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Abstract: In this paper, we prove that the optimality conditions of the higher order strongly convex functions are characterized by a

class of variational inequalities, which is called the higher order strongly variational inequality. Auxiliary principle technique is used

to suggest an implicit method for solving higher order strongly variational inequalities. Convergence analysis of the proposed method

is investigated using the pseudo-monotonicity of the operator. Some special cases also discussed. Results obtained in this paper can be

viewed as refinement and improvement of previously known results.
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1 Introduction

Variational inequalities theory, which was introduced by
Stampacchia [1] in 1964, contains wealth of new ideas
and techniques for investigating a wide class of unrelated
problems in a unified framework. Variational inequalities
may be viewed as novel generalization of the variational
principles, the origin of which can be traced back to
Euler, Lagrange and the Bernoulli brothers. Variational
principles have played a crucial and important role in the
development of various fields of sciences and have
appeared as a unifying force. The ideas and techniques of
variational inequalities are being applied in a variety of
diverse areas of sciences and prove to be productive and
innovative. Variational inequalities have been extended
and generalized in several directions using novel and new
techniques. For the formulation, applications, numerical
methods, sensitivity analysis and other aspects of
variational inequalities, see [2–11] and the references
therein.
In recent years, several extensions and generalizations of
the convexity have been considered. Polyak [12]
introduced strongly convex functions and studied their
applications in optimization programming.
Karmardian [13] used the strongly convex functions to
discuss the unique existence of a solution of the nonlinear
complementarity problems. Mohsen et al [14] introduced

the concept of higher order strongly convex functions and
studied their properties. Lin and Fukushima [15]
discussed the applications of the higher order strongly
convex functions in nonlinear programs and mathematical
programs with equilibrium constraints. These results can
be viewed as significant refinement of the results of Lin
and Fukushima [15] and Alabdali et al [16] for higher
order strongly uniformly convex functions. Higher order
strongly convex functions include the strongly convex
functions as special case. With appropriate and suitable
choice of non-negative arbitrary functions and constants
parameters, one can obtain various new and known
classes of convex functions. For more details,
see [17–21, 23–25] and the references therein

Noor et al [23, 24] ntroduced the higher order convex
functions and studied their properties. We have shown
that the minimum of a differentiable higher order strongly
convex function on the general biconvex set can be
characterized by a class of variational inequality. This
results inspired us to consider the higher order strongly
variational inequalities. Due to the inherent nonlinearity,
the projection method and its variant form can not be used
to suggest the iterative methods for solving these
variational inequalities. To overcome these draw backs,
we use the technique of the auxiliary principle [2, 7–11]
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to suggest an implicit method for solving variational
inequalities. Convergence analysis of the proposed
method is investigated under pseudo-monotonicity, which
is a weaker condition than monotonicity. Some special
cases are discussed as applications of the results, which
represent the improvement and refinement of the thr
known results. It is expected that the ideas and techniques
of this paper may stimulate further research in this field.

2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H.
We denote by 〈·, ·〉 and ‖ · ‖ be the inner product and norm,
respectively. Let F : K → R be a continuous function.

Definition 1. [18]. The set K in H is said to be a convex

set, if

u+ t(v− u)∈ K, ∀u,v ∈ K, t ∈ [0,1].

Definition 2. The function F on the convex set K is said

to be higher order strongly convex, if there exists a

constant µ > 0, such that

F(u+ t(v− u)) ≤ (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖v− u‖p
,

∀u,v ∈ K, t ∈ [0,1], p > 1.

The function F is said to be higher order strongly
concave, if and only if, −F is higher order strongly
convex function.
For the properties of the higher order strongly convex
functions in variational inequalities and equilibrium
problems, see Noor [8,9,23,24].
I. If p = 2, then Definition 2 becomes:

Definition 3.A function F is said to be strongly convex

function, if

F(u+ t(v− u)) ≤ (1− t)F(u)+ tF(v)

−µt(1− t)‖v− u‖2
,∀u,v ∈ K, t ∈ [0,1],

which were introduced by Polyak [12].

II. If µ = 0, then Definition 2 becomes:

Definition 4.A function F is said to be convex function, if

F(u+ t(v− u))≤ (1− t)F(u)+ tF(v),∀u,∈ K, t ∈ [0,1].

If the convex function F is differentiable, then u ∈ K is
the minimum of the F, if and only if, u ∈ K satisfies the
inequality

〈F ′(u),v− u〉 ≥ 0, ∀v ∈ K,

which is called the variational inequality, introduced and
studied by Stampacchia [1] in 1964. For the applications,
formulation, sensitivity, dynamical systems,
generalizations, and other aspects of the variational
inequalities, see [2–11, 22–25] and the references therein.

3 Main Results

In this section, we introduce and consider a new class of
variational inequalities, which arises as an optimality
condition of differentiable higher order strongly convex
functions and this is the main motivation of our next
result.

Theorem 1. Let F be a differentiable higher order

strongly convex function with modulus µ > 0. If u ∈ K is

the minimum of the function F, then

F(v)−F(u)≥ µ‖v− u‖p
, ∀u,v ∈ K. (3.1)

Proof. Let u ∈ K be a minimum of the function F. Then

F(u)≤ F(v),∀v ∈ K. (3.2)

Since K is a convex set, so, ∀u,v ∈ K, t ∈ [0,1],

g(vt) = u+ t(v− u)∈ K.

Taking g(v) = g(vt) in (3.2), we have

0 ≤ lim
t→0

{
F(u+ t(v− u))−F(u)

t
}= 〈F ′(u),v− u〉. (3.3)

Since F is differentiable higher order strongly convex
function, so ∀u,v ∈ K,

F(u+ t(v− u)) ≤ F(u)+ t(F(v)−F(u))

−µ{t p(1− t)+ t(1− t)p}‖v− u)‖p
, ,

from which, using (3.3), we have

F(v)−F(u) ≥ lim
t→0

{
F(u+ t(v− u))−F(u)

t
}+ µ‖v− u‖p

= 〈F ′(u),v− u〉+ µ‖v− u‖p
,

the required result (3.1).

Remark: We would like to mention that, if u ∈ K

satisfies the inequality

〈F ′(u),v− u〉+ µ‖v− u‖p ≥ 0, ∀u,v ∈ K, (3.4)

then u ∈ K is the minimum of the function F.

Remark.The inequality of the type (3.4) is called the higher
order strongly variational inequality and appears to a new
one. It is well known that the inequalities of the type (3.4)
does not arise as a minimum of the differentiable higher
order strongly convex function. We now consider a more
variational inequality of which (3.4) is a special case.

For a given operator T, consider the problem of finding
u ∈ K for a constant µ > 0, such that

〈Tu,v− u〉+ µ‖v− u‖p ≥ 0, ∀v ∈ K, p > 1, (3.5)

which is called the higher order strongly variational
inequality.
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We now discus several special cases of the problem (3.5).
(I). If Tu = F ′(u), then problem (3.5) is exactly the
higher order strongly
variational inequality (3.4).

(II). If µ = 0, then (3.5) is equivalent to finding u ∈ K,

such that

〈Tu,v− u〉 ≥ 0, ∀v ∈ K,

which is known as the variational inequality, introduced
and studied by Stampacchia [1]. For recent applications,
see [ 2,3,4,5,6,7,8,9,10,11,23,24] and the references
therein.

(III). If p = 1, then problem (3.5) reduces to the problem
of finding u ∈ K such that

〈Tu,v− u〉+ µ‖v− u‖≥ 0, ∀v ∈ K,

which is called the approximate variational inequality and
appears to be a new one.

(IV). If p = 2, then problem (3.5) reduces to the
problem of finding u ∈ K such that

〈Tu,v− u〉+ µ‖v− u‖2 ≥ 0, ∀v ∈ K,

which is called the higher order variational inequality,
which appears to be a new one.

We now recall the concept of the monotonicity.

Definition 5.The operator T is said to be monotone, if

〈Tu,v− u〉 ≥ 0, ∀v ∈ K,

=⇒

〈T v,v− u〉 ≥ 0, ∀v ∈ K.

Lemma 1. Let the operator T be monotone. If u ∈ K is

the solution of the problem (3.5), then u ∈ K satisfies the

inequality

〈T v,v− u〉+ν‖v− u‖p ≥ 0, ∀v ∈ K, p > 1. (3.6)

Proof.Let u ∈ K be a solution of the problem(3.5). Then

〈Tu,v− u〉+ν‖v− u‖p ≥ 0,∀v ∈ K, p > 1,

from which, we have

〈Tu−Tv,v− u〉+ 〈Tv,v− u〉+ν‖v− u‖p ≥ 0,∀v ∈ K.

Using the monotonicity of the operator T, it follows that

〈T v,v− u〉+ν‖v− u‖p ≥ 0,∀v ∈ K,

which is the required result (3.6).

The inequality of the type (3.6) is called the Minty higher
order strongly variational inequality. For suitable and
appropriate choice of the parameter µ and p, one can
obtain several new and known classes of variational
inequalities and optimization problems.

Remark.We would like to emphasize that the converse of
Lemma 1 does not hold. However, if the operator T, is
hemicontinuous, then one can show that the converse of
Lemma 1 holds for p > 1 and ν = 0. The variational
inequality (3.6) is also call the dual of the inequality (3.6)
and plays an important role in the study of variational
inequalities.

We note that the projection method and its variant forms
can not be used to study the higher order strongly
variational inequalities (3.5)due to its inherent structure.
These facts motivated us to consider the auxiliary
principle technique, which is mainly due to Lions and
Stampacchia [7] and Glowinski et al [2] as developed by
Noor [6] and Noor et al. [8,9,10]. We again use this
technique to suggest some iterative methods for solving
the higher order strongly variational inequalities (3.5).

For given u ∈ K satisfying (3.5), consider the problem of
finding w ∈ K, such that

〈ρTw,v−w〉 + 〈w− u,v−w〉

+ν‖v−w‖p ≥ 0,∀v ∈ K, p > 1. (3.7)

The problem (3.7) is called the auxiliary higher order
strongly variational inequality. It is clear that the relation
(3.7) defines a mapping connecting the problems (3.5)
and (3.7).
We not that, if w(u) = u, then w is a solution of problem
(3.5). This simple observation enables to suggest an
iterative method for solving (3.5).

Algorithm 1 For given u0 ∈ K, find the approximate

solution un+1 by the scheme

〈ρTun+1,v− un+1〉 + 〈un+1 − un,v− un+1〉

+ν‖v− un+1‖
p ≥ 0,∀v ∈ K, p > 1.

The Algorithm 1 is known as the implicit method. Such
type of methods have been studied extensively for various
classes of variational inequalities. See [6,9,10,11] and the
reference therein.
If ν = 0, then Algorithm 1 reduces to:

Algorithm 2 For given u0 ∈, find the approximate

solution un+1 by the scheme

〈ρTun+1,v− un+1〉+ 〈un+1− un,v− un+1〉 ≥ 0,∀v ∈ K,(3.8)

for solving the variational inequalities(3.6).
For the convergence analysis of Algorithm 1, we need the
following concept.

Definition 6. The operator T is said to be

pseudomonotone with respect

to µ‖v− u‖p, if

〈ρTu,v− u〉+ µ‖v− u‖p ≥ 0,∀v ∈ K, p > 1,

=⇒

〈ρTv,v− u〉− µ‖v− u‖p ≥ 0,∀v ∈ K, p > 1

We now study the convergence analysis of Algorithm 1.
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Theorem 2. Let u ∈ K be a solution of (3.5) and un+1 be

the approximate solution obtained from Algorithm 1. If T

is a pseudomonotone operator with respect to ν‖v− u‖p
,

then

‖un+1 − u‖2 ≤ ‖un − u‖2−‖un+1− un‖
2
. (3.9)

Proof. Let u ∈ K be a solution of (3.5). Then

〈ρTu,v− u〉+ν‖v− u‖p ≥ 0,∀v ∈ K,

implies that

〈ρTv,v− u〉−ν‖v− u‖p ≥ 0,∀v ∈ K, (3.10)

Now taking v = un+1 in (3.10), we have

〈ρTun+1,un+1 − u〉−ν‖un+1− u‖p ≥ 0. (3.11)

Taking v = u in (3.8), we have

〈ρTun+1,u− un+1〉 + 〈un+1 − un,u− un+1〉

+ν‖u− un+1‖
p ≥ 0. (3.12)

Combining (3.11) and (3.12), we have

〈un+1 − un,un+1 − u〉 ≥ 0.

Using the inequality

2〈a,b〉= ‖a+ b‖2−‖a‖2−‖b‖2
,∀a,b ∈ H,

we obtain

‖un+1 − u‖2 ≤ ‖un − u‖2−‖un+1− un‖
2
,

the required result (3.9).

Theorem 3. Let the operator T be a pseudomonotone. If

un+1 is the approximate solution obtained from Algorithm

1 and u ∈ K is the exact solution (3.5), then

lim
n→∞

un = u.

Proof. Let u ∈ K be a solution of (3.5). Then, from (3.9),
it follows that the sequence {‖u− un‖} is nonincreasing
and consequently {un} is bounded. From (3.9), we have

∞

∑
n=0

‖un+1 − un‖
2 ≤ ‖u0 − u‖2

,

from which, it follows that

lim
n→∞

‖un+1 − un‖= 0. (3.13)

Let û be a cluster point of {un} and the subsequence {un j
}

of the sequence un converge to û ∈ H. Replacing un by un j

in (3.8), taking the limit n j → 0 and from (3.13), we have

〈T û,v− û〉+ µ‖v− û)‖p ≥ 0, ∀v ∈ K, p > 1.

This implies that û ∈ K satisfies (3.5)and

‖un+1 − un‖
2 ≤ ‖un − û‖2

.

Thus it follows from the above inequality that the sequence
un has exactly one cluster point û and

lim
n→∞

un = û.

In order to implement the implicit Algorithm 1, one uses
the predictor-corrector technique. Consequently,
Algorithm 1 is equivalent to the following iterative
method for solving the general variational inequality
(3.5).

Algorithm 3 For a given u0 ∈ K, find the approximate

solution un+1 by the schemes

〈ρTun,v− yn〉 + 〈yn − un,v− yn〉

+µ‖v− yn‖
p ≥ 0,∀v ∈ K, p > 1

〈ρTyn,v− yn〉 + 〈un+1 − yn,v− un〉

+µ‖v− un+1‖
p ≥ 0,∀v ∈ K, p > 1.

Algorithm 3 is called the two-step method and appears
to be a new one.

We again use the auxiliary principle technique to suggest
an other implicit method for solving the variational
inequalities (3.5) for a constant ξ ∈ [0,1].
For given u ∈ K satisfying (3.5), consider the problem of
finding w ∈ K, such that

〈ρTw,v−w〉 + 〈w− (1− ξ )w− ξ u,v−w〉

+ν‖v−w‖p ≥ 0,∀v ∈ K, p > 1. (3.14)

Clearly, if w(u) = u, then w is a solution of problem (3.5).
This simple observation enables to suggest an iterative
method for solving (3.5).

Algorithm 4 For a given u0 ∈ K, find the approximate

solution un+1 by the schemes

〈ρTun+1,v− un+1〉 + 〈un+1 − (1− ξ )un+1− ξ un,v− un+1〉

+ν‖v− un+1‖
p ≥ 0,∀v ∈ K, p > 1.

Algorithm 4 is called the unified implicit method.

If ξ = 1, then Algorithm 4 collapses to Algorithm 1.

If ξ = 0, then Algorithm 4 reduces to:

Algorithm 5 For a given u0 ∈ K, find the approximate

solution un+1 by the schemes

〈ρTun+1,v− un+1〉 + 〈un+1 − un+1,v− un+1〉

+ν‖v− un+1‖
p ≥ 0,∀v ∈ K, p > 1.

Algorithm 5 can be viewed as an extragraident method
of Noor [5, 6] and appears to be a new ones. This shows
that Algorithm 4 is a more general and unified one. Using
the technique of Theorem 2, one consider the
convergence criteria of Algorithm 4.

If ξ = 1
2
, then Algorithm 4 becomes:

Algorithm 6For a given u0 ∈ K, find the approximate

solution un+1 by the schemes

〈ρTun+1,v− un+1〉 + 〈
un+1 − un

2
,v− un+1〉

+ν‖v− un+1‖
p ≥ 0,∀v ∈ K, p > 1.
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Remark. Using the auxiliary principle technique, on can
suggest several iterative methods for solving the higher
order strongly variational inequalities and related
optimization problems. We have only given some glimpse
of the higher order strongly variational inequalities. It is
an interesting problem to explore the applications of such
type of variational inequalities in various fields of pure
and applied sciences.

4 Conclusion

In this paper, we have characterized the optimality
conditions of higher order strongly differentiable convex
functions by a class of variational inequalities. This result
motivated to introduce and study a new class of higher
order strongly variational inequalities. Using the auxiliary
principle technique, some implicit iterative methods are
suggested for finding the approximate solution.. Using the
pseudo-monotonicity of the operator, convergence criteria
is discussed. Some special cases are considered as
application of the main results. Comparison of these
methods with other methods need further efforts. It is an
interesting problem to explore the applications of higher
order strongly variational inequalities in various branches
of pure and applied sciences
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