)∣

∣

∣

∣

dt

]

≤

(

ξ2 − ξ1

n+ 1

)2

×

[

∫ 1

0
w(t)

(

hs

(

1− t

n+ 1

)

∣

∣φ ′(ξ1)
∣

∣

+m

(

1− h

(

n+ t

n+ 1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

)

dt

+
∫ 1

0
w(t)

(

hs

(

n+ t

n+ 1

)

|φ ′(ξ1)|

+m

(

1− h

(

1− t

n+ 1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

)

dt

]

=

(

ξ2 − ξ1

n+ 1

)2

×

[

∣

∣φ ′(ξ1)
∣

∣

∫ 1

0
w(t)

(

hs

(

1− t

n+ 1

)

+ hs

(

n+ t

n+ 1

))

dt

+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

∫ 1

0
w(t)

[(

1− h

(

n+ t

n+ 1

))s

+

(

1− h

(

1− t

n+ 1

))s]

dt

]

.

Remark.Considering n = 0, some known results, which
can be obtained as particular cases of the previous
Theorem, are the following:

(a)Theorem 1 of [31], only for

I2, w(t) =























t, t ∈

[

0,
ξ2 − x

ξ2 − ξ1

)

;

t − 1, t ∈

[

ξ2 − x

ξ2 − ξ1

,1

]

,

and convex

functions.
(b)Theorem 2.1 from [33] (case q = 1), for m-convex

functions, h(t) = t and s = 1.
(c)Theorem 2.2 from [34], obtained for convex functions,

using w(t) = 1− 2t and using only I2.
(d)Theorem 2.4 of [36] for convex functions, h(t) = t and

s = m = 1, a known result for k-fractional integrals.
(e)Theorem 2.2 of [40], obtained for convex functions

and

w(t) =

{

t, [0,1/2)
t − 1, [1/2,1]

(f)Theorem 2.3 of [23], with I2, w(t) = 1− 2t and s-
(a,m)-convex functions are considered.

(g)Theorem 7 from [42], for s-convex functions.
(h)Theorem 3.1 from [47], where I2 is used and the

interval [0,1] is divided, using w1 = λ − t for [0,1/2]
and w2 = µ − t for [1/2,1], where λ and µ real
numbers such that 0 ≤ λ ≤ 1/2 ≤ µ ≤ 1.

(i)Theorem 3 of [50], for convex functions and taking
w(t) = (1 − t)α − tα and I2, a result for
Riemann-Liouville fractional integrals.

(j)The first part of Theorem 5 of [54], statement for
fractional integrals of the Riemann-Liouville type,
using only I2 and w(t) = (1 − t)α − tα , in function
class h-convex.

(k)Theorem 5 of [59] working with w(t) = (1− t)α − tα

and using I2, a valid inequality for fractional integrals.

Remark. If in the Theorem 1 we make n = 1, m = 1 and
h(s) = s (that is, we consider s-convex functions in the
second sense), we will obtain Theorem 10 of [56], putting
w(t) = w1(t)+w2(t) where

w1 =
tξ2 +(1− t)ξ1

4
; w2 =

ξ1 +(1− t)ξ2

4
.

Refinements of the previous results, can be obtained by
imposing new additional conditions on

∣

∣φ ′
∣

∣

q
, 1/p+1/q=

1.

Theorem 2.Let φ : I ⊂ R −→ R be a differentiable

function on I◦ such that φ ′ ∈ L1

[

ξ1,
ξ2

m

]

. Under the

assumptions of Lemma 1 if |φ ′|q , (q ≥ 1) is

s-(h,m)-convex modified of second type on

[

ξ1,
ξ2

m

]

, we

have
∣

∣

∣

∣

A + (n+1)Iw
ξ+

1

(

φ

(

nξ1 + ξ2

n+ 1

))

− (n+1)Iw

ξ−
2

(

φ

(

ξ1 + nξ2

n+ 1

))∣

∣

∣

∣

≤

(

ξ2 − ξ1

n+ 1

)2

‖w‖p×

[(

|φ ′(ξ1)|
q

∫ 1

0
hs

(

n+ t

n+ 1

)

dt

+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

q ∫ 1

0

(

1− h

(

1− t

n+ 1

))s

dt

)1/q

+

(

|φ ′(ξ1)|
q

∫ 1

0
hs

(

1− t

n+ 1

)

dt

+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

q∫ 1

0

(

1− h

(

n+ t

n+ 1

))s

dt

)1/q
]

where

A =
ξ2 − ξ1

n+ 1

{

w(1)
(

φ(ξ1)+φ(ξ2)
)

−w(0)

(

φ

(

ξ1 + nξ2

n+ 1

)

−φ

(

nξ1 + ξ2

n+ 1

))}

,

and 1/p+ 1/q= 1.
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Proof. From (2), Hölder’s inequality and the s− (h,m)-
convex modified of second type of

∣

∣φ ′
∣

∣

q
, we obtain

∣

∣

∣

∣

A + (n+1)Iw
ξ+

1
φ

(

nξ1 +ξ2

n+1

)

− (n+1)Iw
ξ−

2
φ

(

ξ1 +nξ2

n+1

)∣

∣

∣

∣

≤

(

ξ2 −ξ1

n+1

)2

×

[

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(1− t)ξ1 +(n+ t)ξ2

n+1

)
∣

∣

∣

∣

dt

+

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+1

)
∣

∣

∣

∣

dt

]

≤

(

ξ2 −ξ1

n+1

)2(∫ 1

0
wp(t)dt

)1/p

×

[

(

∫ 1

0

∣

∣

∣

∣

φ ′

(

(1− t)ξ1 +(n+ t)ξ2

n+1

)
∣

∣

∣

∣

q

dt

)1/q

+

(

∫ 1

0

∣

∣

∣

∣

φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+1

)
∣

∣

∣

∣

q

dt

)1/q
]

≤

(

ξ2 −ξ1

n+1

)2

‖w‖p×

[(

∫ 1

0

(

hs

(

1− t

n+1

)

∣

∣φ ′(ξ1)
∣

∣

q

+m

(

1−h

(

n+ t

n+1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q)

dt

)1/q

+

(

∫ 1

0

(

hs

(

n+ t

n+1

)

∣

∣φ ′(ξ1)
∣

∣

q

+m

(

1−h

(

1− t

n+1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q)

dt

)1/q
]

≤

(

ξ2 −ξ1

n+1

)2

‖w‖p×

[(

∣

∣φ ′(ξ1)
∣

∣

q
∫ 1

0

(

hs

(

1− t

n+1

)

dt

+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q ∫ 1

0

(

1−h

(

n+ t

n+1

))s)

dt

)1/q

+

(

∣

∣φ ′(ξ1)
∣

∣

q
∫ 1

0

(

hs

(

n+ t

n+1

)

dt

+m

∣

∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q ∫ 1

0

(

1−h

(

1− t

n+1

))s)

dt

)1/q
]

.

Remark. If we take n = 1, we obtain the Theorem 11 of
[56] as particular case. Other known results from the
literature that can be obtained as particular cases of the
previous Theorem are the following: Theorem 3.2 of [35],
Theorem 6 of [59], Theorem 2.1 (second part), Theorem
2.3 [34], Theorem 6 of [55], Theorem 8 of [42], the
second part of Theorem 1 of [44], Theorem 1 of [46],
Theorem 2.11 of [23], Theorem 5 of [54] and Theorem 2
of [31].

Theorem 3.Let φ : I ⊂ R −→ R be a differentiable

function on I◦ such that φ ′ ∈ L1

[

ξ1,
ξ2

m

]

. Under the

assumptions of Lemma 1 if
∣

∣φ ′
∣

∣

q
, (q ≥ 1) is

s-(h,m)-convex modified of second type on

[

ξ1,
ξ2

m

]

, we

obtain

∣

∣

∣

∣

A +(n+1) Iw
ξ+

1

(

φ

(

nξ1 +ξ2

n+1

))

−(n+1) Iw
ξ−

2

(

φ

(

ξ1 +nξ2

n+1

))
∣

∣

∣

∣

≤

(

ξ2 −ξ1

n+1

)2

∆

[

(

∣

∣φ ′ (ξ1)
∣

∣

q
D11 +m

∣

∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q

D12

)1/q

+

(

∣

∣φ ′ (ξ1)
∣

∣

q
D21 +m

∣

∣

∣

∣

φ ′

(

ξ2

m

)
∣

∣

∣

∣

q

D22

)1/q
]

with A as before, ∆ =

(

∫ 1

0
w(t)dt

)1/p

, 1/p+ 1/q=

1,

D11 =

∫ 1

0
w(t)hs

(

n+ t

n+ 1

)

dt,

D12 =

∫ 1

0
w(t)

(

1− h

(

1− t

n+ 1

))s

dt,

D21 =

∫ 1

0
w(t)hs

(

1− t

n+ 1

)

dt, and

D22 =

∫ 1

0
w(t)

(

1− h

(

n+ t

n+ 1

))s

dt.

Proof. From (2), power mean inequality and the s-(h,m)-
convex modified of second type of

∣

∣φ ′
∣

∣

q
, we obtain

∣

∣

∣

∣

A +(n+1)Iw
ξ+

1
φ

(

nξ1 + ξ2

n+ 1

)

−(n+1) Iw
ξ−

2
φ

(

ξ1 + nξ2

n+ 1

)∣

∣

∣

∣

≤

(

ξ2 − ξ1

n+ 1

)2

×

[

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(1− t)ξ1+(n+ t)ξ2

n+ 1

)∣

∣

∣

∣

dt

+
∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(n+ t)ξ1+(1− t)ξ2

n+ 1

)∣

∣

∣

∣

dt

]

≤

(

ξ2 − ξ1

n+ 1

)2(∫ 1

0
w(t)dt

)1/p

×

[

(

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(1− t)ξ1 +(n+ t)ξ2

n+ 1

)
∣

∣

∣

∣

q

dt

)1/q

+

(

∫ 1

0
w(t)

∣

∣

∣

∣

φ ′

(

(n+ t)ξ1 +(1− t)ξ2

n+ 1

)∣

∣

∣

∣

q

dt

)1/q
]

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 1, 25-33 (2022) / www.naturalspublishing.com/Journals.asp 31

≤

(

ξ2 − ξ1

n+ 1

)2

∆×

[(

∫ 1

0
w(t)

[

hs

(

1− t

n+ 1

)

∣

∣φ ′
(

ξ1

)∣

∣

q

+m

(

1−

(

n+ t

n+ 1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

q]

dt

)1/q

+

(

∫ 1

0
w(t)

[

hs

(

n+ t

n+ 1

)

∣

∣φ ′
(

ξ1

)∣

∣

q

+m

(

1− h

(

1− t

n+ 1

))s ∣
∣

∣

∣

φ ′

(

ξ2

m

)∣

∣

∣

∣

q]

dt

)1/q
]

.

Remark. The Theorem 12 of [56] can be obtained from
Theorem 2 putting n = 1 and considering s-convex
functions. Additionally, the following results: Theorem
3.2 of [47], Theorem 2.13 of [23], Theorem 5 of [31],
Theorem 9 of [42], Theorem 7 [55], Theorem 2 of [44],
Theorem 2.3 of [33], Theorem 7 of [59] and Theorem 3.6
of [35], can be obtained as particular cases of the theorem
previous.

3 Conclusions

In this work we have presented some integral inequalities,
which generalize several of those known from the
literature, whether for fractional operators or not. We
have pointed out the breadth and strength of our results
throughout the work.

The generality of the results obtained can also be
understood as being valid for convex functions, h-convex
functions, m-convex functions and s-convex functions in
the second sense, defined in a closed interval of negative
non-real numbers. It is clear that the problem of extending
these results to the case of (h,m)-convex functions of the
first type remains open.
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