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Abstract: In this paper, we illustrate the applicability of a regression model referring to patients with cutaneous melanoma. The reason

for the choice of the dataset is due the disease be responsible for most cases of skin cancer. The proposed regression model is based on

the Weibull-Poisson distribution in a structure of long-term modeling, in which the covariates were included in the proportion p of cured

via the logistic link function. The motivation to study this distribution is since, in addition to generalizing the Weibull model, which

is widely used in several areas of knowledge among them the survival analysis, it presents great flexibility in the forms of the hazard

function. Through the proposed model we observed that the estimated proportion of cured is higher for patients with few nodules. In

addition, it was presented the estimated hazard function of the patients and was verified that has a unimodal form.

Keywords: Weibull-Poisson Distribution, Long-Term Survivals Regression Model, Residual Analysis, Sensitivity Analysis.

1 Introduction

An important characteristic in the survival data arises
when a part of the population is not susceptible to the
event of interest, considered as cured or immune. Models
in this structure have been extensively studied in the
literature and are generally called long-term survival
models. In this model, it is assumed that a certain
proportion of individuals, say p, are cured (or immunes),
in the sense that they did not present the event of interest
during the period of the study. For instance, in clinical
studies, a population can respond favorably to the
treatment, being considered as cured. Long-term models
have been used for modeling time-to-event data for
various types of cancers, including breast cancer,
non-Hodgkins lymphoma, leukemia, prostate cancer, and
melanoma.

Berkson and Gage [1] presented a mixing model with
the objective of estimate the proportion of cured in a
population under treatment of stomach cancer. This
model was based on a parametric distribution mixture,
implying that a part of this model has an improper
survival function, which represents the total of the

population (cured and no cured), and a proper survival
function to a part of the population, which are cured. The
exponential distribution was used for the proper survival
function to the proportion of cured individuals. Farewell
[2] used the model proposed for Berkson and Gage,
assuming the Weibull and log-normal distributions for the
data of animals exposed to toxins. Yakovlev et al. [3]
presented an alternative model of long-term to the
Berkson and Gage model, in a structure of competing
risks. Bayesian inference methods for survival data with
long-term survivals were introduced by some authors
such as Chen et al. [4], Hoggart and Griffin [5] and Chen
and Ibrahim [6]. Besides, the authors [7,8,9,10,11,12,
13] have considered this modeling approach.

Also, it is common in practical situations, that there
are covariates that can influence a part of individuals
cured under study. Thus, these covariates can be
accommodated in the analysis in the data analysis. A
model with the presence of covariates is an efficient way
of to observe its effect on the proportion of cured
individuals because the probability of cure of each can
vary from individual to individual depending on their
characteristics.
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Some regression models have been proposed with this
objective, among them: Ortega et al. [14] that proposed
the generalized log-gamma mixture regression model;
Kannan et al. [15] introduced the generalized exponential
distribution cure rate model; Castro, et al. [16] defined the
long-term survival models under the gamlss framework.
Martinez et al. [17] used the mixture and non-mixture
cure fraction models based on the generalized modified
Weibull distribution with an application to gastric cancer
data.

Recently, some authors considered the Berkson and
Gage mixture model, among them we can cite: Ramires et
al. [18] defined the flexible bimodal survival model with
cure fraction with different regression structures; Ramires
et al. [19] presented the estimation of non-linear effects in
the presence of cure fraction using a semi-parametric
regression model and Vigas et al. [20] proposed the
Weibull regression mixture model for predicting the
diarrhea data. More models in [21,22,23,24,25,26,27,
28].

Thus, the objective of this paper is to propose the
Weibull-Poisson long-term (LWP) regression model. This
new regression model is based on Weibull-Poisson
long-term distribution proposed by Vigas et al. [13]
obtained by a compounding of the Weibull-Poisson (WP)
distribution proposed by Bereta et al. [29] in a structure of
modeling mixture proposed by Berkson and Gage [1] in
which the covariates were included in the proportion of p

cured via the logistic link function. The WP distribution
arises by compounding of a Weibull distribution with a
Poisson distribution in the context where the lifetime
associated with a particular risk is not observable, instead
only the minimum lifetime value among all risks is
verified. However, this model can be used in any other
situation as long as it fits the data satisfactorily.

In recent years, several distributions in this scenario
have been proposed in the literature. For example: the
exponential geometric distribution (EG) (Adamidis and
Loukas [30]); the exponential Poisson distribution (EP)
(Kus [31]); exponential power series distribution (EPS)
(Chahkandi and Ganjali [32]); Weibull-geometric
distribution (WG) (Barreto-Souza et al. [33]);
complementary exponential geometric distribution (CEG)
(Louzada et al. [34]); among others.

The new regression model, due to its flexibility in
accommodating various forms of the risk function, (i.e.,
increasing, decreasing and unimodal) depending on the
values of its parameters, seems to be an important model
that can be applied in a variety of problems in survival
data modeling. Besides, the LWP regression model is also
suitable for testing goodness-of-fit of some particular
sub-models, such as the exponential-Poisson and Weibull
(Weibull, [35]) distributions in a structure of modeling
mixture. Hence, it represents a good alternative for
lifetime data analysis, and this generalization is expected
to attract more comprehensive applications in survival
analysis.

The inferential part of this model is carried out using
the maximum likelihood approach for parameters
estimation and the asymptotic distribution of the
maximum likelihood estimators. Considering that the
Weibull-Poisson long-term regression model is embedded
in the exponential-Poisson and Weibull long-term
regression models, the likelihood ratio test can be used to
discriminate such models. A simulation study via Monte
Carlo was conducted to evaluate the performance of the
LWP regression model via bias and square root of the
mean-squared error of the maximum likelihood estimates
(MLE ′s).

After modeling, it is essential to check the
assumptions of the model. Moreover, to conduct a
robustness study to detect influential or extreme
observation that can cause distortions to the results of the
analysis. Numerous approaches have been proposed in the
literature to detect influential or outlying observations,
among them, is the global influence proposed by Cook
[36]. Besides a global influence approach, was used the
generalized Cook distance (Xie and Wei [37]) and the
distance of likelihood (Cook and Weisberg [38]) to verify
the existence of possible influential observations in the
regression proposed model.

Another important step after the formulation of the
model is the residuals analysis. Starting from this
analysis, we can identify outliers and observe if there are
differences in the assumptions made in the proposed
model. In survival analysis, are proposed in the literature,
some residuals for the long-term regression models. See
for example Castro et al. [16]. In this paper, we
considered the randomized quantile residuals (r̂)
proposed by Dunn and Smyth [39] beyond of the
Worm-Plot an QQ-plot graphics. The graphic Worm-Plot

introduced by Buuren and Fredriks [40] are based on the
randomized quantile residuals.

This paper is organized as follows. In Sections 2 and
3, we introduce the LWP distribution and the LWP
regression model, respectively. The inferential procedure
based on the maximum likelihood approach; the criteria
AIC and the likelihood ratio test to select the best model
respectively is presented in Section 4. In Section 5, we
present the results of a simulation study conducted to
assess the performance of the maximum likelihood
estimators of the new regression model. In Sections 6 and
7, the diagnostic measures and of the residual analysis are
presented, respectively. In Section 8, the data set is
analyzed, and the final considerations appear in Section 9.

2 The Weibull-Poisson long-term distribution

(LWP)

The Weibull-Poisson long-term distribution proposed by
Vigas et al. [13] obtained by a compounding of the
Weibull-Poisson (WP) distribution proposed by Bereta et
al. [29] in a structure of mixture modeling proposed by
Berkson and Gage [1]. In this scenario, T is a
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non-negative random variable that represents the lifetime
in a population in which it is considered to exist cured
individuals (not susceptible) with probability p and not
cured individuals (susceptible) with probability (1-p). In
this way, the survival function population is defined as:

S(t) = Spop(t) = p+(1− p)S0(t), (1)

where S0(t) is the survival function for individuals who are
susceptible. In this work, we used the survival function of
the Weibull-Poisson (WP) distribution (Bereta et al. [29])
given by:

S0(t) =
exp
{

α exp
[
−(λ t)γ]}−1

exp(α)−1
. (2)

The WP model is suitable for lifetime data modeling,
which has a decreasing, increasing and unimodal hazard
function and it is presents as particular case some
distributions used in the area, including the Weibull
distribution. Replacing (2) of (1) the S(t), can be written
as:

S(t) =
pexp(α)+(exp

{
α exp

[
−(λ t)γ]})−1

exp(α)−1
−

p(exp
{

α exp
[
−(λ t)γ]})

exp(α)−1
,

where t > 0; γ > 0 and λ > 0 are shape parameters; α > 0
and 0 < p < 1 are scale parameters. The density, hazard
and quantile functions of LWP distribution are given by,
respectively,

f (t) =
(1− p)α exp

{
α exp

[
−(λ t)γ]− (λ t)γ}λ γtγ−1γ

exp(α)− 1
,

h(t) =
pexp(α)+(exp

{
α exp

[
−(λ t)γ]})

(1− p)α exp
{

α exp
[
−(λ t)γ]− (λ t)γ}λ γ tγ−1γ

−

p(exp
{

α exp
[
−(λ t)γ]})−1

(1− p)α exp
{

α exp
[
−(λ t)γ]− (λ t)γ}λ γ tγ−1γ

,

and

t =
1

β
[log(α)− log (log(exp(α)(1− p−u)+u))]1/γ

− 1

β
[log(1− p)]1/γ .

(3)

The quantile function (3) has tractable properties
specially for simulations.

Figures 1 and 2 illustrates some of the possible shapes
of the hazard function according to the selected parameter
values of the LWP distribution. We note from this figure
that the population hazard function is quite flexible and
can accommodate various forms, such as decreasing,
increasing and unimodal. Applications of the LWP
distribution in survival studies were investigated by Vigas
et al. [13].
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Fig. 1: Plots of the failure rate function for LWP distribution.

3 The LWP Regression Model

In many practical applications, some characteristics
influence the proportion of cured; these characteristics are

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


762 V. P. Vigas et al.: An application of the Weibull-Poisson long-term...

called of the covariates. Thus, the model with these
covariates is an efficient way to observe their effect on the
proportion of cured. The covariates vector is denoted by
x = (x1,x2, ...,xp)

⊤, in that this vector is related to the
proportion of cured of LWP model by the logistic link
function. Then, the probability of cure for the ith cured
individual is given by

p(xi) =
exp(x⊤i β )

1+exp(x⊤i β )
, i = 1, . . . ,n,

where the logistic link function keeps each p(xi) strictly

between 0 and 1, x0i = 1 and β = (β0,β1, ...,βk)
⊤ is the

vector of unknown parameters to be estimated.

Now, consider that the covariates vector of the matrix
x is included in the cured proportion of the variable T that
follows a LWP distribution with the parameters vector

θ = (α,λ ,γ,β⊤)⊤. The survival and density functions
are specified by, respectively:

S(t|x) =
p(x)exp(α)+(exp

{
α exp

[
−(λ t)γ]})−1

exp(α)−1
−

p(x)(exp
{

α exp
[
−(λ t)γ]})

exp(α)−1
,

and

f(t|x) =
(1− p(x))α exp

{
α exp

[
−(λ t)γ]− (λ t)γ}λ γ tγ−1γ

exp(α)−1

(4)

The LWP regression model (4) presents sub-models
as particular cases because it generalizes some known
distributions in the literature. It is observed that when
α → 0 in equation (4), the LWP regression model is
reduced for the Weibull long-term (LW) regression
model. For γ = 1 in equation (4), the LWP regression
model is reduced for the exponential-Poisson long-term
(LEP) regression model.

4 Inference

4.1 Estimation by maximum likelihood

Several methods can be used to estimate the parameters
of the probabilistic models, and the most common of
theses methods is the maximum likelihood. One of the
characteristics of this method is which allows the
inclusion of censoring in its estimation process, which is
not always possible with other estimation methods, for
example, the least-squares method. Consider a random
sample of size n composed by (t1,x1),(t2,x2), . . . ,(tn,xn),
where ti is the survival time with the probability density
function (4) where xi is the covariate vector associated
with the ith individual. Given that the variables T and
censoring (C) are independent, the lifetimes are
identically distributed and censoring is not informative.
Thus, the log-likelihood function of the parameter vector
θ , ℓ(θ ) can be written as

ℓ(θ ) ∝
n

∑
i=1

δi log
[
αγλ γ t

γ−1
i {1− (p(xi))}

]
+

n

∑
i=1

δi

[
α exp

{
−(λ ti)

γ}− (λ ti)
γ
]
−

n

∑
i=1

δi logexp(α)−1+

n

∑
i=1

(1−δi) log
{
−exp(α)

(
exp
{

α exp
[
−(λ t)γ]}) [(p(xi))]

}
−

n

∑
i=1

(1−δi) log{exp(α)−1} ,

(5)
where p(xi) =

exp(xT
i β )

1+exp(xT
i β )

and δi an failure indicator

variable, respectively. Maximum likelihood estimates

(MLE ′s) of the θ̂ for the parameter vector

θ = (α,λ ,γ,β T )T is obtained maximizing (5), solving
the system of equations given by

U(θ ) =
∂ l(θ)

∂θ
= 0.

The vector U(θ ) of the LWP regression model, where

U(θ ) = U(α,λ ,γ ,β j) =

(
∂ ℓ(θ)

∂ α
;

∂ ℓ(θ )
∂ λ

;
∂ ℓ(θ)

∂ γ
;

∂ ℓ(θ )
∂ β j

)
;

for j = 1,2, . . . , p, has components expressed in the form

∂ l(θ)

∂α
=

∑n
i=1 δi

α
+

n

∑
i=1

δi

(
exp
{

α exp
[
−(λ ti)

γ]})−

∑n
i=1 δi exp(α)

∑n
i=1(1−δi)exp(α)−1

+

exp
{

α exp
[
−(λ ti)

γ]− (λ ti)
γ
}

λ γ t
γ−1
i {1− p(xi)} p(xi)exp(α)

exp
{

α exp
[
−(β ti)

γ]}(1− p(xi))p(xi){exp(α)−1}

+
exp
{
−(λ ti)

γ}(1− p(xi))p(xi)exp(α)

exp
{

α exp
[
−(β ti)

γ]}(1− p(xi))p(xi){exp(α)−1}

+
∑n

i=1(1−δi)

exp(α)−1
.

∂ l(θ )

∂λ
=

∑n
i=1 δiγ

λ
+

n

∑
i=1

δi

(
−α(λ ti)

γ γ exp
{
−(λ ti)

γ}

λ
− (λ ti)

γ γ

λ

)
−

∑n
i=1(1−δi)α(λ ti)

γ γ exp{−(λ ti)
γ}exp

{
α exp

[
−(λ ti)

γ]}

λ [exp
{

α exp
[
−(λ ti)

γ]}(1− p(xi))p(xi){exp(α)−1}] X

(1− p(xi))p(xi)exp(α)

λ [exp
{

α exp
[
−(λ ti)

γ ]} (1− p(xi))p(xi){exp(α)−1}] .

∂ l(θ )

∂γ
=

∑n
i=1 δi[αλ γ (ti)

γ−1(1− p(xi))

αγλ γ t
γ−1
i (1− p(xi))

+

αγλ γ log(λ )t
γ−1
i (1− p(xi))+αγλ γ t

γ−1
i log(ti)(1− p(xi))]

αγλ γ t
γ−1
i (1− p(xi))

+

n

∑
i=1

δi

(
−α(λ ti)

γ log(λ ti)exp
{
−(λ ti)

γ}− (λ ti)
γ log(λ ti)

)
−

∑n
i=1(1−δi)α(λ ti)

γ log(λ ti)exp
{
−(λ ti)

γ}

exp
{

α exp
[
−(λ ti)

γ]}(1− p(xi))p(xi)(exp(α)−1)
X

exp{α exp [−(λ ti)
γ ]}(1− p(xi))p(xi)exp(α)

exp
{

α exp
[
−(λ ti)

γ]}(1− p(xi))p(xi)(exp(α)−1)
.
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∂ℓ(θ )

∂β j
=

n

∑
i=1

(δi)
αγλ γ {vixi(1+vi)−vi{vixi}}

(1+vi)2
+

n

∑
i=1

(1−δi)
{exp(α)expα exp(−λ t

γ
i )}{vixi(1+vi)−vi(vixi)}

(1+vi)2
,

where p(xi) =
exp(xT

i β )

1+exp(xT
i β )

and vi = exp(xT
i β ).

Since the equation system to find these estimators is not

linear, we can use some numerical methods for solving the

system of equations. Hence, the estimates of these parameters

were obtained via numerical methods. We have used the method

BFGS through the command optim of the Software R. When the

sample size is large and under certain regularity conditions for

the likelihood function, confidence intervals and hypothesis

testing for the parameters can be obtained using the fact that

maximum likelihood estimators, θ̂ , have asymptotic

multivariate normal distribution with mean θ and variance and

covariance matrix Σ , estimated by I−1(θ ) = −E[L̈(θ)], where

L̈(θ)=

{
∂ 2l
(
θ
)

∂θ ∂θ T

}
, this is,

√
n(θ̂ − θ) ∼ Nk+3(0,I

−1(θ)).

Whereas the calculation of the I(θ) is not possible by the

presence of censored observations, alternatively we can use the

information matrix observed, -L̈(θ ), assessed in θ = θ̂ , which is

a consistent estimator for Σ . For more details, see [41], [42] and

[43].

4.2 Model Selection

As the LWP regression model is reduced in sub-models, the

selection criteria may be used to choose the more appropriate

model. The AIC (Akaike’s information criterion) and the

likelihood ratio test was used for the selection of the model that

best fits the data. The AIC criterion is defined by

AIC = −2log(L̂)+ 2k, where: L̂ is the maximized value of the

likelihood function of the model; k is the number of parameters

of the model; and n is the sample size. The preferred model is

the one with the smallest value of AIC. Besides this criterion,

hypothesis tests, such as the likelihood ratio test (LR), can be

taken into account due the LWP distribution has other

distributions as particular cases.

The likelihood ratio test (LR) is used to discriminate nested

models. To test nested distributions, we compute the maximum

values of the restricted (H0) and unrestricted (H1)

log-likelihoods to construct the test statistic. Under H0 and some

regularity conditions, the distribution of the statistical likelihood

ratio (ωn) converges to a χ2 distribution with degrees of

freedom equal to the difference between the numbers of

parameters of the unrestricted and restricted models.

For example, hypotheses are given by H0 : γ = 1 (LEP

model) versus H1 : γ 6= 1 (LWP model). The test statistic is

given by ωn = −2 × log

(
L(Î(θ)0)

L(Î(θ ))

)
, where θ̂ 0 is the

maximum likelihood estimator for θ under H0, and the null

hypothesis is rejected when ωn > χ2
1−α (1), which is the quantile

of the chi-square distribution with one degree of freedom.

For the comparison of the models in the boundary of the

parameter space, for example, H0 : α → 0 and H1 : α > 0, the

distribution of the statistical test ωn is a mixture with a weight

(0.5 and 0.5) of distribution χ2 with one degree of freedom, a

discrete distribution and concentrated mass in the value 0, this

is, P(ωn ≤ w) = 1
2 + 1

2 P(χ2
1 ≤ w). Large positive values of ωn

give favorable evidence to the unrestricted model. For example,

for a significance level of 5%, H0 is rejected if ωn > 2.7055.

More details in [7] and [44].

5 Simulation Study

To assess the performance of MLE ′s for the parameters of the

LWP regression model, a simulation study was made for

different values of n. In this study, the survival time of T follows

WP distribution for different values of n (200, 400, 600 and 800)

in which the covariate was included in the proportion of p cured

via the logistic link function. The values of the WP variable

were generated from the inverse transformation method.

Through this method, we can obtain, in a closed form, generate

values of the LWP distribution via the quantile function given by

equation (3). The censoring times C were sampled from the

Uniform distribution in the (0,τ) interval where the τ controls

the censoring observations. Besides, the survival time of the

variable (Y ) in the simulation was considered through

yi = min(ti,ci).
The parameter values were fixed in α = 3.5, λ = 0.5, and

γ = 1.5 with different values of τ (4, 5, 6 and 7) for each

analyzed sample of the LWP, LEP and LW regression models,

where pi = exp(β0 +β1xi)/(1+exp(β0 +β1xi)). The values of

the covariate xi from Bernoulli distribution with parameter 0.5,

considering β0 = 0.4 and β1 = −0.5 with the proportion of

cured for the two levels of x (0,1), were p(x=0) = 0.5986 = p0

and p(x=1) = 0.4750 = p1 respectively. The process of this

simulation is as follows:

1. Generate Mi ∼ Bernoulli (pi);

2. If Mi = 0, then ti = ∞, otherwise generate T ∼
WP(α,λ ,γ);

3. Generate variable of censure ci; C ∼ U(0;τ);

4. Find yi = min(ti,ci);

5. If yi < ci then δi = 1, otherwise, δi = 0, to i = 1, ...,n.

For each combination of n, 1000 samples were generated

and were obtained the maximum likelihood estimates of the

LWP regression model. The bias and the square root of the

mean-squared error (RMSE) of the maximum likelihood

estimates were also calculated for simulated samples in the

same conditions of the previous simulations. From the

simulation results, shown in Tables 1, 2, 3 and 4, it was observed

that the estimates of the parameters of the LWP regression

model were close to the true value of the parameters and the

RMSEs decay toward zero when the sample size n increases as

expected. These facts support that the asymptotic normal

distribution provides an adequate approximation to the finite

sample of the estimators distribution. The affirmations about the

maximum likelihood estimates and RMSEs remain valid when

we increase the values of the parameter τ . Table 5 shows the

estimated proportion of cured for the two levels of x, and it can

be observed that this proportion is close to the true value of the

parameters for the two levels of x. For all sample sizes, the

convergence rate was calculated for all scenarios, and it was

found that the rate was 100% in all cases in this work.
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Table 1: AEs, biases and RMSEs for the parameters of LWP

regression model for different values of α , λ , γ , β0, β1, n = 200

τ = 4 τ = 5

θ AE Bias RMSE AE Bias RMSE

α 4.4880 0.9880 2.8557 4.2769 0.7769 2.7203

λ 0.5102 0.0102 0.2108 0.5168 0.0168 0.2220

γ 1.5157 0.0157 0.1562 1.5039 0.0039 0.1430

β0 0.4109 0.0109 0.2703 0.4093 0.0093 0.2518

β1 -0.5286 -0.0286 0.3386 -0.5217 -0.0217 0.3245

τ = 6 τ = 7

θ AE Bias RMSE AE Bias RMSE

α 3.8390 0.3390 2.5027 3.7740 0.2740 2.5167

λ 0.5502 0.0502 0.2283 0.5565 0.0565 0.2374

γ 1.4983 -0.0016 0.1377 1.4922 -0.0077 0.1361

β0 0.3905 0.0094 0.2286 0.3978 -0.0021 0.2244

β1 -0.5032 -0.0032 0.2965 -0.4974 0.0025 0.3010

Table 2: AEs, biases and RMSEs for the parameters of LWP

regression model for different values of α , λ , γ , β0, β1, n = 400

τ = 4 τ = 5

θ AE Bias RMSE AE Bias RMSE

α 4.5941 1.0941 2.7779 4.3022 0.8022 2.5938

λ 0.4878 -0.0121 0.1964 0.5052 0.0052 0.1962

γ 1.4961 -0.0262 0.1085 1.4940 -0.0059 0.1033

β0 0.3924 -0.0038 0.1854 0.3963 -0.0063 0.1733

β1 -0.5101 -0.0101 0.2434 -0.5126 -0.0012 0.2340

τ = 6 τ = 7

θ AE Bias RMSE AE Bias RMSE

α 3.8793 0.3793 2.3733 3.6384 0.1984 2.2599

λ 0.5341 0.034 0.2031 0.5485 0.0485 0.2053

γ 1.4990 -0.0341 0.1006 1.4922 -0.0077 0.0956

β0 0.3976 -0.0023 0.1654 0.4005 0.0005 0.1622

β1 -0.4998 0.0001 0.2256 -0.5113 -0.0113 0.2215

Table 3: AEs, biases and RMSEs for the parameters of LWP

regression model for different values of α , λ , γ , β0, β1, n = 600

τ = 4 τ = 5

θ AE Bias RMSE AE Bias RMSE

α 4.5584 1.0584 2.6905 4.3114 0.8114 2.5227

λ 0.4804 -0.0195 0.1833 0.4955 -0.0044 0.1848

γ 1.4930 -0.0069 0.0936 1.4901 -0.0098 0.0892

β0 0.3982 -0.0017 0.1564 0.3976 -0.0023 0.1428

β1 -0.5066 -0.0066 0.2039 -0.5022 -0.0022 0.1959

τ = 6 τ = 7

θ AE Bias RMSE AE Bias RMSE

α 3.8667 0.3667 2.2051 3.8661 0.3681 2.2149

λ 0.5246 0.0246 0.1828 0.5248 0.0248 0.1837

γ 1.4903 -0.0096 0.0873 1.4938 -0.0061 0.0846

β0 0.4015 -0.0015 0.1355 0.4027 0.0027 0.1361

β1 -0.5005 -0.0055 0.1841 -0.5023 -0.0023 0.1900

Table 4: AEs, biases and RMSEs for the parameters of LWP

regression model for different values of α , λ , γ , β0, β1, n = 800

τ = 4 τ = 5

n = 800 n = 800

θ AE Bias RMSE AE Bias RMSE

α 4.5182 1.0182 2.6539 4.1748 0.6748 2.2979

λ 0.4847 -0.0152 0.1792 0.4958 -0.0041 0.1711

γ 1.4946 -0.0053 0.0800 1.4878 -0.0121 0.0798

β0 0.3853 -0.0146 0.1302 0.3957 -0.0042 0.1268

β1 -0.4966 0.0033 0.1726 -0.4973 0.0026 0.1656

τ = 6 τ = 7

n = 800 n = 800

θ AE Bias RMSE AE Bias RMSE

α 3.9620 0.4620 2.1896 3.5940 0.0940 1.9435

λ 0.5134 0.0134 0.1725 0.5394 0.0394 0.1743

γ 1.4891 -0.0108 0.0759 1.4853 -0.0146 0.0699

β0 0.3983 -0.0016 0.1207 0.3954 0.0045 0.1116

β1 -0.5016 -0.0016 0.1601 -0.4990 0.0009 0.1539

Table 5: Estimated proportions of LWP regression model for

different values of τ and n.

Sample

size
Parameters

τ value

4 5 6 7

n = 200
p0 0.6013 0.5954 0.5987 0.5981

p1 0.4706 0.4718 0.4763 0.4751

n = 400
p0 0.5968 0.5978 0.5981 0.5988

p1 0.4706 0.4709 0.4744 0.4723

n = 600
p0 0.5982 0.5978 0.5900 0.5993

p1 0.4729 0.4709 0.4740 0.4751

n = 800
p0 0.5951 0.5976 0.5982 0.5975

p1 0.4721 0.4746 0.4741 0.4741

6 Sensitivity Analysis

After fitting the model, it is essential to check its assumptions

and to conduct a robust study to detect influential observations

that can cause distortions in the analysis. The first tool to

perform sensitivity analysis is the global influence starting from

case deletion (Cook [36]). Case deletion is a common approach

to study the effect of dropping the ith case from the data set.

Another approach was suggested by (Cook and Weisberg [38]),

where instead of removing observations, weights are given to

them. Several authors considered this context, for example:

Leiva et. al [45] who investigated the local influence in

log-Birnbaum-Saunders regression model with censored

observations; Silva et. al, [46], that considered the problem of

assessing local influence in log-Burr regression model with

censoring; and Ortega et. al [14], that discussed the local

influence for the generalized log-gamma mixture model with

covariates.

Global Influence

The first diagnostic measure used to evaluate the global influence

in the analysis of data was Cook’s distance (Cook [36]). This

distance is based on the elimination of cases, which is a common

approach to studying the effect of removing a case of the analysis,

so it is possible to determine which individuals may influence the

results of that study.

Consider an observed sample given by (Ti,δi,xi) to each

individual i=1,2,...,n, where Ti is the survival time, T ∼ LWP

(θ), δi is a censoring indicator variable and xi is the vector of

covariates. Now, consider that ”(i)” represents that the ith case

was deleted. Then, the logarithm of the likelihood function of θ
excluding the ith individual is defined as l(i)(θ ) and

θ̂ (i) = (α(i),λ(i),γ(i),β(i)
T )T is the maximum likelihood

estimator of θ from l(i)(θ ). The idea to evaluate the influence of

the ith case of the maximum likelihood estimate θ̂ is to use the

difference between θ̂ (i) and θ̂ . Then, if θ̂ (i) is far from θ̂ , the ith
case can be considered as an influential observation. A measure

possible of global influence is a generalization of Cook’s

distance given by

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 6, 759-771 (2021) / www.naturalspublishing.com/Journals.asp 765

GDi(θ ) = (θ̂ (i)− θ̂ )T
[
L̈(θ )

]
(θ̂ (i)− θ̂ ).

Another measure to verify the existence of possible

influential points is defined as the distance of likelihood (Cook

and Weisberg [38]), which is defined by

LDi(θ ) = 2
{

l(θ̂ )− l(θ̂ (i))
}
,

where l(θ̂) is the value of the logarithm of the likelihood

function of the complete sample and l(θ̂ (i)) is the value of the

logarithm of the likelihood function of the complete sample

without ith observation.

7 Residual Analysis

An important step after the model formulation is the analysis of

residual. It is used to verify the assumptions of the model

proposed, beyond detect the presence of outlying observations.

In this paper, was considered the randomized quantile residuals

(r̂) proposed by Dunn [39]. These residuals are also used for

regression models with censored data where the variable

response is of the continuous type. The randomized quantile

residuals are given by

r̂i = Φ−1(ûi); i = 1,2, . . . ,n,

where Φ−1 corresponds the inverse of the quantile function of the

standard Normal and F(.) is a cumulative distribution function

of the proposed model. For continuous censored variables to the

right, ûi is defined in the interval ûi = [F(yi|θ̂),1]. The ûi to LWP

regression model is defined by

ûi =
(1− p(xi))

(
exp(α)−exp

[
α exp(−λ ti)

γ])

exp(α)−1

where p(xi) =
exp(xT

i β )

1+exp(xT
i β )

, i=1, . . . , n.

The QQ-plot of the normalized randomized quantile

residuals (Paiva [47]) and the graphic Worm-Plot also were used

to verify if the proposed model fits well to the data. The graphic

Worm-Plot introduced by Buuren and Fredriks [40] is based on

the randomized quantile residuals. If the residuals are inside of a

non-rejection region (between the two elliptic curves), the

global model provides a good fit. This graphic can be obtained

from the function wp in the package GAMLSS of the Software

R.

8 Aplication

To illustrate this new model was used the real data set of cancer

recurrence. The data were part of an essay on cutaneous

melanoma (a type of malign cancer) for the evaluation of

postoperative treatment performance with a high dose of a

certain drug (interferon alfa-2b) in order to prevent a recurrence.

Patients were included in the study from 1991 to 1995, and

follow up was conducted until 1998.

The data were described and analyzed by Silva et al. [48].

The original sample comprises 427 patients, but the tumor

thickness data (as a covariate) of 10 patients were missing and

so were removed from our analysis. Then we obtain a data set of

n = 417 patients with approximately 56% of censored

observations.

Cutaneous melanoma is the most serious type of skin cancer,

as it has a high possibility of spreading to neighboring tissues and

organs. In addition to men over 40 years, people with fair skin,

blue eyes, blond and red hair are more susceptible to develop this

disease. 1.

For each patient i = 1,2, . . . ,417 were registered the

variable ti: observed time (in years) until the cancer recurrence,

besides of the covariates xi1: treatment (0= observation,

1=interferon dose); xi2: age (in years); xi3: nodule (nodule

category: 1 to 4); xi4: gender (0=male, 1=female); xi5: p.s.

(performance status patients functional capacity scale as regards

his daily activities: 0=fully active, 1=other); xi6: tumor (tumor

thickness in mm).

The aim this study is to compare the LWP regression model

with the LW and LEP regression models to identify a more

appropriate model for the survival time, relating to the

proportion of cured patients (p) with the covariates observed.

Initially, to obtain more information on the survival time, it was

made an analysis of these times without considering the

observations censored. This information is shown in Table 10. It

can be observed following this table, that the median time of

recurrence of the patients was approximate of 3.22 years, which

indicates that approximately 50% of patients had the survival

time larger than 3.22 years and its mean survival time was 3.17

years. It can also be observed that 25% of patients had a lifetime

less than 1.67 years or greater than 4.49 years. Furthermore, the

lifetime of the patients was between 0.14 and 7.01 years, which

implies a greater variability of the lifetime. What certifies this

greater variability is the coefficient of variation (C.V.) with the

value of 53.21%. Figure 2 shows the survival estimates by

Kaplan-Meier for groups of patients on the covariates:

Treatment, Age, Nodule category, Sex, P.S, and Tumor. From

this figure, it was noted that there is evidence of a difference

between survival functions only the category of the covariate

nodule (X3).

Table 6: Summary of survival time of the patients for the
cutaneous melanoma data.

Minimum 1o Quart. Median Mean 3o Quart. Maximum S.D. C.V.

0.1478 1.6701 3.2224 3.1792 4.4928 7.0116 1.69170 0.5321

0.00
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0.50
0.75
1.00

0 2 4 6

Time

S
(t

)

Strata observation interferon dose

Treatment

1
https://https://www.rededorsaoluiz.com.br/hospital/vivalle/noticias/artigo/cancer-

de-pele-melanoma-cutaneo
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Fig. 2: Curve of the survival function estimated by the Kaplan-

Meier to covariates Treatment, Age, Nodule category, Gender,

P.S and Tumor.

As there is evidence of a difference between survival

functions of the covariate X3, it was done a table to verify the

nodules frequency. It can be observed under the table 7 that the

category ”2” had the highest nodule frequency. Then, was

created three dummy variable (X31, X33 and X34) in what the

reference value is the nodule with the value ”2”.

Table 7: Frequency of the variable Nodule category for the
cutaneous melanoma data.

Nodule category 1 2 3 4

Frequency 111 137 87 82

Also, it was verified the hazard function of data observed

using a graphical method based on the total time test (TTT), also

called TTT-Plot. This method is useful when there is

information about the hazard function of the times observed.

The empirical version of the TTT-Plot according to Aarset [49]

is given by G(r/n) = [(∑r
i=1 Yi:n) − (n − r)Yr:n]/(∑

r
i=1Yi:n),

where r = 1, . . . ,n and Yi:n represents the order statistics of the

sample. Aarset [49] showed that: the hazard function is constant

if the TTT-Plot is presented graphically as a straight diagonal;

the hazard function is decreasing (or increasing ) if the TTT-Plot

is convex (or concave); the hazard function is U-shaped if the

TTT-Plot is convex and then concave. Otherwise, the hazard

function is unimodal. The TTT-Plot for the cutaneous melanoma

data in Figure 3 (a) indicates a unimodal shaped failure rate

function. Figure 3 (b) shows the graphic of the survival function

estimated Kaplan-Meier. From this figure, it is possible to

observe a fraction of cured individuals, because its estimated

survival function tends to a constant value well above zero.

Then, we can utilize long-term survival models and can use the

LWP distribution for the modeling of data.

N. failure =  185
N. censored =  232

0.00
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0.50
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1.00
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(a) TTT-Plot

Kaplan−Meier
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(b) Kaplan-Meier
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Fig. 3: TTT-Plot; Kaplan Meier and empirical Hazard for the

cutaneous melanoma data.

The next step after the conclusions made about the LWP

model was to check which is the best model when the covariates

were included. Now, we go to include the covariates vector in

the proportion p of cured of LWP model by logistic function, i.e,

p(xi) =
exp(xT

i β )

1+exp(xT
i β )

; i = 1,2, ...,417,

where xT
i β = β0 +β1xi1 +β2xi2 +β31xi31 +β33xi33 +β34xi34 +

β4xi4 +β5xi5 +β6xi6. This procedure was given in the section 3.

We compared the LWP regression model with its particular

cases LEP and LW, considering the AIC. The values of AIC is

presented in Table 8 with the maximum likelihood estimates

(MLE ′s) and their standard errors (S.E.) for the parameters of

the three models. We have used the command optim through of

the method BFGS of the software R to calculate the MLE ′s of

the parameters of the models. It can be observed in Table 8 that

the LWP regression model had the lowest value of the AIC

concerning the LEP and LW models, indicating that this model

is more appropriate to the data. For LWP and LW regression

models, only the variable (X34) was significant for the cure

fraction. While in the LEP regression model, only the variable

(X31) was significant for the proportion p of cured at 5% of

significance. The estimates of the parameters and their standard

errors of the models were similar in most cases to LWP and LW

regression models.

As the LWP regression model is reduced in the LEP and

LW regression models, the likelihood ratio test was used to

select a model which best fit the data. This procedure was given

in section 4.2. To the LEP and LWP regression models,

hypotheses were: H0 : γ = 1, i.e, the LEP regression model is

adequate versus H1 : γ 6= 1, i.e, the LWP regression model is

adequate. In this data, it was observed that the test statistic was

35.3154 (p-value < 0.001), and this result leads us to reject the

null hypothesis. In relation the LW and LWP regression models,

hypotheses were: H0 : α → 0, i.e, the LW regression model is

adequate versus H1 : α > 0, i.e, the LWP regression model is

adequate. In this data, it was observed that the test statistic was

5.4244 bigger than 1/2 + 1/2 P(χ2
1 ≤ c) = 2.7055, at the

significance level of the 5%, which leads us to reject the null

hypothesis. In both cases, there is evidence in favor of the LWP

regression model.

Table 8: Estimated values of the parameters regression
models LEP, LW and LWP for the cutaneous melanoma
data..

LEP LW

θ Estimates S.E. p-value Estimates S.E. p-value

α 7.2948 8.4322 - - - -

λ 0.0340 0.0395 - 0.4495 0.0280 -

γ - - - 1.6102 0.1067 -

β0 1.5468 0.9083 0.0886 1.1150 0.4952 0.0243

β1 -0.1721 0.4188 0.6843 -0.1556 0.2249 0.4889

β2 -0.0297 0.0169 0.0794 -0.0140 0.0086 0.1058

β31 1.6598 0.7966 0.0371 0.6332 0.3328 0.0570

β33 -0.9817 0.7860 0.2116 -0.3013 0.3033 0.3204

β34 -7.0650 0.6684 0.9355 -1.1032 0.3300 < 0.001

β4 0.2986 0.4187 0.4761 0.2080 0.2324 0.3707

β5 -0.1344 0.6486 0.8348 -0.1497 0.3368 0.6565

β6 -0.2868 0.1659 0.0839 -0.0661 0.0424 0.1193

−ℓ(·) 528.3521 513.4066

AIC 1078.704 1048.813

ωn 35.3154 5.4244

LWP

θ Estimates S.E. p-value

α 2.8411 1.5152 -

λ 0.2698 0.0732 -

γ 1.8184 0.1341 -

β0 1.1196 0.5024 0.0258

β1 -0.1540 0.2284 0.5002

β2 -0.0143 0.0088 0.1027

β31 0.6471 0.3384 0.0550

β33 -0.3085 0.3074 0.3155

β34 -1.1329 0.3405 < 0.001

β4 0.2050 0.2359 0.3847

β5 -0.1480 0.3430 0.6660

β6 -0.0661 0.0442 0.1344

−ℓ(·) 510.6944

AIC 1045.389

ωn -

The next step after the conclusions made anteriorly about

the LWP model is the residual analysis, which is useful to verify

the goodness of fit of the model. Figure 4 shows the Worm-Plot

graphic of the quantile residuals and qqnorm graphic for LEP,

LW, and LWP models, respectively. The Figure 4 indicates that

the LWP model is more acceptable than LEP and LW models,

because the graphic Worm-Plot of the quantile residuals of the

LWP is more located inside of the region of the two elliptic

curves with few fluctuations. Concerning the graphic qqnorm,

the quantile residuals of the LWP are closest to the line y = x

compared to other models.

As only the X34 was significant for the cure fraction, the

estimates of the parameters of the LWP regression model were

again estimated with just this covariate. The estimates are

presented in Table 9.

Table 9: Estimated values of model parameters final of the
LWP regression model to data of cutaneous melanoma.

Parameters Estimates S.E. p-value

α 2.8319 1.5255 -

λ 0.2728 0.0736 -

γ 1.8290 0.1321

β0 0.2763 0.1278 0.0306

β34 -1.2143 0.2991 < 0.0001
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Fig. 4: Worm-Plot (a; c; e) and qqnorm (b; d; f) of LEP, LW and

LWP models for the cutaneous melanoma data.

From the considerations mentioned, the estimated proportion

of patients not having cancer recurrence is described by:

p̂(xi) =
exp(0.2763−1.2143xi34)

1+exp(0.2763−1.2143xi34 )
, i = 1, . . . ,417.

To detect possible outlying observations, with the support of

the software R, we conduct a global influence study to compute

the case-deletion measures GDi(θ) and LDi(θ) presented in

Section 6. The influence measures index plots are displayed in

Figure 5. From these plots, we noted that the observations 23

and 176 were the most atypical observations concerning the

other’s observations. Then, we can consider the cases 23 and

176 as possible influential or outlier observations. Thus, these

possible atypical observations are patients that have the

following characteristics: the observation 23 matches to the

patient that has censured and the oldest survival time with the

nodule equal 3. The observation 176 matches the patient that has

censured and the oldest survival time with the nodule equal 4.

23

176
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Fig. 5: Index plot for θ : GD and LD of LWP model for the

cutaneous melanoma data.

To verify if these observations are possible influential

points, in order to reveal the impact of these observations on the

parameter estimates, some combinations of candidates

exclusions were made, and the parameters of model were again

estimated. Table 10 shows the maximum likelihood estimates

and their p-values (among parentheses) these combinations. It

can be observed about this table that when the observations 23,

and 176 of the data set were removed of form individual or joint

form, the estimates remained close concerning the original data,

except to the parameters β0 and β34. Also, the significance of

the parameters changes compared to the complete data.

Table 10: Values of the maximum likelihood estimates and
p-values of parameters of the LWP regression model.

Parameters

Data α λ γ β0 β34

A=Complete 2.8319 0.2728 1.8290 0.2763 -1.2143

(0.0306) (< 0.001)

A-{23} 2.7724 0.2816 1.8597 0.0794 -0.1204

(0.5314) (0.6535)

A-{176} 2.6941 0.2860 1.8636 0.2090 -0.7759

(0.0997) (0.0038)

A-{23;176} 2.4092 0.3118 1.9136 0.1449 -0.2966

(0.2487) (0.2614)

The Table 11 shows the percentage change of each

estimated parameter, that is given by
[(

θ̂ j − θ̂ j(i)

)
/θ̂ j

]
X100,

in which θ̂ j is the estimate of the maximum likelihood with all

observations, and θ̂ j(i) is the estimate of the maximum

likelihood without the ith observation. It can be observed about

table 11 that there was an impact of the percentage change when
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the observations 23, and 176 were removed of form individual

of the data set, in special to the parameters β0 and β34. Thus,

from the analysis made, it was considered the observations 23

and 176 as influence points. However, when theses observations

were removed from the individual or joint form, only the

significance variable (X34) changed. Then, observations 23 and

176 continued in the analysis.

Table 11: Percentage change of the maximum likelihood
estimates of parameters of the LWP regression model.

Parameters

Data α λ γ β0 β34

A-{23} 2.1010 -3.2316 -1.6788 71.2298 90.0790

A-{176} 4.8643 -4.8332 -1.8877 24.3280 36.1010

A-{23;176} 14.9248 -14.2925 -4.6251 47.546 75.5709

Thus, from the considerations mentioned, we turn to a

simplified model that has only the X34 as explanatory variable.

The estimates for the fitted LWP regression model to the

cutaneous melanoma data are listed in Table 9. In this case, the

survival function of the LWP regression final model is given by

S(t|x) =
p̂(xi)exp(2.8319)

exp(2.8319)−1
+

exp
{

2.8319exp
[
−(0.2728ti)

1.8290
]}

exp(2.8319)−1
+

(1− p̂(xi))
(

exp
{

2.8319exp
[
−(0.2728ti)

1.8290
]})

exp(2.8319)−1
;

i = 1, . . . ,417.

The final estimated proportion of patients not having cancer

recurrence can be described by:

p̂(xi) =
exp(0.2763−1.2143xi34)

1+exp(0.2763−1.2143xi34)
; i = 1, . . . ,417, (6)

where xi34 correspond to the nodules (0=nodule level 2; 1=nodule

level 4).

According to the estimated proportion of patients that were

not diagnosed the cancer recurrence (π(xi)), the probability of

the patients with nodule level 2 not having cancer recurrence is

p(X34=0) = 0.5686 = p̂0. The probability of the patients with

nodule level 4 not having cancer recurrence is

p(X34=1) = 0.2813 = p̂1.

Using the logistic link function, we can make some

interpretations about the estimated parameters using the odds

ratio. In this case, using the (eq. 6) it is possible to calculate the

odds ratio to compare the explanatory variable X34 (odds ratio =

exp(−1.2143) = 0.2969 ∼= 30%). This value shows that for

patients with nodule level 4, the odds of not having cancer

recurrence is 70% times smaller patients with nodule level 2

Figure 6 gives the estimated hazard function versus the

empirical hazard function as well as the estimated survival

function of the final regression. The predicted plot of the final

model shows that LWP regression final model fits the data well,

hence the estimated curves overlaps the estimates obtained

using the Kaplan-Meier estimator and is verified that the

estimated hazard function has a unimodal form.
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Fig. 6: Survival functions and Fitted hazard using the LWP

regression for the cutaneous melanoma data.

9 Concluding Remarks

In this study, the Weibull-Poisson long-term (LWP) regression

model was proposed as an alternative to model long-term survival

data. This new regression model is based on the Weibull-Poisson

distribution in a structure of long-term modeling, in which the

covariates were included in the proportion p of cured through the

logistic link function and presented as particular case the long-

term exponential-Poisson and Weibull regression models.

We used the maximum likelihood method for the estimation

of the parameter. Additionally, different simulation studies were

adopted to study the means, the biases, and the root of mean

squared error of the ML estimates of the proposed model for

different values of n and censored observations where it was

verified good results.

Finally, an application of the LWP regression model was

presented as an alternative for the fit the cutaneous melanoma

data. The motivation to study the cutaneous melanoma data is

due the disease be responsible for most cases of skin cancer.

Through graphical analysis of the TTT-Plot and Kaplan-Meier,

the observed values of the AIC criteria and the likelihood ratio

test, global influence and residual analysis, it can be noted that

the LWP regression model fitted well to the data. Through the

proposed model was observed some important characteristics:

–The probability of the patients with nodule level 2 not having

cancer recurrence is 56.86%;

–The probability of the patients with nodule level 4 not having

cancer recurrence is 28.13%;

–For patients with nodule level 4, the odds of not having

cancer recurrence is 70% times smaller patients with nodule

level 2;
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–The estimated hazard function has a unimodal form.

Thus, it is expected that this model is useful for fitting other

datasets.

Acknowledgement

This paper was supported by CNPq and CAPES, Brazil.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding

the publication of this article.

References

[1] J. Berkson and R.P. Gage. Survival curve for cancer patients

following treatment, Journal of the American Statistical

Association, 47, 501-515 (1952).

[2] V.T. Farewell. The use mixture models for the analysis of

survival data with long term survivors, Biometrics, 38, 1041-

1046 (1982).

[3] A.Y. Yakovlev, A.D. Tsodikov, and B. Asselain. Stochastic

Models of tumor latency and their biostatistical applications.

Singapore: World Scientifc, 1996.

[4] M. Chen, J. Ibrahim and D. Sinha. A new bayesian model

for survival data with a surviving fraction. Journal of the

American Statistical Association, 94, 909-919 (1999).

[5] C.J. Hoggart and J.E. Griffin. A Bayesian partition model for

customer attrition. In: George EI (ed.) Bayesian methods with

applications to science, policy, and official statistics [selected

papers from ISBA 2000]. Proceedings of the sixth world

meeting of the international society for Bayesian analysis. ,

Creta, Greece, 28 May 2000-1 June 2000, pp.61-70.

[6] H.M. Chen and J.G Ibrahim Maximum likelihood methods

for cure rate models with missing covariates. Biometrics 57,

43-52 (2001).

[7] R. Maller and X. Zhou. Testing for the Presence of Immune

or Cured Individuals in Censored Survival Data. Biometrics,

51, 1197-1205 (1995).

[8] J. Haybittle. A two-parameter model for the survival curve

of treated cancer patients. Journal of the American Statistical

Association, 60, 16-26 (1965)

[9] A. Yakovlev, A. D. Tsodikov, and B. Asselain. Stochastic

models of tumor latency and their biostatistical applications.

Singapore-World Scientific Publishing Company, 288,

(1996).

[10] G.S.C. Perdona and F. Louzada-Neto. A general hazard

model for lifetime data in the presence of cure rate. Journal

of Applied Statistics, 38, 1395-1405 (2011)

[11] A. Perperoglou, A. Keramolpoullos and H.C. Houwelingen.

Approaches in modelling long-term survival: An application

to breast cancer. Statistics in Medicine, 26, 2666-2685 (2007).

[12] F. Louzada, M. Roman, J.G. Leite and V.G. Cancho. A new

long-term survival distribution for cancer data. Journal of

Data Science, 10, 241-258 (2012).

[13] V.P. Vigas, J. Mazucheli, F. Louzada. Application of the

Weibull-Poisson long-term survival model. Communications

for Statistical Applications and Methods, 24, 325-419 (2017).

[14] E.M. Ortega, F.B. Rizzato and C.G. Demétrio, The

generalized log-gamma mixture model with covariates: local

influence and residual analysis. Statistical Methods and

Applications, 18, 305-331 (2009).

[15] N. Kannan, D. Kundu, P. Nair and R. Tripathi. The

generalized exponential cure rate model with covariates.

Journal of Applied Statistics, 10, 1625-1636 (2010).

[16] M. Castro, V. G. Cancho and J. Rodrigues. A hands-on

approach for

fitting long-term survival models under the gamlss

framework. Computer Methods and Programs in

Biomedicine, 97, 168-177 (2010).

[17] E.Z. Martinez, J.A. Achcar, A.A. Jácome and J.S. Santos.
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