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Abstract: Photosynthetic antenna complexes are responsible for absorbing energy from sunlight and transmitting it to remote loca-
tions where it can be stored. Recent experiments have found that this process involves long-lived quantum coherence between pigment
molecules, called chromophores, which make up these complexes Expected to decay within 100 fs at room temperature, these coher-
ences were instead found to persist for picosecond time scales, despite having no apparent isolation from the thermal environment of
the cell. This paper derives a quantum master equation which describes the coherent evolution of a system in strong contact with a
thermal environment. Conditions necessary for long coherence lifetimes are identified, and the role of coherence in efficient energy
transport is illuminated. Static spectra and exciton transfer rates for the PE545 complex of the cryptophyte algae CS24 are calculated
and shown to have good agreement with experiment.
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1. Introduction

When a solar photon is captured by a photosynthetic or-
ganism, it creates a localized excited state, or exciton, in
one of several optically active pigment molecules, or chro-
mophores, in a specialized antenna complex. The exciton
is then conveyed via electrostatic coupling to a remote re-
action center where its energy can be stored and ultimately
used to do work. Because the exciton has a natural lifetime
on the order of nanoseconds, it is necessary that the trans-
fer process be very rapid, so that the exciton’s energy can
be stored before it decays.

In order to understand the dynamics of photosynthe-
sis, it is necessary to understand the dynamics of the ex-
citon transfer process. However, such an understanding is
complicated by the many internal degrees of freedom in
the chromophores, and by interactions between the chro-
mophore and the cellular environment. In the limit of weak
coupling between chromophores, Förster theory [1] de-
scribes the transfer of excitons as a fully incoherent pro-
cess. In the opposite limit, of weak coupling between chro-
mophores and the surrounding environment, Redfield the-
ory [2] describes the coherent transport of excitons using a
perturbative expansion over a weak system-reservoir cou-

pling, but may give unphysical negative or diverging exci-
ton populations. Such unphysical behavior may be avoided
through use of a secular approximation [3], at the cost of
decoupling the evolution of populations and coherences.
Neither the F̈orster nor the Redfield limits is applicable
to the limit in which the coupling between chromophores
and between chromophores and the environment are both
strong.

Nonperturbative approaches to the problem of exciton
dynamics are less easily classified. The Haken, Reineker,
Strobl model [4-5] calculates the evolution of an electronic
reduced density matrix due to electrostatic couplings be-
tween chromophores, with dephasing due to interaction
with the environment. This model predicts long lived co-
herences between chromophores, but yields an equilibrium
state with equal occupation probabilities for all chromophores,
which is true only in the high temperature limit. Other ap-
proaches include the stochastic Schrödinger equation [6-
9], methods based on the Holstein model, and methods
based on quantum walks [9]. Several studies have found
that interplay between the system and the environment, in-
cluding nonmarkovian effects and details of the system’s
vibrational structure, can affect coherence lifetimes and
the rates of exciton transfer [10-11].
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Figure 1 Spatial arrangement of chromophores and protein
backbone in PE545.

The need for an improved treatment of exciton dynam-
ics has been highlighted by the recent observation of long
lived coherences between chromophores in photosynthetic
antenna complexes [12-15]. Whereas a simple energy-time
uncertainty approach would suggest that such coherences
must die in less than 100 fs [16], they were instead found
to persist for picosecond timescales – on the order of the
time needed for excitons to travel between chromophores.
Rather than being confined to the low temperature limit,
such lifetimes were observed even at room temperature,
shedding doubt on the common assumption that biological
systems are too ”hot and wet” to display quantum coherent
behavior [17-18].

The observation of long lived coherences in biologi-
cal systems at room temperature raises several questions.
First, how can these coherences persist in the thermal en-
vironment of the cell? Are the coherences somehow pro-
tected from interaction with the outside world, or are they
preserved through another mechanism? Second, can the
organism exploit coherence to improve the efficiency of
photosynthesis? Does coherent transport alter the rate at
which excitons travel between chromophores? Does the
quantum information contained in the coherence terms af-
fect the flow of population through the complex? Some
have speculated that the complex may perform quantum
information processing to optimize the transfer path [14],
although others [10-19] have found that such speedup may
be short lived. In addition to these questions, the under-
lying problem of a few state system with internal degrees
of freedom interacting with a thermal reservoir may have
applications in fields such as quantum computing, where
loss of coherence due to interactions with the surrounding
environment is a major limiting factor [20].

This paper presents a new theory of coherent evolu-
tion in a multichromophore system which does not rely on

a perturbative parameter. Instead, an assumption of rapid
thermalization of vibrational degrees of freedom is used
to derive equations of motion for a slowly evolving elec-
tronic reduced density matrix. In this way, both the transfer
of exciton population and the evolution of coherences are
treated on an equal footing. The resulting theory gives a
simple explanation for long coherence lifetimes in the high
temperature limit for a system which interacts strongly
with its environment.

Section 2 derives equations of motion for an electronic
reduced density matrix. Part 2.3 reduces the full electronic
+ vibrational+environment density matrix to yield equa-
tions of motion for a reduced electronic density matrix,
while part 2.4 reduces these equations of motion to the
form of the Haken Reineker Strobl model [4], in which
both the density matrix and the effective coupling incor-
porate thermodynamic quantities. Section 3 applies the re-
sulting theory to a two chromophore system, to find life-
times for the decay of coherence or the transfer of popu-
lation between two chromophores. Section 4 applies this
theory to the PE545 antenna complex of cryptophyte al-
gae Rhodomonas CS24, shown in Figure 1, comparing to
experimentally measured transfer times, as well as absorp-
tion, circular dichroism and fluorescence spectra.

2. Equations of motion

Although the primary function of an antenna complex is to
transfer electronic excitation between chromophores, it is
not a purely electronic system in the sense of having elec-
tronic degrees of freedom which can be separated from the
other degrees of freedom in the system. Rather, both the
ground and excited ”states” of a particular chromophore
correspond to an infinite number of vibronic states. Each
of these vibronic states may interact with the local envi-
ronment of the cell, a system which is complicated and
difficult to characterize. In order to calculate equations of
motion for the purely electronic quantity of interest, it is
necessary to remove the vibrational and environmental in-
formation from the system – ie, to reduce the full elec-
tronic + vibrational + environmental density matrix to a
purely electronic reduced density matrix.

2.1. The Vibrational/Electronic System

The full electronic + vibrational + environmental Hamil-
tonian may be partitioned into an electronic + vibrational
system interacting with a reservoir,H = HS +HR+HSR.
Here the part of the total Hamiltonian dealing with the
system is relatively well characterized, while that dealing
with the reservoir is less so. To aid in the reduction to a
purely electronic density matrix, it is useful to write vi-
bronic states as the product of vibrational and electronic
eigenstates. Writing the system HamiltonianHS = Hel

0 +
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Hvib
0 + V , system eigenstates in the single exciton man-

ifold can be written|i,n〉, where i is the excited chro-
mophore andn the vector of excited vibrational states,
n = n1, n2, n3 . . .. In this basis,Hel

0 |i, n〉 = Ei |i, n〉,
Hvib

0 |i, ni〉 = ε
(i)
n |i, ni〉 andε

(i)
n =

∑
j ε

(i)
nj . Vibrational

states of the excited chromophore|i, ni〉 may differ from
those of the unexcited chromophore|0, ni〉 due to differ-
ing potential energy surfaces. Here it is convenient to in-
troduce electronicµ+

i = |i〉 〈0| and vibrationalν+
ni

=
|i, ni〉 〈i, 0i| + |0, ni〉 〈0, 0i| excitation operators, so that
the state of the complex can be written as the product of
excitation operators acting on an initial ground state

ψ =
∑

i,n

(
∏

j

bj
mν+

mj
)aiµ

+
i |0〉 . (1)

Deexcitation operatorsµi andνni
are given by the Her-

mitian conjugates of the excitation operators. In the limit
that electronically exciting one chromophore does not af-
fect the potential energy surfaces on other chromophores,
the electronic excitation/deexcitation operators commute
with the vibrational excitation/deexcitation operators for a
different chromophore.

2.2. The reservoir

In contrast to the system being studied, whose Hamiltonian
is relatively well known and studied, the reservoir may be
complicated and difficult to characterize. In Förster theory,
rapid dephasing of electronic and vibrational degrees of
freedom allow explicit consideration of the reservoir to be
avoided, as dynamics can be calculated from the overlap
of the donor emission and the acceptor absorption spectra
[21]. In Redfield theory, the reservoir is often modeled as
an infinite set of harmonic oscillators [22].

In the current work, each chromophore is assumed to
interact with a separate reservoir, so thatHSR can be writ-
ten asHSR =

∑
i V

(i)
SR |i〉 〈i|, and the system-reservoir

interaction is incapable of transferring excitation between
chromophores. As in F̈orster theory, an assumption of rapid
thermalization allows electronic equations of motion to be
derived without explicit reference to the form ofV

(i)
SR.

If eigenstates of the reservoir Hamiltonian correspond-
ing to chromophorei are given byH(i)

R |ζi〉 = Eζi |ζi〉,
then the mixing of eigenstates|i,n, ζi〉 is governed byV
andHSR. The assumption of rapid thermalization is that
the short time evolution of the system is given byU(t, t0) ≈∏

i U (i)(t, t0), where

U (i)(t, t0) = exp[−i

∫ t

t0

V
(i)
SR(τ)dτ ] |i〉 〈i| .

If

ψ(t) =
∑

i,n,ζi

ai(t)b(i)
n (t)cζi(t) |i,n, ζi〉 ,

the electronically diagonal character ofU means thatai(t)
does not evolve, while the vibrational and environmental
degrees of freedom are driven to thermal equilibrium

Trζi=ζ′
i
b(i)
n b

∗(i)
n′ c

(i)
ζi

c
∗(i)
ζ′

i
= δn,n′P

(i)
n . (2)

HereP
(i)
n is the probability of vibrational staten on chro-

mophorei being excited, whileP (i)
n =

∏
j P

(i)
nj is the

probability of a particular vector of vibrational states being
excited.

Eq. 2 can now be used to reduce equations of motion
for the full electronic + vibrational+environment system to
a purely electronic subsystem.

2.3. Density Matrix Reduction

Electronic equations of motion can be found by tracing
over environmental and vibrational degrees of freedom. To
this end, let

ρinζjmη = aibncζi |i,n, ζi〉 〈j,m, ηj | a∗j b∗mc∗ηj

×e−i(Ei+εi
n+Eζi

−Ej−ε
(j)
m −Eηj

)t, (3)

be the full density matrix written with factorized coeffi-
cients and

σinζijmηj = c∗ζ′
i
|ζ ′i〉 〈ζ ′i| (

∏

n′
j

b∗n′
j
|n′j〉 〈n′j |)

×ρinζjmη(
∏

m′
j

bm′
j
|m′

j〉 〈m′
j |)cη′

i
|η′j〉 〈η′j | (4)

be an auxiliary matrix defined in terms of the squares
of vibrational and environmental coefficients, so thataia

∗
j =∑

n,m,ζi,ηj
σinζijmηj . Equations of motion for the elec-

tronic coefficientsaia
∗
j can now be found by substituting

Eq. 2 into equations of motion forσ.
The rate of dephasing between different chromophores

is found by substituting Eq. 2 into Eq. 4, yielding

aia
∗
j (t) = aia

∗
j (0)

∑
n,m

P (i)
n P (j)

m e−i(Ei+ε
(i)
n −Ej−ε

(j)
m )t, (5)

Similarly, equations of motion for coherent evolution
are found by substituting Eq. 2 into the operator equation
of motion forσ due toHS +HR, ∂

∂tσ = −i[HS +HR, σ],
yielding

∂

∂t
aia

∗
j = −i[VinkpP (k)

p P (j)
m aka∗je

−i(Ei+ε
(i)
n −Ek−ε

(k)
p )t

−aia
∗
kP (i)

n P (k)
p Vkpjme−i(Ek+ε

(k)
p −Ej−ε

(j)
m )t], (6)

whereVkpjm = 〈0|µiνnV ν+
mµ+

j |0〉.
The complicated forms of Eqs. 5 and 6, which result

in part from their generality, may be simplified by making
assumptions about the vibrational spectrum and the form
of the vibrational/electronic operatorV . In terms of the
vibrational density of states

D(i)(ε) =
∑
n

δ(ε− ε(i)n ) (7)
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and thermodynamic weighting factor

P (i)(ε) = P (i)
n |

ε=ε
(i)
n

, (8)

the dephasing between two chromophores given in Eq. 5
becomes

aia
∗
j (t) = aia

∗
j (0)

∫
dε

∫
dε′(i)(ε)D(i)(ε)P (j)(ε′(j)(ε′)

×e−i(Ei+ε−Ej−ε′)t. (9)

In the limit of a constant density of states and boltzmann
occupation factors, Eq. 9 gives a Lorentzian decay of co-
herence fori 6= j

(aia
∗
j )(t) = (aia

∗
j )(t0)e

−i(Ei−Ej)(t−t0)
β2

β2 + (t− t0)2
,(10)

while for i = j, unitarity ofU (i)(t, t0) ensures thataia
∗
i (t) =

aia
∗
i (0).
If the vibronic termV is assumed to be purely elec-

tronic, so thatV =
∑

ij Vijµ
+
i µj , then

Vinjm = Vij 〈0|µiνniµ
+
i ν+

mi
|0〉 〈0| νnj µjν

+
mj

µ+
j |0〉

×
∏

k 6=i,j

δnk,mk
. (11)

where the matrix elements are Franck-Condon overlaps
between vibrational states of the excited and unexcited chro-
mophores.

Further simplification can be achieved by replacing the
oscillatory integrals in Eq. 6 with their average over some
period∆t. As∆t grows, this average goes to 1 if the ener-
gies in the exponential sum to 0; 0 otherwise. Including the
effects of Lorentzian dephasing between chromophores in
this average yields an exponential linewidth, so that

1
∆t

∫
dte−i(Ei+ε

(i)
n −Ek−ε

(k)
p )t β2

β2 + t2

∝ e−2β|Ei+ε
(i)
n −Ek−ε

(k)
p |. (12)

Eq. 6 then becomes

∂

∂t
(aia

∗
j ) = −iVikTk→i(aka∗j ) + i(aia

∗
k)VkjTk→j (13)

where

Ti→j =
∫

dε

∫
dε′(i)(ε)D(j)(ε′)

×P (i)(ε)F (ε, ε′)L(Ei + ε− Ej − ε′), (14)

F (ε, ε′) = 〈0|µiνniµ
+
i ν+

mi
|0〉

× 〈0| νnj µjν
+
mj

µ+
j |0〉 |ε=ε

(i)
n ,ε

′(j)
m

(15)

is the Franck Condon overlap andL(∆E) is the linewidth.

2.4. The thermalized density matrix

In Eq. 13,Ti→j plays the role of the overlap between donor
emission and acceptor absorption spectra in Förster the-
ory: it reflects the number of acceptor states sufficiently
close in energy to an occupied donor state to receive pop-
ulation. The asymmetry ofTi→j reflects irreversible flow
of population from high- to low energy chromophores: for
Ei > Ej , every potential donor state on chromophorei
has a degenerate acceptor state on chromophorej, while
the reverse is true only ifε(j) ≥ Ei − Ej .

The asymmetric form of Eq. 13 which results from
this irreversible flow can be rectified by defining a sym-
metrized density matrix̃ρij ≡ eαi+αj aia

∗
j and effective

couplingṼij = VijTi→je
γi−γj . Requiring that the effec-

tive coupling be Hermitian yieldsTi→j

Tj→i
= e2γi−2γj , while

requiring that Eq. 13 be unaffected by the change of vari-
ables requires thatαi = −γi. Performing this symmetriza-
tion and approximating the dephasing between chromophores
as exponential yields a master equation of the form
∂

∂t
ρ̃ = −i[Ṽ , ρ̃]− (1− δij)Γ ρ̃. (16)

For a constant density of states and Boltzmann probabil-
ity distribution, the Lorentzian dephasing is well approxi-
mated by settingΓ = kBT .

A byproduct of this symmetrization procedure is that
ρ̃ij now incorporates information about the equilibrium
distribution. In Eq. 13, with all coherence terms set to 0,
equilibrium is given by the condition of detailed balance,
when
aia

∗
i

aja∗j
=

Tj→i

Ti→j
(17)

for all i, j pairs. Due to the symmetrization procedure, this
condition is satisfied wheñρ is proportional to the iden-
tity matrix. In this way, the current approach differs sig-
nificantly from that of Haken, Reineker and Strobl [4,5],
which applies a quantum master equation of the form of
Eq. 16 to an unsymmetrized density matrix, yielding equi-
librium distributions in which all chromophores have equal
occupations, regardless of excitation energy or ambient tem-
perature. If the density of states is again assumed to be con-
stant andP (i)(ε) to be Boltzmann,αi = −γi = βEi/2,
so that at equilibrium,aia

∗
i = e−βEi∑

j
e−βEj

.

In the high temperature limit, where the weighting fac-
tors approach unity, the thermalized and unthermalized den-
sity matrices approach one another. For this reason, Eq. 16
may be thought of as a generalization of the HRS model
which describes dynamics at low temperatures. Due to the
identical form, many results of the HRS model will carry
through unchanged to describe the dynamics of the ther-
malized density matrix.

A second consequence of the symmetrization proce-
dure is that thermodynamic weighting factors have been
incorporated into the effective coupling. Assuming a con-
stant density of vibrational states with Boltzmann weight-
ing factors and approximating the linewidth and Franck
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Condon factors asF (ε, ε′)L(Ei + ε−Ej − ε′) = δ(Ei +
ε − Ej − ε′) yields Ṽij = Vije

−β|Ei−Ej |/2, so that the
effective coupling strength decays exponentially with the
difference in excitation energies at a rate dependent on the
temperature. BecausekBT is only 200 wavenumbers at
300K, the effective interaction between two chromophores
will decrease rapidly even for small separations in excita-
tion energy. Because of this, the effective coupling matrix
Ṽ will be both weaker and effectively more sparse than the
matrix of bare electronic couplings,V .

3. The two chromophore system

The equations of motion derived in the previous section
give a simple explanation for the long coherence lifetimes
observed in [12-15]. For a system of two chromophores,

with Ṽ =
(

∆E d
d −∆E

)
, applying Eq. 16 twice yields

differential equations for density matrix components

d2

dt2
(ρ̃00 − ρ̃11) + Γ

d

dt
(ρ̃00 − ρ̃11)

+4d2(ρ̃00 − ρ̃11) = 0

d2

dt2
(ρ̃10 − ρ̃01) + Γ

d

dt
(ρ̃10 − ρ̃01)

+4d2(ρ̃10 − ρ̃01) = 0
d
dt (ρ̃10 + ρ̃01) = −Γ (ρ̃10 + ρ̃01)
d
dt (ρ̃00 + ρ̃11) = 0.

Here the total population remains constant, while the
sum of off diagonal elements decays ase−Γt, whereΓ =
(25fs)−1 at 300K. However, both the population imbal-
ance and the difference of off diagonal elements behave
as damped harmonic oscillators. If IfP = (ρ̃00 − ρ̃11) or
(ρ̃10 − ρ̃01), P (t) = Aeλ+t + Beλ−t, with

λ± =
−Γ ±√Γ 2 − 16d2

2
. (18)

In the underdamped limit whenΓ < 4d, P (t) oscillates
within the exponential envelopee−Γt/2. WhenΓ >> 4d,
the system is overdamped and decays without oscillating
at two rates, withλ+ → −4d2/Γ , andλ− → −Γ .

Significantly, long coherence times do not depend on
isolation of the system from the environment or a slow rate
of dephasingΓ . On the contrary, long coherence times are
obtained in both the underdamped limit, whenΓ → 0 and
in the overdamped limit whenΓ >> 4d. Because of this,
long coherence times will be observed in both the high and
low temperature limits.

The preceding analysis has been previously derived in
the context of the HSR model [4,5]. However, the ther-
modynamic weighting of the coupling matrix elements is
crucial to accurately describing the timescale for exciton
transport or the decay of coherence. The exponential weight-
ing termTi→je

γi−γj which multiplies the bare matrix ele-
mentVij , can easily change a particular chromophore pair

from the under- to the overdamped limit. For a constant
density of states and Boltzmann weighting factors, this
term evaluates toe−β|Ei−Ej |/2, so that chromophores which
are distant in energy relative to the ambient temperature
will have very weak effective couplings.

A final observation about the two chromophore system
is that extremely long coherence times may correspond
to slow exciton transport through the antenna complex.
Because the population imbalance(ρ̃00 − ρ̃11) and the
antisymmetric off diagonal component(ρ̃10 − ρ̃01) obey
the same differential equation, long coherence times cor-
respond to slow decay of population imbalances. As the
differential equations decouple from one another, this is
not an example of coherence affecting exciton transport;
rather, coherence and population dynamics are parametri-
cally varying with respect to the same parameters.

4. Comparison With Experiment – PE545

The principles which govern the evolution of the two chro-
mophore system apply as well to the case of a photosyn-
thetic complex, with the exception that, with more than
two chromophores, there are now multiple pathways for
the exciton to follow through the complex. The effect of
these pathways is limited, however, by the thermodynamic
weighting of the effective coupling, which may make the
effective coupling matrix both weaker and effectively more
sparse than the bare electronic coupling matrix.

In order to test the theory derived in Section 2, Eq. 16
was used to describe dynamics in the PE545 antenna com-
plex of the cryptophyte algae Rhodomonas CS24, which
was found to display long coherence lifetimes in[13].

Because the effective coupling strength is exponentially
dependent on the energy spacing between two chromophores,
it is important to use accurate excitation energies in order
to yield the correct dynamics. Here the error in Hartree
Fock or ci singles calculations, which may be sizeable frac-
tions of an electron volt, may prove unacceptably large.
For this reason, the effective couplings and site energies
for PE545 were taken from [23], where the couplings were
calculated ab initio, but the site energies were found by
matching to several static and dynamic spectra, as calcu-
lated using Redfield theory. The theory was then tested by
comparing calculated lineshapes and times for excitons to
transfer between chromophores to those measured in ex-
periment. Here it must be noted that the procedure of find-
ing excitation energies by matching to excitation spectra
may yield an artificially good agreement for lineshapes
calculated using a different theory but the same excitation
energies.

The validity of the assumptions made in deriving Eq.
16 – namely, the assumption of a continuous vibrational
density of states and a delta function linewidth, can be
tested by constructing an effective density of states, cor-
responding to a discrete vibrational spectrum with a finite
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Figure 2 Effective vibrational density of states, calculated for
PE545 assuming linewidthL(∆E) = e−β|∆E|.

linewidth caused by dephasing between chromophores. Fig-
ure 2 shows the effective density of states

Deff (ω) =
∑

n,i

e−β|ω−ωi(n+1/2)|, (19)

calculated att = 77K and300K for the set of vibrational
energies taken from [23]. At both temperatures, the effec-
tive density of states levels out at vibrational energies of a
few hundred wavenumbers. At both temperatures, the ef-
fective density of states shows a dip at zero energy, due to
the zero point energy of the vibrational modes. This drop
is more accentuated at low temperatures, due to the nar-
rowness of the resulting linewidth.

Because of this, the assumption of a constant density
of states may break down for pairs of chromophores which
are close to degenerate, or at low temperatures. In these
limits, Ti→j should be calculated using a finite summation
in place of the integrals in Eq. 14.

The description of dynamics in PE545 was tested by
calculating lineshapes for absorption, circular dichroism
and fluorescence spectra, as well as the times necessary to
transfer excitation between pairs of chromophores.

PE545 consists of six phycoerythrobilin (PEB) and two
dihydrobiliverdin (DBV) chromophores, held in place by
a dimer of twoαβ monomers. Each monomer contains
three PEB chromophores on theβ subunit and one DBV
chromophore on theα subunit. The DBV chromophores
are redshifted with respect to the PEB chromophores, with
absorption maxima at 569 nm, compared to 545 for the
PEB chromophores [24]. Fig 1 shows the spatial arrange-
ment of the chromophores in the complex. Excitons escape
the comples by first making their way to the DBV bilins,
then slowly settling onto the lowest energy DBV bilin be-
fore escaping the complex. Fluorescence experiments [25]
indicate that excitons primarily escape the complex via a
single DBV bilin. Due to spectral overlap in the DBV and

PEB bands, it may be difficult for spectroscopic experi-
ments to distinguish precisely which chromophores are ex-
cited.

4.1. Static Lineshapes – Absorption,
Fluorescence and Circular Dichroism

Spectra for absorption, circular dichroism and fluorescence
can be calculated from time dependent expectation values
of a density matrix which has been supplemented by ad-
dition of the ground state [26]. Here the quantities of in-
terest,(aia

∗
j )(t) can be found by removing the thermody-

namic weighting factors from the thermalized density ma-
trix, in which the dynamics are calculated. The absorption
spectrum is given by the Fourier transform of the dipole
correlation function

d(t) =< µ(t)µ(0) > . (20)

where the dipole operatorµ =
∑

i µi(|i〉 〈0|+ |0〉 〈i|). In
terms of the density matrix, this is given by

d(t) = Tr(µρ(t)), (21)

whereρ(0) = ψ(0)
⊗

ψ∗(0), ψ(0) = |0〉 + ε
∑

i µi |i〉
andρ(t) is found by propagating̃ρ according to Eq. 16.
The parameterε factors out of the Fourier transform and is
discarded upon normalization of the spectrum. Dephasing
between the ground and excited states is treated as an ex-
ponential decay termΓ0i = (400cm−1), taken from [23].

In the same way, the circular dichroism spectrum is
found by taking the Fourier transform of

m(t) =< m(t)µ(0) > (22)

wherem = µ × R is the magnetic dipole operator. Fig-
ures 3 and 4 compare the calculated absorption and circu-
lar dichroism lineshapes to those measured in experiment
in [23]. Because the current theory does not account for
reorganization energy of the chromophores following ex-
citation, these spectra have been shifted in energy so that
the peak of the calculated spectrum aligns with the peak of
the experimental spectrum.

In contrast to the absorption and circular dichroism
spectra, the fluorescence spectrum reflects emission at large
times, for a system which has settled into the lowest energy
eigenstate. If this eigenstate is given byψe andψ(0) =
ψe + ε |0〉, the fluorescence spectrum is proportional to
w3|f(ω)|2, where

f(t) =< µρ(t) > (23)

and ρ(0) = ψ(0)
⊗

ψ(0). Figure 5 compares the nor-
malized fluorescence spectrum to that measured in experi-
ment.

At 300K, the calculated lineshapes show good agree-
ment. The width of the absorption and the negative lobe of
the circular dichroism spectra agree closely with the exper-
imental widths, although the positive lobe of the circular
dichroism spectrum has a broader tail and less accentuated
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Figure 3 Normalized absorption spectraω ∗ d(ω) for PE545,
compared to experimental values taken from [?]. a) 300K, b)77K.

Figure 4 Normalized circular dichroism spectraω ∗ m(ω) cal-
culated at 300K compared to experimental values taken from [?].

Figure 5 Normalized fluorescence spectraω3 ∗d(ω) for PE545,
compared to experimental values taken from [?]. a) 300K, b)77K.

peak than the calculated lobe. The calculated fluorescence
spectrum agrees with experiment in the peak region and on
the blue side of the maximum, but falls off more quickly
than experiment on the red side of the maximum.

Agreement with experiment is somewhat worse at 77K.
The absorption spectrum gives the correct width in the
peak region, but falls off more quickly than experiment on
the red side of the maximum and less quickly than experi-
ment on the blue side. The fluorescence spectrum shows
good agreement with the experimental lineshape on the
blue side of the maximum, but falls off much more quickly
than the experiment on the red side. Both the absorption
and fluorescence spectra miss a broad tail on the red side of
the fluorescence. The circular dichroism spectrum at 77K
was not available for comparison.

4.2. Exciton Transfer Times

While static lineshapes incorporate some dynamical infor-
mation in the form of a Fourier transform of a time de-
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Figure 6 Experimentally measured transfer times, taken from
[?].

Figure 7 Transfer / coherence decay times (ps) shorter than 100
ps for PE545 calculated at 77K.

pendent correlation function, this information is obscured
somewhat by the thermodynamic factors favoring popula-
tion of low energy chromophores and by finite linewidths
due to the decay of coherence. In [27],timescales for exci-
ton transfer were measured more directly by finding Evo-
lution Associated Difference Spectra (EADS) associated
with particular transfer lifetimes following an excitation
pulse of a particular frequency. Here interpretation is com-
plicated by spectral overlap between chromophores, and
by the difficulty in distinguishing between similar trans-
fer lifetimes, so that only a few, picosecond scale lifetimes
could be measured, and the chromophores being popu-
lated/depopulated could not be completely identified.

Within these limitations, the calculated rates for exci-
ton transfer show good agreement with experiment. Ta-
ble 6 shows the experimentally measured EADS transfer
times, measured at 300K and 77K, for excitation wave-
lengths of 485 nm and 530 nm. Tables 8 and 7 show ex-
perimental decay timesλ−1

+ , calculated using Eq. 18.
As with static spectra, agreement between theory and

experiment is somewhat better at 300K than at 77K. At
300K, population of a DBV chromophore is found to oc-
cur in 150 fs, vs an experimentally measured 250 fs, while
transfer of population between DBV chromophores is cal-
culated to occur in 20.4 ps, compared to an experimental
value of 23.4 ps or 16.4 ps, depending on the excitation
frequency. Several pairs of chromophores are calculated to

Figure 8 Transfer / coherence lifetimes (ps) shorter than 100 ps
for PE545 calculated at 300K.

have transfer times in the range of 1-3 ps, comparable to
the remaining experimental rate of 1.84 ps.

Agreement with experiment is considerably worse at
77K. Population of a DBV chromophore is now calcu-
lated to occur in 956 fs, compared to an experimental value
of 960 fs, while a 3.7 ps time for transfer betweenβ50C

andβ158C matches well with a 3 ps experimental trans-
fer times. However, the 8.4 ps calculated for transfer be-
tween DBV chromophores and the 7.7 ps calculated be-
tweenβ50D andβ82D do not correspond well with exper-
imental times of 30 ps and 17.7 ps. Finally, the theoreti-
cal calculations include an underdamped transfer between
α19B andβ82C which is not seen in the experiment, per-
haps because the real part of the transfer time, at 60 fs, is
shorter than the experimental resolution of 120 fs.

4.3. Density Matrix Propagation vs. Pairwise
Decay Model

The agreement between the calculated pairwise decay times
and transfer times measured in experiment raise the ques-
tion of which information inρ̃ is necessary to describe the
dynamics of excitons in the complex. In principle, the en-
tire density matrix is necessary to describe these dynamics,
as excitons may follow any pathway through the complex,
so that the amplitude to be on any particular chromophore
is the sum of many interfering pathways. However, due
to thermodynamic weighting of the effective coupling ma-
trix, many of these pathways are strongly overdamped,
with weak effective coupling and slow decay of any popu-
lation imbalance. Because of this, the network of efficient
transfer pathways is relatively sparse. This can be seen in
Tables 8 and 7, or pictorially in Figure 9, where the opacity
of the line connecting two chromophores reflects the rate
of decay for population imbalances(ρ̃ii − ρ̃jj) (or anti-
symmetric coherence terms(ρ̃ij − ρ̃ji)) between them. As
a result of this sparsity, there are relatively few efficient
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Figure 9 Rates of population transfer / coherence decay in
PE545. Lines connecting chromophores have opacity propor-
tional to λ−1

+ , with full opacity corresponding toλ−1
+ = 1 ps.

a) Rates calculated at 77K b) Rates calculated at 300K.

pathways through the complex which may interfere with
each other effectively. In Figure 9, two interfering path-
ways would form a closed curve of lines with nearly equal
opacity.

At 77K, α19A, β82C andα19B form the only closed
curve, while none are present at 300K (the 150 fs transfer
time betweenα19B andβ82C is much faster than the 2 ps
transfer times betweenα19B , β158C andβ82C , β158C).

Due to the lack of interfering pathways, the flow of
excitons through the PE545 antenna complex is well ap-
proximated by a minimal model, in which population im-
balances in the thermalized density matrix decay exponen-
tially as

d

dt
(ρ̃ii − ρ̃jj) = −λ+(ρ̃ii − ρ̃jj), (24)

with λ+ given by Eq. 18.
The close agreement between the minimal model and

the full density matrix propagation is shown in Figures
10, 11, 12, 13, 14, 15, 16, and 17, which compare the
two models for initial conditions with the excitons local-
ized on each individual chromophore. The largest depar-
ture between the two models is observed forα19A, β82C

andα19B initial conditions at 77K, which correspond to
the closed curve of efficient transfer pathways previously
identified.

The close agreement between the two models explains
why the experimental transfer rates show good agreement
with the pairwise transfer rates, and indicates that the in-
formation contained in the long lived antisymmetric co-
herence terms, which are not included in the exponential
decay model, does not play a vital role in the transfer of
exciton population. Although the antisymmetric coherence
terms show the same picosecond timescales for decay as
the population imbalances, the lack of efficient, closed cy-
cles in the PE545 complex leave little opportunity for in-
terference. In addition, all initial conditions settle rapidly
to the same equilibrium distribution at 300K, so that any

Figure 10 Exciton populations vs time calculated at a) 300K b)
77K for initial stateα19B . Solid lines give populations calculated
by Eq. 16, while dashed lines give populations calculated using
the minimal exponential decay model.

”quantum speedup” would offer only transient advantages.
For these reasons, it appears that the importance of coher-
ence terms in PE545 is dynamic rather than informational
– coherence terms are important because they are required
to give the correct transfer rates between chromophores,
but the information contained in these terms does not ap-
pear to play an essential role in the transfer of the exciton
population to the radiating DBV chromophore.

5. Conclusions

This paper has presented a new theory of coherent dynam-
ics in photosynthetic complexes. Strong interaction with a
reservoir causes rapid thermalization of vibrational states,
allowing equations of motion for slowly varying electronic
coefficients to be derived. By incorporating thermodynamic
quantities into the definition of a thermalized density ma-
trix and an effective coupling, these equations of motion
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Figure 11 Exciton populations vs time calculated at a) 300K b)
77K for initial stateβ50C . Solid lines give populations calculated
by Eq. 16, while dashed lines give populations calculated using
the minimal exponential decay model.

are reduced to the Haken, Reineker, Strobl form. Unlike
the original HRS model, the incorporation of thermody-
namic information causes the system to settle to the cor-
rect thermodynamic equilibrium rather than to equal pop-
ulation of all states. The resulting theory gives good theo-
retical lineshapes for absorption, fluorescence and circular
dichroism for PE545 at 300K and 77K, and yields exci-
ton transfer times which agree with those found by EADS
experiments. For both kinds of experiments, agreement is
better at 300K than at 77K.

Long lived coherences between chromophores, such as
those observed in [12-15], are simply explained in terms of
an overdamped harmonic oscillator, in which the strength
of the damping is proportional to the temperature and the
effective coupling decreases exponentially with the exci-
tation energy separation between two chromophores. Be-
cause of this, coherence terms may survive for arbitrarily

Figure 12 Exciton populations vs time calculated at a) 300K b)
77K for initial stateα19A. Solid lines give populations calculated
by Eq. 16, while dashed lines give populations calculated using
the minimal exponential decay model.

long times, even in the high temperature limit for a system
which interacts strongly with its environment.

Somewhat surprisingly, the long lifetime for survival
of coherence terms appears to have a minimal effect on
the transfer of exciton population in the PE545 antenna
complex. This can be understood as resulting from the rel-
atively sparse network of efficient transfer pathways in this
complex, which has the effect of limiting interference be-
tween competing pathways. A minimal exponential decay
model describes the flow of exciton population through
this network accurately at 300K, when this network has
no closed cycles, but departs from the full density matrix
calculation at 77K, when such a cycle allows for interfer-
ence between multiple pathways through the complex. It
is possible that other photosynthetic molecules, with func-
tions more sophisticated than the simple direction of ex-
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Figure 13 Exciton populations vs time calculated at a) 300K b)
77K for initial stateβ82C . Solid lines give populations calculated
by Eq. 16, while dashed lines give populations calculated using
the minimal exponential decay model.

citon population to the lowest energy chromophore, may
make more sophisticated use of this information.

The method of thermalized reduction of the density
matrix introduced in this paper allows the derivation of
quantum coherent equations of motion in a regime of high
temperature and strong interaction with the surrounding
environment which is often considered inimical to quan-
tum mechanical behavior. Rather than being destroyed rapidly
by interaction with the reservoir, coherence terms may per-
sist or even be preserved by interaction with the reservoir.
The conditions necessary for reduction – that the reduced
degrees of freedom thermalize rapidly with respect to the
evolution of the unreduced degrees of freedom – are sat-
isfied in the limit of strong interaction with the reservoir,
while the thermodynamic weighting of the effective cou-
pling matrix may yield slow evolution of the unreduced
degrees of freedom even when the bare coupling is rela-
tively strong. The simplicity of the conditions necessary

Figure 14 Exciton populations vs time calculated at a) 300K b)
77K for initial stateβ158C . Solid lines give populations calcu-
lated by Eq. 16, while dashed lines give populations calculated
using the minimal exponential decay model.

for the thermalized reduction procedure show that quan-
tum mechanical behavior does not require low tempera-
tures or elaborate isolation from the surroundings to be
observed.
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