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1 Introduction

Many authors have studied the fixed-point theorems for
finite family of single valued mappings (see [3,8,10,13]
). The study of fixed points for multivalued contractions
and nonexpansive mappings using the Hausdorff metric
was initiated by Markin [5] and Nadler [6]. Later, an
interesting and rich fixed point theory for such maps was
developed which has applications in control theory,
convex optimization, differential inclusion and
economics. Iterative methods for approximating fixed
points of multivalued mappings in Banach spaces have
been studied by Sastry and Babu [11] proved the
convergence of Mann and Ishikawa iteration process for
multivalued mappingT with a fixed pointp converge to a
fixed point q of T under certain conditions. They also
claimed that the fixed pointq may be different fromp.
Panyanak [9] extended result of Sastry and Babu to
uniformly convex Banach spaces but the domain ofT
remains compact. Song and Wang [12] modified the
iteration scheme used in [9] and improved the results
presented therein. They further revised the gap and also
gave the affirmative answer to Panyanaks open question.

Recently, M. Abbas et al.[1] introduced a new one-step
iterative process to compute common fixed points of two
multivalued nonexpansive mappings.

Very recently, M. Eslamian, A. Abkar [2] introduced a
new one-step iterative process to approximate common
fixed points of a finite family of generalized nonexpansive

multivalued mappings and prove some weak and strong
convergence theorems for such mappings in uniformly
convex Banach spaces. They employed the following
iterative process: LetE be a Banach space,K be a
nonempty convex subset ofE and Ti : K → CB(K)
(i = 1,2, ...,m) be finitely many given mappings. Then,
for x0 ∈ K, we consider the following iterative process:

xn+1 = an,0xn+an,1zn,1+an,2zn,2+ ...+an,mzn,m, n∈ N,

(1.1)

where zn,i ∈ Ti(xn) and {an,k} are sequences of
numbers in[0,1] such that for every natural numbern∈ N

and
m
∑

k=0
an,k = 1.

In this paper, we introduce a new three-step iterative
process to approximate the common fixed points of four
finite families of multivalued nonexpansive mappings in a
uniformly convex real Banach space and establish strong
convergence theorems for the proposed process. Our
results extend and improve the recent results.

2 Preliminaries

Let E be Banach space with dimE ≥ 2, the modulus of
convexity ofE is the functionδE : (0,2] → [0,1] defined
by

δE(ε) = inf{1−
1
2
‖x+ y‖ : ‖x‖= 1,‖y‖= 1,‖x− y‖= ε}.
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E is uniformly convex if and only if withδE(ε)> 0 for all
ε ∈ (0,2].

A subsetK is called proximinal if for eachx∈ E, there
exists an elementk∈ K such that

d(x,k) = inf{‖x− y‖ : y∈ K}= d(x,K).

It is known that a weakly compact convex subsets of a
Banach space and closed convex subsets of a uniformly
convex Banach space are proximinal. We shall denote the
family of nonempty bounded proximinal subsets ofK by
P(K) and the family of nonempty compact subsets ofK
by C(K). Consistent with [6], let CB(E) be the class of all
nonempty bounded and closed subsets ofE. Let H be a
Hausdorff metric induced by the metricd of E, given by

H(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)},

for everyA,B∈CB(E). It is obvious thatP(K) ∈CB(E).
A multivalued mappingT : K → P(K) is said to be a

contraction if there exists a constantk∈ [0,1) such that for
anyx,y∈ K,

H(Tx,Ty)≤ k‖x− y‖,

andT is said to be nonexpansive if

H(Tx,Ty)≤ ‖x− y‖,

for all x,y ∈ K. A point x∈ K is called a fixed point ofT
if x ∈ Tx. Throughout the paperN denotes the set of all
natural numbers.

Let us recall the following definitions.

Definition 2.1[4] A mapping T: K → K where K a subset
of E, is said to satisfy condition(A) if there exists a
nondecreasing function f: [0,∞)→ [0,∞) with f(0) = 0,
f (r) > 0 for all r ∈ (0,∞) such that either
d(x,Tx) ≥ f (d(x,F) for all x ∈ K, where
d(x,F) = inf{‖x− p‖ : p∈ F}.

The following is the multivalued version of condition(À);

Definition 2.2The four multivalued nonexpansive
mappings A,T,S,R : K →CB(K), where K a subset of E,
are said to satisfy condition(À) if there exists a
nondecreasing function f: [0,∞)→ [0,∞) with f(0) = 0,
f (r) > 0 for all r ∈ (0,∞) such that either
d(x,Ax) ≥ f (d(x,F) or d(x,Tx) ≥ f (d(x,F) or
d(x,Sx)≥ f (d(x,F) or d(x,Rx)≥ f (d(x,F) for all x ∈ K,
where F = F(A)

⋂
F(T)

⋂
F(S)

⋂
F(R), the set of all

common fixed points of the mappings A,T,S and R.

Definition 2.3The mapping T: E → CB(E), is called
hemicompact if, for any sequence{xn} in E such that
d(xn,Txn) → 0 as n→ ∞, there exists a subsequence
{xnr} of {xn} such that xnr → p∈ E. We note that if E is
compact, then every finite family of multivalued mapping
T : E →CB(E) is hemicompact.

Next we state the following useful lemma.

Lemma 2.1[7] Let X be a uniformly convex Banach space
and let Br(0) = {x∈ X : ‖x‖ ≤ r}, r > 0. Then there exist
a continuous, strictly increasing, and convex functionϕ :
[0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖αx+βy+ γz+ηw‖2 ≤ α‖x‖2+β‖y‖2+ γ‖z‖2+η‖w‖2−αβϕ(‖x−y‖)

for all x,y,z,w∈Br(0), andα,β ,γ,η ∈ [0,1]with α+β +
γ +η = 1.

3 Main Results

We now introduce the following iteration scheme. LetE
be Banach space,K be a nonempty subset ofE and let
A,T,S,R : K →CB(K) be four multivalued nonexpansive
mappings with common fixed pointP. Our process reads
as follows:

x0 ∈ K,

xn+1 = (1−αn−βn− γn)an+αnun+βnvn+ γnwn,

yn = (1−βn− γn)an+βnvn+ γnwn, (3.1)

zn = (1− γn)an+ γnwn,

wherean ∈ Axn, un ∈ Tyn, vn ∈ Szn, wn ∈ Rxn and{αn},
{βn} and{γn} are sequence of numbers in[0,1] satisfying
αn+βn+ γn < 1 .

Remark 3.1 1.If A = S= R= T. The iterative scheme
(3.1) reduce to

x0 ∈ K,

xn+1 = (1−αn−βn− γn)an+αnun+βnvn+ γnwn,

yn = (1−βn− γn)an+βnvn+ γnwn, (3.2)

zn = (1− γn)an+ γnwn,

where an,wn ∈ Txn, un ∈ Tyn and vn ∈ Tzn.
2.If A= I. The iterative scheme (3.1) reduce to.

x0 ∈ K,

xn+1 = (1−αn−βn− γn)xn+αnun+βnvn+ γnwn,

yn = (1−βn− γn)xn+βnvn+ γnwn, (3.3)

zn = (1− γn)xn+ γnwn,

where un ∈ Tyn, vn ∈ Szn, wn ∈ Rxn.
3.If γn ≡ 0. The iterative scheme (3.1) reduce to

x0 ∈ K,

xn+1 = (1−αn−βn)an+αnun+βnvn,

yn = (1−βn)an+βnvn, (3.4)

where an ∈ Axn, un ∈ Tyn, vn ∈ Sxn.

The following is an example of four multivalued
nonexpansive mappings with a common fixed point.

Example 1 Let X = [0,1]. Define
A,T,S,R : X →CB(X) as follows:

Ax= [0,
2x−1

x2 ],

Tx= [0,
x2− tan(5Π

4 )x+1

x
],
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Sx= [0,
1
x
],

and

Rx= [0,
3tan(Π

4 )x− x

x+1
].

Then clearly A, T, S and R are four multivalued
nonexpansive mappings and have a common fixed point
at 1.

In this section, we prove that the iterative process
defined by (3.1) converges strongly to a common fixed
point.

At first, we shall prove the following lemmas.

Lemma 3.1Let E be a uniformly convex Banach space and
K a nonempty closed convex subset of E. Let A,T,S,R :
K →CB(K) be four multivalued nonexpansive mappings.
Let {xn} be the sequence as defined in (3.1). If F 6= /0 and
Ap= T p= Sp= Rp= {p} for any p∈ F then lim

n→∞
‖xn−

p‖ exists for all p∈ F.

Proof.Assume thatF 6= /0. Let p∈ F . Then from (3.1) we
have,

‖xn+1− p‖

= ‖(1−αn−βn− γn)an+αnun+βnvn+ γnwn− p‖

= ‖(1−αn−βn− γn)(an− p)+αn(un− p)+βn(vn− p)+ γn(wn− p)‖

≤ (1−αn−βn − γn)‖an− p‖+αn‖un− p‖+βn‖vn− p‖+ γn‖wn− p‖

≤ (1−αn−βn − γn)d(an,Ap)+αnd(un,T p)+βnd(vn,Sp)+ γnd(wn,Rp)

≤ (1−αn−βn − γn)H(Axn,Ap)+αnH(Tyn,T p)+βnH(Szn,Sp)+ γnH(Rxn,Rp)

≤ (1−αn−βn − γn)‖xn− p‖+αn‖yn− p‖+βn‖zn− p‖+ γn‖xn− p‖

= (1−αn−βn)‖xn− p‖+αn‖yn− p‖+βn‖zn− p‖, (3.5)

and
‖yn− p‖ = ‖(1−βn− γn)an+βnvn+ γnwn− p‖

= ‖(1−βn− γn)(an− p)+βn(vn− p)+ γn(wn− p)‖

≤ (1−βn− γn)‖an− p‖+βn‖vn− p‖+ γn‖wn− p‖

≤ (1−βn− γn)d(an,Ap)+βnd(vn,Sp)+ γnd(wn,Rp)

≤ (1−βn− γn)H(Axn,Ap)+βnH(Szn,Sp)+ γnH(Rxn,Rp)

≤ (1−βn− γn)‖xn− p‖+βn‖zn− p‖+ γn‖xn− p‖

= (1−βn)‖xn− p‖+βn‖zn− p‖, (3.6)

and

‖zn− p‖ = ‖(1− γn)an+ γnwn− p‖

= ‖(1− γn)(an− p)+ γn(wn− p)‖

≤ (1− γn)‖an− p‖+ γn‖wn− p‖

≤ (1− γn)d(an,Ap)+ γnd(wn,Rp)

≤ (1− γn)H(Axn,Ap)+ γnH(Rxn,Rp)

≤ (1− γn)‖xn− p‖+ γn‖xn− p‖

= ‖xn− p‖. (3.7)

Substituting (3.7) into (3.6) we obtain,

‖yn− p‖ ≤ (1−βn)‖xn− p‖+βn‖xn− p‖

= ‖xn− p‖. (3.8)

Substituting (3.7) and (3.8) into (3.5) we have

‖xn+1− p‖ ≤ (1−αn−βn)‖xn− p‖+αn‖xn− p‖+βn‖xn− p‖

= ‖xn− p‖. (3.9)

Thus lim
n→∞

‖xn − p‖ exists for eachp ∈ F , hence{xn} is

bounded.

Lemma 3.2Let E be a uniformly convex Banach space and
K be nonempty closed convex subset of E. Let A,T,S,R :
K → CB(K) be four multivalued nonexpansive mappings
and{xn} be the sequence as defined in (3.1). If F 6= /0 and
Ap= T p= Sp= Rp= {p} for any p∈ F and

‖xn−un‖ ≤ ‖an−un‖, (3.10)

then lim
n→∞

d(xn,Axn) = lim
n→∞

d(xn,Tyn) = lim
n→∞

d(xn,Szn) =

lim
n→∞

d(xn,Rxn) = 0.

Proof.Let p ∈ F. By Lemma (3.1), lim
n→∞

‖xn − p‖ exists,

{xn} is bounded and so{yn} and {zn} are bounded.
Therefore, there exists r > 0 such that
xn − p, yn − p, zn − p ∈ Br(0) for all n ≥ 0. Applying
lemma (2.1) and using (3.1) we have

‖xn+1− p‖2

= ‖(1−αn−βn− γn)an+αnun+βnvn+ γnwn− p‖2

= ‖(1−αn−βn− γn)(an− p)+αn(un− p)+βn(vn− p)+ γn(wn− p)‖2

≤ (1−αn−βn− γn)‖an− p‖2 +αn‖un− p‖2+βn‖vn− p‖2 + γn‖wn− p‖2

− αn(1−αn−βn− γn)ϕ(‖an−un‖)

≤ (1−αn−βn− γn)d(an,Ap)2+αnd(un,T p)2+βnd(vn,Sp)2 + γnd(wn,Rp)2

− αn(1−αn−βn− γn)ϕ(‖an−un‖)

≤ (1−αn−βn− γn)H(Axn,Ap)2+αnH(Tyn,T p)2+βnH(Szn,Sp)2

+ γnH(Rxn,Rp)2−αn(1−αn−βn− γn)ϕ(‖an−un‖)

≤ (1−αn−βn− γn)‖xn− p‖2+αn‖yn− p‖2 +βn‖zn− p‖2

+ γn‖xn− p‖2 −αn(1−αn−βn − γn)ϕ(‖an−un‖)

≤ (1−αn−βn)‖xn− p‖2+αn‖yn− p‖2 +βn‖zn− p‖2

− αn(1−αn−βn− γn)ϕ(‖an−un‖), (3.11)

‖yn− p‖2 = ‖(1−βn− γn)an+βnvn+ γnwn− p‖2

= ‖(1−βn− γn)(an− p)+βn(vn− p)+ γn(wn− p)‖2

≤ (1−βn− γn)‖an− p‖2+βn‖vn− p‖2 + γn‖wn− p)‖2

− βn(1−βn− γn)ϕ(‖an−vn‖)

≤ (1−βn− γn)d(an,Ap)2+βnd(vn,Sp)2 + γnd(wn,Rp)2

− βn(1−βn− γn)ϕ(‖an−vn‖)

≤ (1−βn− γn)H(Axn,Ap)2+βnH(Szn,Sp)2 + γnd(Rxn,Rp)2

− βn(1−βn− γn)ϕ(‖an−vn‖)

≤ (1−βn− γn)‖xn− p‖2 +βn‖zn− p‖2+ γn‖xn− p‖2

− βn(1−βn− γn)ϕ(‖an−vn‖)

≤ (1−βn)‖xn− p‖2 +βn‖zn− p‖2−βn(1−βn− γn)ϕ(‖an−vn‖),

(3.12)

and

‖zn− p‖2 = ‖(1− γn)an+ γnwn− p‖2

= ‖(1− γn)(an− p)+ γn(wn− p)‖2

≤ (1− γn)‖an− p‖2 + γn‖wn− p‖2 − γn(1− γn)ϕ(‖an−wn‖)

≤ (1− γn)d(an,Ap)2+ γnd(wn,Rp)2− γn(1− γn)ϕ(‖an−wn‖)

≤ (1− γn)H(Axn,Ap)2+ γnH(Rxn,Rp)2− γn(1− γn)ϕ(‖an−wn‖)

≤ (1− γn)‖xn− p‖2 + γn‖xn− p‖2− γn(1− γn)ϕ(‖an−wn‖)

= ‖xn− p‖2 − γn(1− γn)ϕ(‖an−wn‖). (3.13)

From (3.12) and (3.13) we have

‖yn− p‖2 ≤ (1−βn)‖xn− p‖2 +βn[‖xn− p‖2 − γn(1− γn)ϕ(‖an−wn‖)]

− βn(1−βn− γn)ϕ(‖an−vn‖)

≤ ‖xn− p‖2 −βnγn(1− γn)ϕ(‖an−wn‖)−βn(1−βn− γn)ϕ(‖an−vn‖).

(3.14)
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Substituting (3.13) and (3.14) into (3.11) we obtain

‖xn+1− p‖2

≤ (1−αn−βn)‖xn− p‖2 +αn[‖xn− p‖2 −βnγn(1− γn)ϕ(‖an−wn‖)]

− βn(1−βn− γn)ϕ(‖an−vn‖)+βn[‖xn− p‖2 − γn(1− γn)ϕ(‖an−wn‖)]

− αn(1−αn−βn− γn)ϕ(‖an−un‖)

≤ ‖xn− p‖2−βn(1−βn− γn)ϕ(‖an−vn‖)−βnγn(1− γn)(αn+1)ϕ(‖an−wn‖)

− αn(1−αn−βn− γn)ϕ(‖an−un‖) (3.15)

From (3.15)we obtain,
αn(1−αn−βn− γn)ϕ(‖an−un‖)

≤ ‖xn− p‖2−‖xn+1− p‖2 −βnγn(1− γn)(αn+1)ϕ(‖an−wn‖)

− βn(1−βn− γn)ϕ(‖an−vn‖) (3.16)

Thus,
αn(1−αn−βn− γn)ϕ(‖an−un‖) ≤ ‖xn− p‖2 −‖xn+1− p‖2

,

this implies,

αn(1−αn−βn− γn)ϕ(‖an−un‖)≤ ‖x1− p‖2 ≤ ∞.

∞

∑
n=1

ϕ(‖an−un‖)≤ ‖x1− p‖2 ≤ ∞.

Sinceϕ is continuous at 0 and is strictly increasing, we
have

lim
n→∞

‖an−un‖= 0. (3.17)

Using (3.10) and (3.17) it follows then that

‖an− xn‖ ≤ ‖an−un‖+ ‖un− xn‖

≤ 2‖an−un‖→ 0 n→ ∞. (3.18)

and using (3.17) and (3.18) we have

‖un− xn‖ ≤ ‖un−an‖+ ‖an− xn‖

→ 0 n→ ∞. (3.19)

Similarly from (3.16) we obtain that

lim
n→∞

‖an− vn‖= 0. (3.20)

Using (3.18) and (3.20) it follows then that

‖xn− vn‖ ≤ ‖an− xn‖+ ‖an− vn‖

→ 0 n→ ∞. (3.21)

Similarly from (3.16) we obtain that

lim
n→∞

‖an−wn‖= 0. (3.22)

Using (3.18) and (3.22) it follows then that

‖xn−wn‖ ≤ ‖xn−an‖+ ‖an−wn‖

→ 0 n→ ∞. (3.23)

Thus from (3.18), (3.19), (3.21) and (3.23), we have
lim
n→∞

d(xn,Axn) = lim
n→∞

d(xn,Tyn) = lim
n→∞

d(xn,Szn) =

lim
n→∞

d(xn,Rxn) = 0.

This completes the proof.
The following result gives a necessary and sufficient

condition for strong convergence of the sequence (3.1) to
a common fixed point of four mappings on a real Banach
space.

Theorem 3.1Let E be a uniformly convex Banach space
and K, {xn} be as in lemma (3.2). Let
A,T,S,R : K →CB(K), be four multivalued nonexpansive
mappings satisfying condition(À). If F 6= /0 and
Ap = T p = Sp= Rp= {p} for any p∈ F, then {xn}
converges strongly to a common fixed point of A, T , S and
R.

Proof.SinceA, T,SandR, satisfies condition(À), we have
lim
n→∞

f (d(xn,F)) = 0. Thus there is a subsequence{xnr} of

{xn} and a sequence{pr} ⊂ F such that

‖xnr − pr‖<
1
2r ,

for all r > 0. By lemma (3.1) we obtain that

‖xnr+1 − pr‖ ≤ ‖xnr − pr‖<
1
2r .

We now show that{pr} is a Cauchy sequence inK.
Observe that

‖pr+1− pr‖ ≤ ‖pr+1− xnr+1‖+ ‖xnr+1 − pr‖

<
1

2r+1 +
1
2r

<
1

2r−1 .

This shows that{pr} is a Cauchy sequence inK and thus
converges top∈ K. Since

d(pr ,Ap) ≤ H(Ap,Apr)

≤ ‖p− pr‖,

andpr → p asr → ∞, it follows thatd(p,Ap) = 0, which
implies thatp∈ Ap.

Similarly,

d(pr ,T p) ≤ H(T p,T pr)

≤ ‖p− pr‖,

andpr → p asr → ∞, it follows thatd(p,T p) = 0, which
implies thatp∈ T p.

Similarly,

d(pr ,Sp) ≤ H(Sp,Spr)

≤ ‖p− pr‖,

andpr → p asr → ∞, it follows thatd(p,Sp) = 0, which
implies thatp∈ Sp.

Similarly,

d(pr ,Rp) ≤ H(Rp,Rpr)

≤ ‖p− pr‖,

andpr → p asr → ∞, it follows thatd(p,Rp) = 0, which
implies thatp∈ Rp. Consequently,p∈ F 6= ∞. lim

n→∞
‖xn−

p‖ exists, we conclude that{xn} converges strongly to a
common fixed pointp.

c© 2014 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theor.2, No. 2, 97-102 (2014) /www.naturalspublishing.com/Journals.asp 101

Theorem 3.2Let E be a real Banach space and K,{xn},
A,T,S,R, be as in Lemma(3.2). If F 6= /0 and
Ap,T p = Sp= Rp = {p} for any p∈ F, then {xn}
converges strongly to a common fixed point of A, T , S and
R iff lim inf

n→∞
d(xn,F) = 0.

Proof.The necessity is obvious. Conversely, suppose that
liminf

n→∞
d(xn,F) = 0. As proved in lemma (3.1),

‖xn+1− p‖ ≤ ‖xn− p‖.

This gives

d(xn+1,F) ≤ d(xn,F),

so that lim
n→∞

d(xn,F) exists. But, by hypothesis,

liminf
n→∞

d(xn,F) = 0. Therefore we must have

lim
n→∞

d(xn,F) = 0. Next we show that{xn} is a Cauchy

sequence inK. Let ε > 0 be arbitrarily chosen. Since
lim
n→∞

d(xn,F) = 0, there exists a constantn0 such that for

all n≥ n0, we have

lim
n→∞

d(xn,F)<
ε
4
.

In particular, inf{‖xn0 − p‖ : p∈ F}< ε
4. There must exist

a p∗ ∈ F such that

‖xn0 − p∗‖<
ε
2
.

Now for m,n≥ n0, we have

‖xn+m− xn‖ ≤ ‖xn+m− p∗‖+ ‖xn− p∗‖

≤ 2‖xn0 − p∗‖

< 2(
ε
2
) = ε.

Hence{xn} is a Cauchy sequence in a closed subsetK of a
Banach spaceE, and therefore it must converge inK. Let
lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = p and

d(xn,yn) ≤ d(xn, p)+d(p,yn)

→ 0 as n→ ∞,

and

d(xn,zn) ≤ d(xn, p)+d(p,zn)

→ 0 as n→ ∞.

Now for each we obtain,

d(p,Ap) ≤ d(p,xn)+d(xn,Axn)+H(Axn,Ap)

≤ d(p,xn)+d(xn,an)+d(xn, p)

→ 0 as n→ ∞,

gives thatd(p,Ap)= 0, implies thatp∈Ap. Consequently,
p∈ F 6= ∞.
Similarly, we obtain

d(p,T p) ≤ d(p,yn)+d(yn,xn)+d(xn,Tyn)+H(Tyn,T p)

≤ d(p,yn)+d(yn,xn)+d(xn,un)+d(yn, p)

→ 0 as n→ ∞,

gives thatd(p,T p) = 0, which implies thatp∈ Ti p.
Similarly, we obtain

d(p,Sp) ≤ d(p,zn)+d(zn,xn)+d(xn,Szn)+H(Szn,Sp)

≤ d(p,zn)+d(zn,xn)+d(xn,vn)+d(zn, p)

→ 0 as n→ ∞,

gives thatd(p,Sp) = 0, which implies thatp∈ Sp.
Similarly, we obtain

d(p,Rp) ≤ d(p,xn)+d(xn,Rxn)+H(Rxn,Rp)

≤ d(p,xn)+d(xn,wn)+d(xn, p)

→ 0 as n→ ∞,

gives thatd(p,Rp)= 0, implies thatp∈Rp. Consequently,
p∈ F 6= ∞.

Theorem 3.3Let E be a uniformly convex Banach space
and K, {xn} be as in Lemma (3.2). Let A,T,S,R : K →
CB(K), be four multivalued nonexpansive mappings and
A,T,S and R are hemicompact and continuous. If F6= /0
and Ap= T p= Sp= Rp= {p} for any p∈ F, then{xn}
converges strongly to a common fixed point of A,T, S and
R.

Proof.Since lim
n→∞

d(xn,Axn) = lim
n→∞

d(xn,Tyn) =

lim
n→∞

d(xn,Szn) = 0 = lim
n→∞

d(xn,Rxn), and A,T,S and Ri

are hemicompact, there is a subsequence{xnr} of {xn}
such thatxnr → p asr → ∞ for somep∈ K. SinceA,T,S
andR are continuous, we have

d(xnr ,Axnr )→ d(p,Ap),

d(xnr ,Txnr )→ d(p,T p),

d(xnr ,Sxnr )→ d(p,Sp),

and

d(xnr ,Rxnr )→ d(p,Rp).

As a result, we have that
d(p,Ap) = d(p,T p) = d(p,Sp) = d(p,Rp) = 0 and
p ∈ F . Since lim

n→∞
‖xn − p‖ exists, it follows that{xn}

converges strongly top. This completes the proof.

Corollary 3.1Let E be a uniformly convex Banach space
and K a nonempty closed convex subset of E. Let T,S,R,
be three multivalued nonexpansive mappings and{xn}
(3.3) and T,S and R are hemicompact and continuous. If
F 6= /0 and T p= Sp= Rp= {p} for any p∈ F, then{xn}
converges strongly to a common fixed point of T , S and R.

Corollary 3.2Let E be a uniformly convex Banach space
and K a nonempty closed convex subset of E. Let A,T,S,
be three multivalued nonexpansive mappings and{xn}
(3.4) and A, T and S are hemicompact and continuous. If
F 6= /0 and Ap= T p= Sp= {p} for any p∈ F, then{xn}
converges strongly to a common fixed point of Ai , Ti and
Si .
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