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Abstract: The Burr-Hatke differential equation is used in this study to generate a novel three parameter modified extended Chen

distribution. The statistical features of the developed distribution are derived, which include the quantile function, moment, incomplete

moment, inequality measures, moment generating function, characteristic function, stress-strength reliability, order statistic, Rényi

entropy, and stochastic ordering. Furthermore, the functions of reliability, survival, reversed hazard rate, and hazard rate are developed.

The parameters of the new distribution are estimated using the maximum likelihood, ordinary, and weighted least squares methods.

A simulation experiment is carried out to examine the performance of the several estimating techniques for the parameters of the

MEC distribution. Rainfall data from three locations in Ghana are used to demonstrate the applicability of the modified extended Chen

distribution. Finally, the study estimates the return levels and periods for the three locations.

Keywords: Burr-differential, extreme values, hazard function, estimation methods, and rainfall data

1 Introduction

There have been a substantial growth of the volume,
variety and velocity of data sets over the last few decades
due to improved technological data collection systems.
Analysis of data is mostly determined by its distributional
pattern. As a result, there is a continuing push to broaden
the development of statistical distributions with diverse
properties for modeling data.
In recent times, many statistical distributions have been
proposed using varied methods such as differential
equation [1,2], transformation [3] and quantile approach
[4]. Additional methods also used include method of
generating skew distribution [5], beta generated method
[6], including one or more additional parameter [7] and,
transformed-transformer method [8]. However, some of
these continuous distributions proposed are not flexible
enough for modelling certain certain data sets from
meteorology, life testing, finance, geology, biometry and
reliability due to the complex traits they exhibit. Hence,
the modification of these existing distributions are very
necessary.

Chen [9] developed a new two-parameter lifetime
statistical distribution with monotonically increasing,

decreasing, or constant hazard rates features. The
proposed two-parameter distribution by [9] has varied
features in modelling lifetime data. Consequently, various
extensions of the Chen distribution has been developed
through the use of varied methods. Xie et al. [10]
developed an extension through the approach of adding a
parameter to the Chen distribution and named it the
extended-Weibull distribution.

Additional extensions were developed by [11] and
[12], in their work they named the new distributions as
the Marshall-Olkin extended Chen’s distribution and
Exponentiated Chen (EC) distribution respectively.
Recently, [14] proposed another extension of the Chen
distribution through the use of the Burr-Hatke differential
equation method and named it the Extended Chen
distribution. Although the Extended Chen exhibits some
level of flexibility towards modelling life-time data, the
distribution lacks the ability to appropriately model data
that are heavy tailed in nature and exhibit upside-down
bathtub shapes. In this article we apply the Burr-Hatke
differential approach suggested by [1] to define a new
model which modifies the Extended Chen distribution
proposed by [14], and call the modified distribution as the
Modified Extended Chen (MEC) distribution.
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The article is organised as follows: Section 2
introduces the cumulative distribution function (CDF) and
the corresponding probability density function (PDF) of
the MEC distribution. Section 3 presents a series
representation of the MEC distribution. Section 4 presents
several statistical properties. The maximum likelihood,
ordinary and weighted least square approach are
presented in Section 5. In Sections 6, we obtain the best
method of estimating the parameters of the MEC
distribution by obtaining the maximum likelihood,
ordinary and weighted least square estimates through the
use of a simulation study. We will analyze three
maximum annual rainfall data sets from three locations in
Ghana in Section 7 and the results are compared with
different known distributions. Finally, in Section 8, the
conclusions of the study is presented.

2 Modified Extended Chen Distribution

Let the random variable Y follow the MEC distribution
with positive parameters a > 0, b > 0 and ρ > 0. Let
y ∈ R

+, consider the general solution of the Burr-Hatke
differential equation,

F(y) =

[

exp

{

−

∫

w [y,F(y)]dy

}

+ 1

]−1

. (1)

Suppose the function w[y,F(y)] is given by

abρy−b−1ey−b
[

1+ρ
(

ey−b
− 1
)]a−1

1−
[

1+ρ
(

ey−b
− 1
)]a , (2)

the CDF of the random variable Y is obtained by
substituting equation (2) into equation (1) and simplifying
the integral. Hence, the CDF of the MEC distribution is
given by

F(y) =
[

ρ
(

ey−b

− 1
)

+ 1
]−a

,y ≥ 0, (3)

where a > 0 and b > 0 are the shape parameters and ρ > 0
is a scale parameter. The PDF of the MEC distribution is
obtained by differentiating equation (3) with respect to y.
Hence, the PDF is given by

f (y) = abρy−b−1ey−b
[

ρ
(

ey−b

− 1
)

+ 1
]−a−1

,y > 0.

(4)
The PDF and CDF plots of the MEC distribution are

displayed in Figure 2. The density plots for various
parameter values exhibit different kinds of shape, most of
the plots are uni-modal in shape with different degrees of
kurtosis. For the various parameter values that were used,
it can be observed that the density plots exhibits right
skewed shape. Also the CDF of the addition for some
parameter values the density exhibits a reverse J shape.
Also, for the CDF of the MEC distribution for different

parameter values, it can be observed that for some
parameter values, as y gets closer to zero the CDF
approaches zero and as y approaches infinity the CDF
approaches one. The survival function, hazard function

Fig. 1: PDF plots the MEC distribution

Fig. 2: CDF plots of the MEC distribution.

and reversed hazard rate (RHR) of the MEC distribution
are given by Equations (5), (6) and (7) respectively;

S(y) = 1−
(

ρ
(

ey−b

− 1
)

+ 1
)−a

,y > 0, (5)

h(y) =
f (y)

S(y)
=

abρy−b−1ey−b
[

ρ
(

ey−b

−1
)

+1
]−a−1

1−
(

ρ
(

ey−b
−1
)

+1
)−a

,y > 0,

(6)
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RHR(y) =
f (y)

F(y)
=

abρey−b

y−b−1

ρ
(

ey−b
−1
)

+1
,y > 0. (7)

Figures 3 and 4 exhibits the hazard and reversed hazard function

plots of the MEC distribution for different parameter values. It

can be observed that in Figure ?? that the hazard function exhibits

a unimodal and reverse J shape. The RHR function decays faster

towards 2.0 on the axis. Also, it can be clearly observed that the

RHR exhibits an upside down bathtub feature.

Fig. 3: The hazard function plots of the MEC distribution

Fig. 4: The reversed hazard function plots of the MEC

distribution.

3 Mixture Representation

We introduce an alternative representation for the PDF of the

MEC distribution.

Lemma 31 The density function of the MEC distribution can be

expressed in a mixture form as

f (y) = abρ
∞

∑
i=0

0

∑
j=0

ϖi jy
−b−1e−( j−i−1)y−b

, (8)

where ϖi j =
(−1)i+ jρ i(a+1)(i)

i

(

i

j

)

.

Proof. Given the density function

f (y) = abρy−b−1ey−b
[

ρ
(

ey−b

−1
)

+1
]−a−1

y > 0.

Using the Taylor series expansion,

Z−α =
∞

∑
i=0

(−1)iα(i)

i!
(Z−1)i,

where α(i) =α(α+1)(α+2)....(α+ i−1) is the rising factorial.

Thus,

[1+ρ(ey−b

−1)]
−(a+1)

=
∞

∑
i=0

(−1)i(a+1)(i)

i!
ρ i(ey−b

−1)i.

Further,

∞

∑
i=0

(−1)i(a+1)(i)

i!
ρ i(ey−b

−1)i =
∞

∑
i=0

(−1)iρ i(a+1)(i)

i!
eiy−b

(1− e−y−b
)i.

Employing the fact that 0 < (1− e−y−b
)

i
< 1 and applying

the binomial expansion, we have

∞

∑
i=0

(−1)i(a+1)(i)

i!
ρ i(ey−b

−1)i =
∞

∑
i=0

i

∑
j=0

(−1)i+ jρ i(a+1)(i)

i!

(

i

j

)

e−( j−i)y−b
.

The density function can therefore be written as

f (y) = abρ
∞

∑
i=0

i

∑
j=0

(−1)i+ jρ i(a+1)(i)

i!

(

i

j

)

y−b−1e−( j−i−1)y−b

.

This completes the proof.

4 Statistical Properties

This section provides some mathematical properties of the
MEC distribution.

4.1 Quantile Function

Given a random variable Y with continuous and strictly
monotonic PDF f (y), a quantile function Q( f ) assigns to
each probability p attained by f the value y for which
Pr(Y ≤ y) = u. Expressed mathematically as,

Q f (u) = {y : Pr(Y ≤ y) = u} , (9)

where u ∈ (0,1).

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


714 A. Anafo et al.: The modified extended Chen distribution: properties...

Proposition 41 Given a random variable Y with CDF

F(y;a,b,ρ), The quantile function for the MEC

distribution is given by

Q(u) =

[

log

(

u−
1
a − 1

ρ
+ 1

)]− 1
b

, 0 < u < 1. (10)

Proof.Suppose the random variable U follows the
standard uniform distribution then 0 < u < 1.

Let u =
[

1+
(

ey−a
− 1
)

ρ
]−b

. Solving for y yields the

quantile function of the MEC distribution.

4.2 Moments

Through the applications of moments, important features
such as measures of central tendency, dispersion, skewness
and kurtosis of a distribution can be derived and studied.

Proposition 42 The rth moment of the MEC distributed

random variable Y is given as

µ
′

r = aρ
∞

∑
i=0

i

∑
j=0

ϖi j

Γ (1− r
b
)

( j− i− 1)1−
r
b

,r < b,r = 1,2, . . . ,

(11)

where Γ (β ) =
∞
∫

0

tβ−1e−tdt is the gamma function.

Proof. By definition, the rth non-central moment is given
by

µ
′

r =

∞
∫

0

yr f (y)dy

Using the mixture representation of the PDF in Lemma (31
), we have

µ
′

r = abρ
∞

∑
i=0

i

∑
j=0

ϖi j

∞
∫

0

yr−b−1e−( j−i−1)y−b

dy.

Let u= ( j− i−1)y−b. As y→ 0,u→ ∞ and as y →∞,u →

0. Also, y =

(

u

j− i− 1

)−1/b

and dy =
−du

b( j− i− 1)y−b−1
.

Thus,

µ
′

r = aρ
∞

∑
i=0

j

∑
i=0

ϖi j

Γ (1− r
b
)

( j− i− 1)1−
r
b

,r < b.

This completes the proof.

4.3 Incomplete Moment

Incomplete moments play a vital role in the field of
economics such as the income quintiles, the Lorenz
curve, Pietra and Gini measures of inequality.

Proposition 43 The incomplete moment of the MEC
distribution is

mr(y)= aρ
∞

∑
i=0

i

∑
j=0

ϖi jγ(1−
r
b
,( j− i−1)y−b)

( j− i−1)1− r
b

,r < b,r = 1,2, . . . ,

(12)

where γ(s,x) =
∞
∫

x

ts−1e−tdt is the lower incomplete gamma

function.

Proof. The incomplete moment of a random variable is
defined as

mr(y) =

y
∫

0

xr f (x)dx.

Thus, substituting the mixture representation of the density
function of the MEC distribution into the definition of the
incomplete moment, we have

mr(y) = abρ
∞

∑
i=0

i

∑
j=0

ϖi j

y
∫

0

xr−b−1e−( j−i−1)x−b

dx.

Let u = ( j − i − 1)x−b. As x → 0,u → ∞ and as

x → y,u → ( j− i− 1)y−b. Also, x =

(

u

j− i− 1

)−1/b

and

dx =
−du

b( j− i− 1)x−b−1
. Hence,

mr(y) = aρ
∞

∑
i=0

i

∑
j=0

ϖi jγ(1−
r
b
,( j− i− 1)y−b)

( j− i− 1)1−
r
b

,r < b.

(13)
This completes the proof.

4.4 Inequality Measures

Lorenz and Bonferroni curves are income inequality
measures that are widely useful and applicable to some
other areas including reliability, demography, medicine
and insurance [13].

Proposition 44 The Lorenz curve for a random variable

having the MEC distribution is,

LF(y) =
aρ

µ

∞

∑
i=0

i

∑
j=0

ϖi jγ(1−
1
b
,( j− i− 1)y−b)

( j− i− 1)1−
1
b

, b > 1.

(14)
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Proof. The Lorenz curve of the distribution of a random
variable is defined as

LF(y) =
1

µ

y
∫

0

x f (x)dx.

From the definition, the Lorenz curve is simply the product
of the first incomplete moment and the reciprocal of the
mean of the random variable. Hence,

LF(y) =
aρ

µ

∞

∑
i=0

i

∑
j=0

ϖi jγ(1−
1
b
,( j− i− 1)y−b)

( j− i− 1)1−
1
b

, b > 1.

The proof is therefore complete.

Proposition 45 The Bonferroni curve of a random

variable having the MEC distribution is

BF(y) =
aρ

µF(y)

∞

∑
i=0

i

∑
j=0

ϖi jγ(1−
1
b
,( j− i− 1)y−b)

( j− i− 1)1−
1
b

, b > 1.

(15)

Proof. The Bonferroni curve by definition is given as

BF(y) =
LF(y)

F(y)
.

Thus, substituting the Lorenz curve into the definition of
the Bonferroni curve completes the proof.

4.5 Moment Generating Function

The moment generating function if it exist is a special
functions used to find the moments.

Proposition 46 Given a random variable Y having the

MEC distribution, the moment generating function for the

MEC distribution is given by

MY (t) = aρ
∞

∑
r=0

∞

∑
i=0

i

∑
j=0

trϖi j

r!( j− i− 1)1− r
b

Γ
(

1− r
b

)

,r < b,

(16)

where Γ (β ) =
∞
∫

0

tβ−1e−tdt is the gamma function.

Proof. The MGF of Y is defined as,

MY (t) = E(etY ) =

∫ ∞

−∞
ety f (y)dy.

Using Taylor series expansion, the MGF can be rewritten
as,

MY (t) =
∞

∑
r=0

tr

r!
µ

′

r

substituting the rth moment in Proposition (1.2) yields

MY (t) = aρ
∞

∑
r=0

∞

∑
i=0

i

∑
j=0

trϖi j

r!( j− i− 1)1−
r
b

Γ
(

1− r
b

)

.

The proof is therefore complete.

4.6 Entropy

The entropy of a random variable Y is a measure of
variation of uncertainty. Here, we derive the explicit form
of the Rényi entropy for the MEC distribution .

Proposition 47 Given a random variable Y having the
MEC distribution, then the Rényi entropy of the MEC
distribution is given by,

(1−ψ)−1 log







(aρb)ψ
∞

∑
i=0

j

∑
i=0

ηi j

Γ
(

ψ−1

b
+ψ

)

b( j− i−ψ)
ψ−1

b
+ψ







, (17)

where ψ > 0, ψ 6= 0 and ηi j =
(−1)i+ j ψ(i)ρi(a+1)(i)

i

(

i
j

)

.

Proof. [15] proposed the Rényi entropy which is denoted
by IR(ψ) for Y is defined as,

IR(ψ) = (1−ψ)−1 log

{

∫ ∞

0
f (y)ψ dy

}

, (18)

where ψ > 0 and ψ 6= 0. Substituting the density of the
MEC distribution into equation (18), we obtain

IR(ψ) = (1−ψ)−1 log

{

∫ ∞

0

[

abρy−b−1ey−b
[

ρ
(

ey−b
−1
)

+1
]−a−1

]ψ

dy

}

.

Let

v(y) =

∫ ∞

0

[

abρy−b−1ey−b
[

ρ
(

ey−b

− 1
)

+ 1
]−a−1

]ψ

dy,

applying the approach for expanding the density function
in Lemma (1.1),

v(y) =

∞
∫

0

(abρ)ψ
∞

∑
i=0

i

∑
j=0

ϖi jy
ψ(−b−1)e−( j−i−ψ)y−b

dy,

where ηi j =
(−1)i+ jψ(i)ρ i(a+ 1)(i)

i

(

i

j

)

. Let u= ( j− i−

ψ)y−b. As y → 0, u → ∞ and as y → ∞, u → 0. Also, y =
(

u

j− i−ψ

)−1/b

and dy =
−du

b( j− i−ψ)y−b−1
. Thus,

v(y) = (aρb)ψ
∞

∑
i=0

j

∑
i=0

ηi j

Γ
(

ψ−1
b

+ψ
)

b( j− i−ψ)
ψ−1

b
+ψ

.

Hence,

IR(ψ) =(1−ψ)−1 log







(aρb)ψ
∞

∑
i=0

j

∑
i=0

ηi j

Γ
(

ψ−1
b

+ψ
)

b( j− i−ψ)
ψ−1

b
+ψ







,

ψ > 0 and ψ 6= 0.

The proof is therefore complete.
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4.7 Stress-Strength Reliability

Stress-strength models are of importance in the field of
reliability analysis and engineering applications [6]. The
reliability is defined as the probability that the unit’s
strength Y1 is greater than the stress Y2, the unit fails when
Y1 ≤ Y2. The estimation of the stress-strength reliability of
the component R is P(Y2 < Y1) [16].

Proposition 48 Suppose Y1 and Y2 follows the MEC

distribution, then the reliability of the component is given

by,

f (y) = abρ
∞

∑
i=0

i

∑
j=0

Πi j
1

( j− i− 1)1− 1
b

,

where Πi j =
(−1)i+ jρ(2a+ 1)(i)

i

(

i

j

)

.

Proof. The stress-strength reliability measure of a
component is defined as,

R =

∞
∫

0

f (y)F(y)dy.

Substituting the PDF and CDF of the MEC distribution we
have,

R = abρ

∞
∫

0

y−b−1ey−b
[

ρ
(

ey−b

− 1
)

+ 1
]−(2a+1)

dy

using similar concept in lemma (31),

R = abρ
∞

∑
i=0

i

∑
j=0

ϖi j

∞
∫

0

y−b−1e−( j−i−1)y−b

dy.

Let u= ( j− i−1)y−b. As y→ 0,u→ ∞ and as y →∞,u →

0. Also, y =

(

u

j− i− 1

)−1/b

and dy =
−du

b( j− i− 1)y−b−1
.

Hence,

R = abρ
∞

∑
i=0

i

∑
j=0

ϖi j
1

( j− i− 1)1− 1
b

.

This completes the proof.

4.8 Order Statistics

Let Y(1),Y(2), . . . ,Y (n) denote the order statistics of a
random sample Y1,Y2, . . . ,Yn from a continuous
population with CDF FY (y) and PDF fY (y), then the PDF
of the pth order statistics Yp is given by,

fp:n =Ur:n [F(y)]p−1 [1−F(y)]n−p
f (y),

for r = 1,2, . . . ,n, where Ur:n = n!
(p−1)!(n−p)! = [B(p,n−

p+ 1)]−1 is the beta function.

The PDF of the pth order MEC random variable Y(p) is

given by

fp:n(y) =Ur:n

[

[

ρ
(

ey−b
−1
)

+1
]−a
]p−1 [

1−
[

ρ
(

ey−b
−1
)

+1
]−a
]n−p

×abρy−b−1ey−b
[

ρ
(

ey−b
−1
)

+1
]−a−1

.

(19)

Therefore, the PDF of the nth MEC statistic Yn:p is given
by,

fn:p(y) =n

[

[

ρ
(

ey−b

− 1
)

+ 1
]−a
]n−1

abρy−b−1ey−b

[

ρ
(

ey−b

− 1
)

+ 1
]−a−1

and the PDF of the first MEC statistic Y1:p is given by,

f1:p(y) =n

[

1−
[

ρ
(

ey−b

− 1
)

+ 1
]−a
]n−1

abρy−b−1ey−b

[

ρ
(

ey−b

− 1
)

+ 1
]−a−1

.

4.9 Stochastic Ordering

Proposition 49 Suppose Y1 follows the MEC distribution

with parameters a1,b,ρ and Y2 also follows the MEC

distribution with parameters a2,b,ρ . Then Y2 is less than

Y1 in likelihood ratio order (Y2≤lrY1).

Proof. The density functions of Y1 and Y2 are respectively
given by

fY1
(y) = a1bρy−b−1ey−b

[

1+ρ(ey−b

− 1)
]−(a1+1)

,y > 0,

and

fY2
(y) = a2bρy−b−1ey−b

[

1+ρ(ey−b

− 1)
]−(a2+1)

,y > 0.

The ratio of the two densities is

fY1
(y)

fY2
(y)

=

(

a1

a2

)

[

1+ρ(ey−b

− 1)
]a2−a1

,y > 0.

The derivative of the ratio of the densities is

d

dy

(

fY1
(y)

fY2
(y)

)

=(a2 − a1)

(

a1

a2

)

bρy−b−1ey−b

×
[

1+ρ(ey−b

− 1)
]a2−a1−1

.

Hence, if a1 < a2, then

d

dy

(

fY1
(y)

fY2
(y)

)

> 0.

This implies that Y2≤lrY1 and this completes the proof.
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5 Parameter Estimation

In this section we obtain estimates of parameters for the
MEC distribution by employing three estimation
approaches namely the maximum likelihood estimation
(MLE) method, method of Least squares (OLS) and
Weighted least squares (WLS). We have considered three
types of estimation methods such as the MLE , OLS and
WLS.

5.1 Maximum Likelihood Estimation

The method of maximum likelihood estimation in the
context of the MEC is described in this subsection. We
consider y1,y2,y3, . . . ,yn as random sample from the
MEC distribution. Then the likelihood function of the
MEC is given by,

L(y;a,b,ρ) = anbnρn
n

∏
i=1

y−b−1
i ey−b

i

[

ρ
(

ey−b
i −1

)

+1
]−a−1

.

The log likelihood equation is given by,

lnL(y;a,b,ρ) =n lna+ n lnb+ n lnρ +(−a− 1)

× ln
n

∑
i=1

[

ρ
(

ey−b
i − 1

)

+ 1
]

+(−b− 1) ln
n

∑
i=1

yi +
n

∑
i=1

y−b
i .

(20)

Differentiating equation (20) with respect to a, b and ρ in
turn and equating to zero, we obtain the equations,

∂ lnL(y;a,b,ρ)

∂a
=

n

a
− ln

n

∑
i=1

[

ρ
(

ey−b
i − 1

)

+ 1
]

= 0,

(21)

∂ lnL(y;a,b,ρ)

∂b
=

n

b
+(−a− 1)

×
n

∑
i=1

−ey−b
i y−b lnyiρ

(

ey−b
i − 1

)

(

ey−b
i − 1

)

+ 1

−
n

∑
i=1

lnyi −
n

∑
i=1

y−b
i ln(−yi) = 0,

(22)

∂ lnL(y;a,b,ρ)

∂ρ
=

n

ρ
+(−a− 1)

×
n

∑
i=1

eyb
i

ρ
(

ey−b
i − 1

)

+ 1
= 0.

(23)

The estimators of the MEC distributions can be obtained
by solving equation (21), (22) and (23) in relation to a, b

and ρ simultaneously using a numerical procedure.

5.2 Ordinary and Weighted Least Squares

The OLS and WLS estimators are used generally for
estimation of parameters in linear models. These
estimates were used by [17] to estimate parameters of a
beta distribution. Suppose F(Y( j)) denotes the MEC
distribution function of the ordered random variables
Y(1) < Y(2) < · · · < Y(n) where {Y1,Y2, ...,Yn} is a random

sample of size n from a distribution function F(y;a,b,ρ).
Therefore, the least-square estimators of a, b and ρ , say

âOLS b̂OLS and ρ̂OLS of the MEC distribution can be
obtained by minimizing

OLS (a,b,ρ) =
n

∑
i=1

[

F (yi:n|a,b,ρ)−
i

n+ 1

]2

, (24)

with respect to a,b, and ρ where F (yi:n|a,b,ρ) is the CDF
of the MEC distribution. Partially differentiating equation
(24) and equating to zero with respect to a,b, and ρ yields,

∂OLS(a,b,ρ)

∂a
=2

n

∑
i=1

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

Ω1 (yi:n, |a,b,ρ) = 0,
(25)

∂OLS(a,b,ρ)

∂b
=2

n

∑
i=1

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

Ω2 (yi:n, |a,b,ρ) = 0,
(26)

∂OLS(a,b,ρ)

∂ρ
=2

n

∑
i=1

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

Ω3 (yi:n, |a,b,ρ) = 0,
(27)

where

Ω1 (yi:n, |a,b,ρ) =− ln
(

ρ
(

ey−b
i:n − 1

)

+ 1
)

×
(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

,
(28)

Ω2 (yi:n, |a,b,ρ) =ρaey−b
i:n y−b ln(yi:n)

×
(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a−1

,
(29)

Ω3 (yi:n, |a,b,ρ) =−ρ − a
(

ey−b
i:n − 1

)

×
(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a−1

.
(30)

Solving equations (25-27) simultaneously we derive the
ordinary least squares estimators of the MEC distribution.
The WLS estimators of the MEC distribution, can be
obtained by minimizing,

WLS(a,b,ρ) =
n

∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)
[

F (yi:n|a,b,ρ)−
i

n+ 1

]2
(31)
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The estimators can also be obtained by solving equations
(29-31),

∂W LS(a,b,ρ)

∂a
= 2

n

∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

×

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

×Ω1 (yi:n, |a,b,ρ) = 0

(32)

∂W LS(a,b,ρ)

∂b
= 2

n

∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

×

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

×Ω2 (yi:n, |a,b,ρ) = 0

(33)

∂W LS(a,b,ρ)

∂ρ
= 2

n

∑
i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

×

[

(

ρ
(

ey−b
i:n − 1

)

+ 1
)−a

−
i

n+ 1

]

×Ω3 (yi:n, |a,b,ρ) = 0.
(34)

6 Simulation Study

In this section we present results of some numerical
experiments to compare the performance of the different
estimators. The main goal of the simulation is to compare
the efficiency of the different estimation methods for the
parameters of the MEC distribution. The experiment was
performed with three different set of parameter values
(a,b,ρ) = (0.8,0.3,0.5),(0.4,8.2,6.5) and (2.5,1.8,4.5).
The simulation steps are:

i.Specify the value of the parameters a,b,ρ and sample
size n.

ii.Generate random observations of size
n = 30,60,100,150,200,300,500 from the MEC
distribution using the quantile function.

iii.Compute MLE, OLS and WLS of parameters a,b and
ρ according to section (5).

ivReplicate steps ii− iii for N = 10,000 times.
v.To examine the performance of the estimators, we

calculated the averages bias (AB) and root mean
square error (RMSE) using the formulas,

AB =
1

N

N

∑
i=0

(

θ̂i −θ
)

RMSE =

√

1

N

N

∑
i=1

(

θ̂i −θ
)2
.

The summary of the results using the Monte-Carlo
simulation study is reported in Figures 3-20.
The results in Figures 5-10 shows the MLE, OLS and
WLS estimators of parameter a. It can be observed that

for the different estimators the obtained ABs tend to zero
for large n and also, the values of RMSEs tend to zero.
However, for some parameter values the ABs of the WLS
and OLS estimator exhibits intermittent behaviors.
In addition, it can be observed that as the sample size
grows lager the MLE decays faster compared to the other
methods of estimation. It is important to note that the
MLE, OLS and WLS estimators for the parameter a have
smaller RMSE and AB compared to that of the other
parameters. In the case of parameter a, the MLE shows
better performance.

Fig. 5: Plots of the AB of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 6: Plots of the RMSE of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Figure 11-16 displays the numerical efficiency of the
MLE, OLS and WLS estimators of parameter b. It can be
observed that for the different estimators the obtained
ABs and RMSEs decreases to zero as the sample
increases. For parameter values a = 2.5,b = 1.8,ρ = 4.5
and a = 0.4,b = 8.2,ρ = 6.5 we observe that the RMSE
of the WLS estimator shows exhibits and irregular
behaviour. Also, for the different estimators, it can be
noted that both the MLE and WLS estimators decays
towards zero as sample size increases for both AB and
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Fig. 7: Plots of the AB of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 8: Plots of the RMSE of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 9: Plots of the AB of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

RMSE. However, the MLE decays faster compared to the
WLS and OLS estimators.

Fig. 10: Plots of the RMSE of the different estimators of

a for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 11: Plots of the AB of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Figure 17-22 displays the numerical efficiency of the
MLE, OLS and WLS estimators of parameter ρ . It can be
observed that for the different estimators, the obtained
ABs and RMSEs decreases to zero as the sample
increases. The MLE and the OLS estimators for
parameter values a = 0.4,b − 8.2,ρ = 6.5 and
a = 2.5,b = 1.8,ρ = 4.5 have, respectively, the largest
AB and RMSE among all the considered estimators for
parameter ρ . However, the AB and RMSE of the MLE
estimator decays faster towards zero compared the other
estimators as the sample size increases. Combining all
results with the good properties of the MLE method, such
as consistency, asymptotic efficiency, normality, and
in-variance, we conclude that the MLE estimator is a
highly competitive method compared to the OLS and
WLS method for estimating the MEC distribution.
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Fig. 12: Plots of the RMSE of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 13: Plots of the AB of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 14: Plots of the RMSE of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 15: Plots of the AB of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 16: Plots of the RMSE of the different estimators of

b for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

7 Applications

To illustrate the application of the MEC model, annual
maximum rainfall data in Ghana for three different
locations (Greater-Accra, Eastern and Central Regions)
were modeled using the MEC distribution. The
performance of the MEC distribution is compared with
other competing distributions such as Log-logistic (LL)
[18], Inverse Weibull (IW) [19], Cauchy [20], Burr (3P)
[1], Nakagami (NAK) [21], Gumbel (GUM) [22],
Extended Burr XII (EB XII) [23] and Generalised Inverse
Weibull (GIW) [24] for all maximum annual rainfall data
from all three locations in Ghana.
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Fig. 17: Plots of the AB of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 18: Plots of the RMSE of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 19: Plots of the AB of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

In comparing the distributions, the best model is
chosen as the one having the highest log-likelihood (L)

Fig. 20: Plots of the RMSE of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

Fig. 21: Plots of the AB of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

and lowest AIC, BIC, CAIC and HQIC. The
Anderson-Darling (A), Cramérvon Mises (W) and
Kolmogorov-Smirnov (K-S) statistics for goodness-of-fit
were also computed and used in the selection of the best
distribution for the rainfall data from the different
locations. The maximum likelihood estimates(MLEs) for
the parameters of the fitted models are derived through
maximizing the log-likelihood function using the bbmle

package in R software [25].
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Fig. 22: Plots of the RMSE of the different estimators of

ρ for MLE, OLS, and WLS with different sample sizes

30,60,100,150,200,300 and 500

7.1 Maximum Annual Rainfall Data

In this section, the annual maximum of the average
monthly rainfall data from three locations in Ghana are
considered for the period 1980-2019. Monthly average
rainfall in centimeter(cm) data used in the study were
retrieved from (https://www.globalclimatemonitor.org/)
using geographic coordinates in simple decimal standard
format of the locations.

7.1.1 Maximum Annual Rainfall Data-Koforidua

The first data represents the maximum annual rainfall of
Koforidua in the Eastern region of Ghana. Table 1 displays
the maximum likelihood estimates of the parameters and
standard errors for the fitted distributions. Table 2 presents
the log-likelihood, information criteria and goodness-of-fit
statistics for the maximum annual rainfall for Koforidua
data. It was obvious that, for the nine mentioned models,
the MEC has the highest value of the L and lowest values
of AIC, CAIC, BIC and HQIC. On the other hand, it can
be observed that the MEC distribution has the smallest W,
A and K-S value and the largest corresponding p-values. In
light of this evidence it is clear that the MEC distribution
provides a better fit to the rainfall data of Koforidua than
the other eight candidate models.

In Figure 24, we show the estimated PDFs and
estimated CDFs of all fitted distributions using the
estimators obtained in Table 6. From Figure 6, it is
noticed that the MEC distribution fits the maximum
rainfall data for Koforidua better than the other eight
models.

Fig. 23: The estimated PDFs for annual monthly rainfall maxima

from Koforidua, Ghana.

Fig. 24: The estimated CDFs for annual monthly rainfall

maxima from Koforidua, Ghana.

7.1.2 Maximum Annual Rainfall Data-Accra

The second data represents the maximum annual rainfall
of Accra in the Greater-Accra region of Ghana. Table 3
presents the parameter estimates and the corresponding
standard errors. Table 4 shows the goodness of fit,
log-likelihood and information criteria values for all nine
fitted models.

The parameters of the fitted models along with their
AIC, BIC, CAIC, HQIC, A, W and K-S statistics with
p-value for the all nine data sets are presented
respectively. From the findings, it is evident that,
according to the lowest values of the AIC, BIC, CAIC,
HQIC, A and W and highest p-values of the K-S, A and
W statistic the proposed MEC distribution, could be
chosen as a better model than proposed models namely
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Table 1: MLEs of parameters and standard errors for maximum annual rainfall for Koforidua

!

Distribution Parameters Estimates Standard Errors

MEC â 4.2719×103 4.2427×10−6

b̂ 5.7431 5.3614×102

ρ̂ 7.9190×103 2.2882×106

LL â 3.3763 1.2553

b̂ 8.8843 3.0661

ρ̂ 13.0823 2.7824

IW â 11.4855 1.8517

b̂ 2.3485 0.6112

ρ̂ 0.0063 0.0115

CAUCHY a 2.7973 0.6339

b̂ 21.0703 0.7601

BURR XII(3P) â 15.7030 6.4657

b̂ 0.3139 0.1855

ρ̂ 18.8988 1.1413

NAK â 525.3651 31.8421

b̂ 6.3686 1.4068

GUM â 22.0768 0.9913

b̂ 5.3473 1.1447

EB XII â 20.3492 1.0707

b̂ 15.6814 6.4590

ρ̂ −3.1802 1.8810

GIW â 6.9339 0.8697

b̂ 5.7430 0.6993

ρ̂ 500.5086 0.0021

Table 2: Comparison criterion of maximum annual rainfall for Koforidua

Distribution L AIC CAIC BIC HQIC W A K-S

MEC -116.9126 239.8252 240.0752 244.8918 13.9890
0.0653

(0.7836)

0.4658

(0.7809)

0.0834

(0.9220)

LL -117.3418 240.6836 240.9336 245.7502 15.7045
0.0808

(0.6897)

0.5226

(0.7228)

0.0867

(0.8988)

IW -119.3193 244.6386 244.8886 249.7052 15.8882
0.0741

(0.7297)

0.6737

(0.5802)

0.1211

(0.5599)

CAUCHY -127.2068 258.4136 258.6636 261.7913 14.1557
0.3413

(0.1035)

2.2725

(0.0657)

0.1697

(0.1776)

BURR XII(3P) -117.5054 241.0109 241.2609 246.0775 13.9990
0.08182

(0.684)

0.5510

(0.6944)

0.0910

(0.7919)

NAK -117.9936 239.9872 240.2372 243.3650 18.7457
0.1327

(0.4486)

1.0388

(0.3371)

0.1109

(0.6679)

GUM -120.1498 244.2996 253.5742 247.6773 14.1430
0.4612

(0.0495)

2.4763

(0.0513)

0.2128

(0.0455)

EB XII -117.5054 241.0108 241.2608 246.0775 14.0001
0.0818

(0.6840)

0.5509

(0.6945)

0.0990

(0.7920)

GIW -116.9129 239.8258 240.0758 244.8924 14.1890
0.0753

(0.7835)

0.5659

(0.7808)

0.0934

(0.9219)

Note: P-value in bracket.

LL, IW, CAUCHY, BURR XII(3P), NAK, GUM, EB XII and GIW. In regards to finding the best model, Figure 26
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Table 3: MLEs of parameters and standard errors for

maximum annual rainfall for Accra

Distribution Parameter Estimates Standard Errors

MEC â 430.0393 300.4484

b̂ 4.1352 0.4983

ρ̂ 422.8530 301.5543

LL â 3.7939 2.3594

b̂ 13.0129 7.6657

ρ̂ 8.0263 7.1783

IW â 8.3647 0.0628

b̂ 2.2029 0.2553

ρ̂ 0.0064 0.0035

CAUCHY â 4.0669 0.7870

b̂ 20.8291 1.2012

BURR XII(3P) â 96.8084 0.0001

b̂ 0.0237 0.0038

ρ̂ 13.7815 0.1725

NAK â 358.7447 36.0451

â 2.4417 0.7047

GUM â 20.5562 1.5824

b̂ 8.3028 3.5855

EB XII â 14.4737 0.55482

b̂ 71.74213 63.3608

ρ̂ -30.9269 27.7249

GIW â 9.5659 0.7313

b̂ 4.1314 0.5018

ρ̂ 15.9339 0.1063

displays the estimated PDFs and estimated CDFs of all
fitted distributions using the estimates obtained in Table
4. From Figure 26 , it is noticed that the MEC distribution
fits the maximum rainfall data for Accra better than the
other eight models.

Fig. 25: The estimated PDFs for annual monthly rainfall

maxima from Accra, Ghana.

Fig. 26: The estimated CDFs for annual monthly rainfall

maxima from Accra, Ghana.

7.1.3 Maximum Annual Rainfall Data-Cape Coast

The third data represents the maximum annual rainfall of
Cape Coast in the Central region of Ghana. Table 5
displays the maximum likelihood estimates of the
parameters, standard errors and p-values for the compared
distributions.

Table 6 presents the log-likelihood, information
criteria and goodness-of-fit statistics for the maximum
annual rainfall for Cape Coast data.

It was obvious that, for the nine mentioned models, the
MEC has the highest value of the L and lowest value of
the AIC, CAIC, BIC and HQIC. On the other hand, it can
be observed that the MEC distribution has the smallest W,
A and K-S value and the largest corresponding p-values.
This confirms that the MEC distribution appears to be a
very competitive model to the maximum rainfall data of
Koforidua than the other eight models.

In regards to finding the best model fit, findings are
further validated graphically by providing plots of fitted
densities with histogram and fitted CDFs with data in
Figure 28 for the all nine models. These plots also
indicate that the proposed distributions provide good fit to
the data set considered here.

7.2 Return level estimation for MEC model

The return level can be defined as the level which is
associated to be exceeded one every 1/S(yT ) period,
where S(yT ) is the exceedance probability which is
obtained from the survival function, which is known as a
return period. The return level of the MEC distribution is
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Table 4: Comparison criterion of maximum annual rainfall for Accra

Distribution -L AIC CAIC BIC HQIC W A K-S

MEC -127.4893 260.9785 261.2285 266.0452 14.1601
0.083686

(0.6734)

0.65537

(0.5962)

0.12868

(0.5218)

LL -127.5129 261.0258 261.2758 266.0924 14.1605
0.1394

(0.4251)

1.012

(0.3505)

0.1339

(0.4702)

IW -129.2508 264.5015 264.7515 269.5682 14.1872
0.1240

(0.4813)

0.96402

(0.3761)

0.1258

(0.5513)

CAUCHY -137.5277 279.0554 279.3054 282.4332 14.3100
0.1676

(0.341)

1.3042

(0.2309)

0.16815

(0.2081)

BURR XII(3P) -130.4125 266.8249 267.0749 271.8916 14.2049
0.45627

(0.05101)

2.3099

(0.0628)

0.2055

(0.0683)

NAK -136.2867 276.5733 276.8233 279.9511 14.2921
1.4978

(0.0001404)

8.8262

(5.67×10−05)

0.2766

(0.004387)

GUM -133.4749 270.9497 271.1997 274.3275 14.2508
0.4504

(0.0529)

2.6581

(0.04125)

0.1843

(0.1320)

EB XII -130.7633 267.5267 267.7767 272.5933 14.2102
0.4701

(0.0470)

2.3595

(0.05907)

0.2075

(0.06385)

GIW -127.491 260.9821 261.2321 266.0487 14.3601
0.0940

(0.6715)

0.6575

(0.5943)

0.2288

(0.5202)

Note: P-value in bracket.

Table 5: MLEs of parameters and standard errors for maximum

annual rainfall for Cape Coast

Distribution Parameter Estimate Standard Errors

MEC â 1638.8000 0.04417

b 3.18997 0.39446

ρ̂ 7.96994 8.99409

LL â 2.38744 0.72117

b̂ 12.01639 3.30573

ρ̂ 10.26471 2.55645

IW â 6.796415 3.477481

b̂ 2.041814 0.677570

ρ̂ 0.006030 0.013904

CAUCHY â 5.9170 1.1778

b̂ 22.0349 1.6754

BURR XII(3P) â 15.09062 10.55420

b̂ 0.14399 0.11896

ρ̂ 14.88027 1.19011

NAK â 579.3763 57.7134

b̂ 2.0012 0.4368

GUM â 21.8021 2.0737

b̂ 11.9467 5.1737

EB XII â 16.9582 1.9213

b̂ 14.8170 10.5008

ρ -6.8057 5.7172

GIW â 16.9582 1.9213

b̂ 14.8170 10.5008

ρ̂ -6.8057 5.7172

obtained using:

yT =



log





(

1− 1
T

)− 1
a − 1

ρ
+ 1









− 1
b

,

Fig. 27: The estimated PDFs for annual monthly rainfall

maxima from Cape Coast, Ghana.

where T ≥ 1 and the return period is:

T =
1

1−
(

ρ
(

ey−b
T − 1

)

+ 1
)−a .
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Table 6: Comparison criterion of maximum annual rainfall for Cape Coast

Distribution -L AIC CAIC BIC HQIC W A K-S

MEC -141.7993 289.5986 289.8486 294.6652 14.3706
0.1086

(0.5464)

0.7033

(0.5551)

0.1118

(0.6581)

LL -142.1333 290.2666 290.5166 295.3333 14.3752
0.1123

(0.5298)

0.8420

(0.4510)

0.1457

(0.3315)

IW -142.8083 291.6166 291.8666 296.6832 14.3846
0.1125

(0.5288)

0.7548

(0.5139)

0.1076

( 0.7031)

CAUCHY -153.6206 311.2412 311.4912 314.6190 14.5291
0.2294

(0.2173)

1.6749

(0.1399)

0.1807

(0.1294)

BURR XII(3P) -143.3844 292.7689 293.0189 297.8355 14.6338
0.19757

(0.2728)

1.0894

(0.3132)

0.13682

(0.4059)

NAK -143.8845 291.7691 292.0191 295.1468 14.39942
0.19602

(0.2759)

1.6196

( 0.1505)

0.1314

(0.4564)

GUM -148.5592 301.1184 301.3684 304.4962 14.4627
0.3619

(0.09089)

2.2971

(0.0638)

0.1498

(0.3000)

EB XII -143.3840 292.7680 293.0180 297.8347 14.39252
0.1966

(0.2747)

1.0854

(0.3150)

0.1367

(0.4068)

GIW -141.7994 289.5987 289.8488 294.6664 14.39082
0.1200

(0.5400)

0.7090

(0.5441)

0.1129

(0.6471)

Note: P-value in bracket.

Fig. 28: The estimated CDFs for annual monthly rainfall

maxima from Cape Coast, Ghana.

A summary of the return values for all location using
the MEC distribution are presented in Table 7. To know
the approximate range of maximum annual rainfall for
various return periods in each location, the MEC
distribution was applied to analyze rainfall locations.

Considering a return period of 250 years, the minimum
value is reached in Koforidua with an estimated value of
53.5054 cm; and the maximum value is obtained in Cape
Coast reaching an extreme rainfall value of 110.2881 cm.

A summary of the periods are presented in Table 8.
The estimated results indicate an increasing trend in the
return periods as the return levels increases. Considering
a minimum accumulated rainfall of 29 cm annually, the
return period for Koforidua, Accra, and Cape Coast is
approximately 8,7, and 4 years, respectively. Also, with a
maximum accumulated rainfall of 52 cm annually, the
return period for Koforidua, Accra and Cape Coast is
approximately 212,69, and 23 annually, respectively. If
this type of rainfall accumulation hits Cape Coast in the
future, with an accumulated rainfall of up to 52 cm a year,
Cape Coast will likely experience extreme rainfall with a
return period of approximately 23 years.

8 Conclusion

In the present study, we have introduced a new
modification of the Chen distribution called the MEC
distribution using the Burr-Hatke differential equation.
Some mathematical properties along with three different
estimation approaches are addressed. Expressions for
some of its statistical features including the quantile,
generating functions, ordinary and incomplete moments,
stochastic ordering, entropy and order statistics are
derived. The MEC parameters are estimated by the

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 5, 711-728 (2022) / www.naturalspublishing.com/Journals.asp 727

Table 7: Return level results of all locations

Location Return Period (Years)

2 5 10 20 50 100 150 200 250

Koforidua 21.8135 26.5729 30.2822 34.3259 40.3720 45.5910 48.9404 51.4619 53.5054

Accra 20.4340 26.8812 32.2312 38.3604 48.0555 56.8941 62.7819 67.3188 71.0591

Cape Coast 21.8898 31.2411 39.5368 49.5569 66.3876 82.6498 93.9137 102.8133 110.2881

Table 8: Return period results of all locations

Location Return Levels (cm)

29 32.5 34.37 39.32 43.54 46.02 49 52

Koforidua 7.9144 14.7491 20.1444 41.0859 76.8862 105.4971 151.0482 212.2815

Accra 6.64604 10.33124 12.8859 21.3793 33.4168 41.8891 54.1483 69.0908

Cape Coast 4.0586 5.5981 6.5882 9.5958 13.4127 15.9034 19.3105 23.2304

maximum likelihood, ordinary least squares and weighted
least squares methods. Monte Carlo simulation results are
reported for all the estimation methods. The proposed
distribution provides a better fit than some other
distributions by using three annual extreme rainfall data
sets from three locations in Ghana. Finally, the return
periods and levels were estimated using the MEC
distribution for the three given locations in Ghana.
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