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Abstract: In this work it is proposed a new encryption method which provides its own transformation for each cell of information.

This new method is based on the Lieb-Liniger Model describing a gas of bosons in one dimensional space.
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1 Introduction

In the past two decades, quantum computing research has
attracted more and more attention. ”Mental poker” is the
general name for a number of cryptographic problems
associated with playing fair at a distance without the need
for a trusted third party. Niels Bohr, his son and friends
first tried to play poker at a distance without cards in
1933, but the attempt was unsuccessful. In cryptography,
a three-step protocol for sending messages is a structure
that allows one party to send a message securely to
another without the need to exchange or distribute
encryption keys. It is called the three-step protocol
because the sender and receiver exchange three encrypted
messages. The first three-step protocol was developed by
Adi Shamir in 1980 [1]. The basic concept of the
three-step protocol is that each party has a private
encryption key and a private decryption key. Both parties
use their keys independently, first to encrypt the message
and then to decrypt the message. The protocol uses the
encryption function E and the decryption function D. The
encryption function uses the encryption key E to convert
the plaintext X into an encrypted message. Key D

decrypts encrypted information D(E,X) = X . Each
encryption key E corresponds to a decryption key D,
which allows you to recover the message using the
decryption function, D2(D1,E2(E1,X)) = X . Sometimes
the encryption and decryption functions are the same.
Commutative encryption is order independent encryption,
that is, it satisfies D2(D1,E2(E1,X)) = D2(D1,E1(E2,X))

for all keys encryption E1, E2 and all messages X . The
three-step protocol works as follows:

1.The sender chooses the private encryption key E1 and
the corresponding decryption key D1. The sender
encrypts the message X with the key E1 and sends the
encrypted message (E1,X) to the recipient.

2.The recipient chooses the private encryption key E2

and the corresponding key deencryption D2,
super-encrypts the first message (E2(E1,X)) with the
key E2 and sends the double-encrypted message
(E2(E1,X)) back to the sender.

3.The sender decrypts the second message with the key
D1. Due to the commutative property described
above, (D1(E2,(E1,X))) = (E2,X) is a message
encrypted only with the recipient’s private key. The
sender sends this to the recipient. The recipient can
now decrypt the message using the key D2, namely
(D2(E2,X)) = X of the original message.

The basis of modern Western encryption is ”The
Design of Rijndael AES-The Advanced Encryption
Standard” [2]. It is based on such chaotic actions as
permutation of cells, columns and matrix rows, which are
the conversion of plaintext to ciphertext. Therefore, it
does not provide complete information security. The
complete set of transformations, providing each cell of
the matrix representing information, can be provided with
its own transformation if it is possible to solve the
equation for many variables, where the number of
variables coincides with the number of cells required for
information. Currently, there are several such exactly
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solvable equations that can be used for this purpose. One
of the most suitable of these is the Lieb-Liniger Model
[3]. In this work, using Lieb-Liniger Model for three-cell
information, the possibility of information transmission
based on a three-stage protocol is shown.
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2 Bethe Ansatz for Bose gas

Following [3], consider the solution of the time
independent Schrődinger equation for s particles
interacting with the potential in the form of a delta
function

δ (|xi − x j|) = {
∞, i f xi=x j ,

0 i f xi 6=x j
.

in one-dimensional space R:

−
h̄2

2m

s

∑
i=1

△iψ(x1,x2, . . . ,xs)+

2c ∑
1≤i< j≤s

δ (xi − x j)ψ(x1,x2, . . . ,xs) =

Eψ(x1,x2, . . . ,xs), (1)

where the constant c ≥ 0 and 2c is the amplitude of the
delta function, m = 1-massa of boson, h̄ = 1-Plank
constant, △-Laplasian, the domain of the problem is
defined in R: all 0 ≤ xi ≤ L and the wave function ψ
satisfies the periodicity condition in all variables. In [3], it
was proved that defining a solution ψ in R is equivalent to
defining a solution to the equation

−
s

∑
i=1

1

2m
△xi

ψ = Eψ ,

with the boundary condition

(
∂ψ

∂x j

−
∂ψ

∂xk

)|x j=xk+0
− (

∂ψ

∂x j

−
∂ψ

∂xk

)|x j=xk−0
= 2cψ |x j=xk

,

(2)
for ψ in the domain

R1 : 0 < x1 < x2 < .. . < xs < L

and the initial periodicity condition is equivalent to the
periodicity conditions in

ψ(0,x1, ...,xs) = ψ(x1, ...,xs,L),

∂ψ(x,x2, ...,xs)

∂x
|x=0 =

∂ψ(x2, ...,xs,x)

∂x
|x=L.

Using equation (2) we can determine the solution of
equation (1) in the form of the Bethe ansatz [3], [4] - [8]:

ψ(x1, . . . ,xs) = ∑
P

a(P)Pexp

(

i
s

∑
i=1

kPi
xi

)

(3)

in the region R1 with eigenvalue Es = ∑s
i=1 k2

i where the
summation is performed over all permutations P of the
numbers {k} = k1, . . . ,ks and a(P) is a certain coefficient
depending on P:

a(Q) =−a(P)exp(iθi, j),

where θi, j = θ (ki − k j), θ (r) = −2arctan(r/c) and when
r is a real value and −π ≤ θ (r)≤ π .

For the case s = 2, one can find [3], [5] - [8]:

a1,2(k1,k2)e
i(k1x1+k2x2)+ a2,1(k1,k2)e

i(k2x1+k1x2).
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and

ik2a1,2 + ik1a2,1 − ik1a1,2 − ik2a2,1 = c(a1,2 + a2,1),

or

a2,1 =−
c− (k2 − k1)

c+(k2 − k1)
a1,2

If we choose

a1,2 = ei(k1x1+k2x2)

one gets

ei(k2y1+k1y2) =−
c− (k2− k1)

c+(k2− k1)
ei(k1y1+k2y2) =

−eiθ2,1ei(k1y1+k2y2).

3 Application of Bethe ansatz in information

technology

Let’s consider how the last equation can be used for
three-stage information transfer. Let Alice encrypt

information X = ei(k1x1+k2x2+k3x3) using the encryption
key E1 = −eiθ2,1eiθ1,2eiθ3,3 and send encrypted
information to Bob: (E1,X) =

−eiθ2,1eiθ1,2eiθ3,3ei(k1x1+k2x2+k3x3) = ei(k2x1+k1x2+k3x3). Bob
receives this information and encrypts it with his key:
E2 = −eiθ2,1+iθ1,2+iθ1+2+3,3 and sends the
double-encrypted information back to Alice:

(E2(E1,X)) =−eiθ2,1+iθ1,2+iθ1+2+3,3ei(k2x1+k1x2+k3x3) =

ei(k1x1+k2x2+k1+2+3x3).

Having received the latest information from Bob, Alice
decrypts it with her key D1 =−eiθ2,1eiθ1,2eiθ3,3 :

(D1(E2(E1,X))) =−eiθ2,1eiθ1,2eiθ3,3×

ei(k1x1+k2x2+k1+2+3x3) = ei(k2x1+k1x2+k1+2+3x3)

and send it back to Bob. Now the information is covered
by Bob’s key just one time. Bob, having received this
information, decrypts it with his decoder key
D2 =−eiθ2,1+iθ1,2+iθ1+2+3,3 :

(D2(D1(E2(E1,X)))) =−eiθ2,1+iθ1,2+iθ1+2+3,3×

ei(k2x1+k1x2+k1+2+3x3) = ei(k1x1+k2x2+k3x3).

The latest information matches the information that Alice
wanted to send to Bob.

Expanding in a series of encryption keys E1, E2 and
decryption D1, D2 in matrix form, we can make sure that
the encryption process and E1, E2, D1, D2 are equivalent
to the encryption and decryption process in matrix form:

E1=

1

1

1
E2=

1

1

1 1 1

D1=

1

1

1
D2=

1

1

1 1 1

Matrices E1 and E2 are commutative:

E1 ×E2=

1

1

1
×

1

1

1 1 1
=

E2 ×E1=

1

1

1 1 1

×
1

1

1

=

1

1

1 1 1

.

can also show that D1 = E−1
1 is inverse to E1:

E1 × E−1
1 =

1

1

1
×

1

1

1
=

1

1

1

.

Similarly:

D2 = E2 × E−1
2 =

1

1

1 1 1

×
1

1

1 1 1

=

1

1

1
.

Let the initial information in a binary representation
have the form:

X=

0

1

1

.

Then

E1X=

1

1

1
×

0

1

1
=

1

0

1
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E2E1X=

1

1

1 1 1
×

1

0

1
=

0

1

0

D1E2E1X=

1

1

1
×

0

1

0
=

1

0

0

D2D1E2E1X=

1

1

1 1 1
×

1

0

0
=

0

1

1
=X .

4 Conclusion

This work proposes a new encryption method based on
the Lieb-Liniger model, which allows the translation to
provide for each cell its own encryption transformation.
For this purpose, we use the solutions of the Schrödinger
equation for the boson system interacting with the
potential in the form of a delta function.

The advantages of this algorithm and information
transfer method:

1.Complete diffusion of component bits at each stage of
information transfer.

2.The cost-effectiveness of the algorithm, since good
diffusion is provided by a small number of bits. If
modern programs require 5 cells to express letters,
then in our approach it is possible to express letters in
one cell.

3.Equality of zero correlation between plaintext and
ciphertext, which is a condition for perfect encryption.

4.The lack of a key transfer process between partners is
the most dangerous part of information transfer.

5.The possibility of using the proposed programs, both
on modern computers and in quantum computers.

6.Possibility of programming the direction of
propagation of bosons in one-dimensional space.
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