
Appl. Math. Inf. Sci. 7, No. 2, 793-800 (2013) 793

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

CPPM: a Comprehensive Power-aware Processor
Manager for a Multicore System
Slo-Li Chu∗, Shiue-Ru Chen, and Sheng-Fu Weng

Department of Information and Computer Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan

Received: 7 Sep. 2012; Revised 21 Nov. 2012; Accepted 23 Dec. 2012
Published online: 1 Mar. 2013

Abstract: The growing functionality of mobile devices explains increasing system performance requirements and the subsequent wide
adoption of multicore processors. As mobile systems are battery powered, battery life largely limits these high performing multicore
mobile devices. Developing an efficient power-aware processor manager for mobile multicore systems has received considerable atten-
tion. The conventional processor management system of embedded systems e.g., the Linux kernel scheduler incorporates an automatic
scheme to control peripheral operations and processor frequency. However, this mechanism fails to consider user requirements, task
loading, and operating status of processors in the multicore system to satisfy operating requirements. Therefore, this work presents
a novel power-aware multicore processor manager, referred to herein as a comprehensive power-aware processor manager (CPPM),
which integrates a system configuration selection algorithm (BPM-DFS), task re-scheduling mechanism (CTM), and precise system
power estimation mechanism (PPM). The CPPM manager can dynamically set system configurations and rearrange executed tasks
among multiple cores to comply with the limitation of power consumption that is assigned by the user. Moreover, the proposed CPPM
is implemented on quad-core x86 Android system to compare with the capabilities of other scheduling mechanisms.

Keywords: Power-aware scheduling, processor manager, Android, Linux, task scheduling, multicore

1. Introduction

The growing functionality of mobile devices increases the
requirements of system performance. High frequency, mul-
ticore processors are widely adopted to comply with per-
formance requirements of mobile devices. Many of these
high performing mobile devices use Android as their oper-
ating system to provide extreme user experience and multi-
media functionalities. However, higher working frequency
and core numbers of processors consume more power and
reduce the battery life of such devices. These products
are seriously limited in satisfying user demand. Conven-
tional power-aware management mechanisms, including
dynamic voltage frequency scaling (DVFS) [1][2], can ad-
just the wording frequency and voltage to reduce the power
consumption of processors when remaining idle. Addition-
ally, the efficiency of power savings can not increase since
the DVFS mechanism fails to consider the actual work-
loads of each processor in the multicore system and adjust
to the appropriate working frequency. Another solution in-
tegrates the DVFS mechanism with an OS task scheduler.

Since the fundamental feature of Android is Linux kernel,
the task scheduler of Android is also Linux task sched-
uler. Integrated with the Linux task scheduler, the power
managing mechanism of Android/Linux kernel can auto-
matically control the working frequency of the processors,
based on the workload of the corresponding processor. Ow-
ing to the inability of mobile devices to execute heavy
loading programs continuously, performance of the pro-
grams is not considered when the devices are idle. There-
fore, the unused cores and working frequency can be turned
off to reduce power consumption and extend the battery
life of mobile devices. Unfortunately, the five automatic
power modes provided by the Linux processor manager
can not turn off the unused cores; the frequency scaling
policy is too conservative. This inability also limits the fea-
sibility of Android/Linux-based mobile devices.

This work presents a novel power-aware processor man-
ager, referred to herein as comprehensive power-aware pro-
cessor manager (CPPM), to configure dynamically proces-
sor cores to satisfy the limitation requirements of power
consumption comply with limitations in power consump-

∗ Corresponding author: e-mail: slchu@cycu.edu.tw
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

794 Slo-Li Chu et al. : CPPM: a Comprehensive Power-aware Processor Manager...

tion that is assigned by the user. The CPPM processor
manager comprises three mechanisms, a system configu-
ration selection algorithm referred to herein as bounded-
power multicore dynamic frequency scaling (BPM-DFS),
a task monitoring and rescheduling mechanism referred to
herein as core task mapping (CTM), and a precise estimat-
ing mechanism of system power consumption referred to
herein as predictive power model (PPM). By integrating
BPM-DFS, CTM, and PPM, the proposed CPPM can ad-
just the status of the multicore processors and balance the
workload of each processor to enhance the system perfor-
mance under the constraint of power consumption. More-
over, the CPPM manager is implemented on quad-core
x86 Android system to compare with the capabilities of
other scheduling mechanisms e.g., Linux/Android build-
in power manager and SCA-ICA scheduling mechanism
in order to compare how these power-aware scheduling
mechanisms differ in power consumption.

The rest of this paper is organized as follows. Sec-
tion 2 introduces pertinent literature. Section 3 then intro-
duces the proposed CPPM manager. Next, Section 4 sum-
marizes the experimental results. Conclusions are finally
drawn in Section 5, along with recommendations for fu-
ture research.

2. Related Works

2.1. Linux CPUFreq Governor

The built-in processor manager of Linux system is Linux
CPUFreq Governor [4], which is based on the dynamic fre-
quency scaling (DFS) mechanism to adjust the frequencies
of cores on-the-fly in order to reduce the power consump-
tion of the idle cores. In addition to considering the work-
load of task queues and task schedulers of each core in or-
der to determine an appropriate frequency automatically,
Linux CPUFreq Governor provides five execution modes
for different situations, including performance, powersave,
ondemand, conservative, and userspace. Users can adjust
the execution mode manually by the supported APIs. These
five modes are explained briefly as follows.

–Performance: When the Linux CPUFreq Governor is
set at ”performance” mode, the working frequency of
the processors is set as the highest statically. Therefore,
Linux CPUFreq Governor consumes the highest power
consumption, yet achieves the best performance. It is
also the default mode of the Linux computer system.

–Powersave: When the Linux CPUFreq Governor set
as at ”powersave” mode, the working frequency of the
processors is set as the lowest statically. The power
consumption and the working frequency of the proces-
sors can be reduced maximally, subsequently dimin-
ishing the overall performance significantly.

–Ondemand: When the Linux CPUFreq Governor is
set at ”ondemand”, Linux power manager automati-
cally adjusts the working frequencies of the cores, based

on their runtime workloads. Therefore, the processors
must be capable of changing the working frequency
quickly. Also, this mode provides several configurable
parameters to set the sampling frequency, workload
statistics, and threshold values. This mode focuses on
an improved performance rather than lower power con-
sumption.

–Conservative: While resembling ondemand mode, this
mode also relies on the Linux power manager to dy-
namically adjust the working frequency, based on the
runtime situation. However, this mode smoothly ad-
justs to the frequency, rather than jump to the maxi-
mum or minimum frequency immediately. Therefore,
it is feasible for battery-powered devices to save addi-
tional power yet degrade system performance.

–Userspace: This mode fails to adjust the frequency
dynamically. Users wanting to adjust the working fre-
quency of specific cores must use the corresponding
proposed APIs to set the frequency manually.

According to the above discussion, the Linux CPUFreq
Governor can dynamically adjust the working frequency
of the multicore processors, yet fails to turn off unused
processors to save additional power, making it impossi-
ble to achieve a workload balance between the processors.
Therefore, a power-aware processor manager for multicore
Android/Linux systems must be developed for multicore
computer systems.

2.2. SCA-ICA Scheduling Mechanism

Lee [3] developed a heuristic task assignment mechanism,
referred to as sufficient-cores assignment and insufficient-
cores assignment (SCA-ICA), to rearrange tasks for a mul-
ticore architecture in order to reduce power consumption.
SCA-ICA can reschedule the tasks for every core in the
multicore system to reduce the peak workload of cores and
lower the corresponding working frequencies. Also, SCA-
ICA classifies the tasks into three groups, heavy, medium,
and light ones. If the amount of tasks is less than the num-
ber of available cores, SCA-ICA schedules light tasks and
heavy tasks for the distinct cores by using the first-fit de-
creasing algorithm. If the amount of tasks is larger than the
number of available cores, the tasks are reassigned by us-
ing the first-fit decreasing algorithm. Next, the heavy tasks
are parallelized by SCA-ICA and then divided into sev-
eral portions. These subprograms are arranged for cores
by using the above policy. The cores are shutdown if they
are idle after scheduling by SCA-ICA. The work frequen-
cies of each core are assigned based on their workload.
However, this algorithm is designed for many-core archi-
tectures. The speedup is limited if SCA-ICA is applied
on x86 multicore architectures. Moreover, the heavy tasks
for actual computer systems, including Android or Linux
systems, are difficult to parallelize. The task sets are not
a periodically fixed task set in the computer systems of
consumer electronics, making SCA-ICA infeasible for An-
droid or Linux based computer systems.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 793-800 (2013) / www.naturalspublishing.com/Journals.asp 795

Comprehensive Power-aware Processor Manager (CPPM)

B
ounded-P

ow
er M

ulticore
D

ynam
ic F

requency S
caling

(B
P

M
-D

F
S

)

System configuration:
Config = (Power, cfs,
Freq, TS_out, L, C)

Task TaskAdd Remove Release

1

2

3

4

1

2

3

4

1

2

3

4

Core1Core1

Core2Core2

Core3Core3

Core4Core4

Task SetTask Set

Frequency1

1

Frequency2

2

Frequency3

Frequency4

4

3

OFF

OFF

ON

ON

Frequency1Frequency1

11

Frequency2Frequency2

22

Frequency3Frequency3

Frequency4Frequency4

44

33

OFF

OFF

ON

ON

R
esult

FreqFreqFreq

Trigger

Tissue=Issue Tissue=Complete

Predictive Power Model
(PPM)

Core Task Mapping
(CTM)

Task Set

…

Task Set

…
Trigger

{TS_Tmp, Ltmp, Ctmp }

T = {T1, T2, …,Tn}

Figure 1 The fundamental architecture of proposed CPPM manager.

3. Details of Comprehensive Power-aware
Processor Manager (CPPM)

This section discusses the proposed comprehensive power-
aware processor manager (CPPM) in detail, which can
configure the system dynamically when issuing or com-
pleting a task, based on the current status of the system,
workload of each core, and loading of the new issued task.
By managing the core shutdown/power-on, adjusting the
working frequency, and rearranging the task queues of each
core, the proposed CPPM can both comply with the ”power
budget” and achieve the best system performance, ulti-
mately reducing the power consumption of the system.
To achieve the above objective, this mechanism schedules
tasks of the task set under three sub-objectives. First, power
budget, which is assigned by the user, is the upper bound of
the system power consumption. All possible system con-
figurations are determined by CPPM using this power bud-
get. Second, the tasks of each core are rescheduled to achieve
an improved load balance. The total system performance
can be improved when the peak workload of the core can
be reduced. Third, the frequency of task migration among
cores is minimized to reduce the additional power con-
sumption. Finally, after the most appropriate system con-
figuration and task schedule of each core are determined,
CPPM sets the system configuration accordingly. To achieve
the above design objective, CPPM comprises three major
components: a system configuration selection algorithm
referred to herein as bounded-power multicore dynamic
frequency scaling (BPM −DFS), a task monitoring and
rescheduling mechanism referred to herein as core task

mapping (CT M), and a precise estimating mechanism of
system power consumption referred to herein as predictive
power model (PPM). Figure 1 illustrates the conceptual
organization of CPPM. The following subsections intro-
duce the details of these three mechanisms.

3.1. Bounded-Power Multicore Dynamic
Frequency Scaling (BPM-DFS) Mechanism

In a multicore Android system with the CPPM manager,
the task set is denoted as T = {T1,T2, . . . ,Tn}. The avail-
able core number of this multicore system is κ . The core
enabling status of the multicore system is denoted as c f s=
{P1, ...,Pκ}; if Pi = 1, the corresponding core is power-
on. If Pi = 0, the core is shutdown. The set of all pos-
sible combinations of the core enabling status is denoted
as CFS = {c f s1, ...,c f s2(κ−1)}, where c f s1 = (1,0, ..,0)
and c f s2(κ−1) = (1,1, ...,1). Since the system requires at
least one enabled core, the number of combinations of the
core enabling status is 2(κ−1). The set of possible work-
ing frequencies of core i is denoted as Fi = { fi j|1 ≤ j ≤
m, fi1 < fi2 < ... < fim}, where f1 represents the lowest
frequency and fm refers to the highest frequency. There-
fore, all working frequencies of the cores are denoted as
Freq = {F1, ...,Fg, ...,Fκ},Fg ∈ { f1, ..., fm| f1 < ... < fm}.
The workload and executed core number of task i denote
as Ti.L and Ti.C, respectively. The set of all tasks is denoted
as T S = {T1.C,T2.C, ...,Tn.C}. Also, TS Cur and TS Tmp
represent the current task set and temporary task set, re-
spectively. The proposed system configuration selection

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

796 Slo-Li Chu et al. : CPPM: a Comprehensive Power-aware Processor Manager...

……

Core1Core1

Core2Core2

Core3Core3

Core4Core4

Tissue

Active or Complete

Tissue

Active or Complete
TtotalTtotal

…
CFS

…
CFS

Freq2

Freq1

Freqm*κ…

Freq2Freq2

Freq1Freq1

Freqm*κFreqm*κ…

TS_CurTS_CurTS_Cur

TS_CurTS_Cur

TS_Tmp Freq C LTS_Tmp FreqFreq CC LL

TS_TmpC
L

TS_TmpCC
LL

Add or RemoveT
…

Add or RemoveT
…
T
…

λ ω βλ ω β
Core Task Mapping

Predictive Power Model

…

Power ≦ Power Budget

Power Budget

Power ≦ Power BudgetPower ≦ Power Budget

Power Budget

……

ConfigSet

…
ConfigSet

…

BaseBase

CandidateConfigSet

…

Best Workload Balance &
Minimum Task Migration

CandidateConfigSet

…
CandidateConfigSet

…

Best Workload Balance &
Minimum Task Migrationσ

…
σ
…

sortByAvgFreq();sortByAvgFreq();

Return First ConfigReturn First Config

Core1

1

Core2

2

Core3

Core4

4

3

Core1Core1

11

Core2Core2

22

Core3Core3

Core4Core4

44

33

offlineComputing();

Power

Figure 2 The architecture of BPM-DFS mechanism.

mechanism, Bounded-Power Multicore Dynamic Frequency
Scaling (BPM−DFS), must be executed to assign a ”Power
Budget” by users, which refers to the upper bound of the
system power consumption that users are allowed. BPM-
DFS can be activated when a task is issued initiated (Tissue =
Issue) or completed (Tissue = Complete). BPM-DFS can
determine the possible system configurations, and select
one of the most appropriate configurations, which can achieve
the lowest task migration number, best load balance, and
highest working frequency. The core/task scheduling can
rearrange the task queue of each core to achieve an im-
proved load balance and performance. The feasible system
configuration of core enabling status (c f s), set of work-
ing frequencies of cores (Freq), and rearranged task set
(TS out) can be determined. Finally, the system configura-
tion, denoted as Con f ig=(Power,c f s,Freq,T S out,L,C),
can be generated by BPM-DFS, along with the multicore
Android system set as well. The configuration consists of
five tuples, where Power denotes the predictive power con-
sumption of this configuration; L represents the highest
workload in these cores; and C refers to the maximum task
migration number. Figure 2 illustrates the detailed execu-
tion flow of BPM-DFS.

The auxiliary functions of CPPM manager are listed as
follows.

–offlineComputing() evaluates and returns pertinent en-
vironmental parameters, λ , ω , β , and TS Cur, which
are required by BPM-DFS and Predictive Power Model.

–CoreTaskMapping(T, c f si, TS Cur) reschedules and
reassigns the given task set T under the system config-
uration of c f si by using the given core/task mapping
algorithm. The rearranged task set, TS Tmp, is then
returned. The workload value of TS Tmp is evaluated
and stored into Ltmp. The task migration number, Ctmp,
is also obtained by comparing the updated TS Tmp
and original TS Cur. The next subsection discusses the
detailed mechanism.

–sortByAvgFreq(CandidataConfigSet) sorts all of
the configurations in the CandidataConfigSet set, based
on their average working frequencies in a descending
order and, then, returns the sorted CandidataConfigSet
set in the σ .

–Load(i, TS) evaluates and returns the workload value
of the TS task set on the core i, where the TS is sched-
uled and reassigned to improve the load balance. This
value is also adopted to estimate the power consump-
tion of the current configuration by Predictive Power
Model, as discussed in the next subsection.

3.2. Core Task Mapping (CTM) Mechanism

Results of this study demonstrate that the workloads of
cores significantly affect power consumption of cores. Also,
the workload balance of the cores in the multicore sys-
tem also affects the overall performance of the target com-
puter system. Therefore CPPM consists of an effective task

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 793-800 (2013) / www.naturalspublishing.com/Journals.asp 797

rescheduling mechanism, referred to herein as core task
mapping (CTM), to rearrange the tasks among the cores
and improve the workload balance. Figure 3 shows the ex-
ecution flow of CTM. CTM considers the current config-
urations of Ttotal , c f stmp, and TS Cur, to schedule and re-
arrange the tasks by using the algorithms of Worst-Fit Bin
Packing and First-Fit Bin Packing [6] and, then, returns
the results of TS Worst-Fit and TS First-Fit, respectively.
Since the task migration consumes additional power, the
proposed CTM selects the scheduled task set with the op-
timum workload balance and minimal task migration num-
ber. The task migration number is obtained based on a
comparison of TS Cur, TS First-Fit, and TS Worst-Fit. C
denotes the total thread migration number, which increases
if a task is moved from another core. The maximal work-
load value of the cores, L, is then obtained. Since a smaller
L value denotes an improved system performance and lower
power consumption, the L values of scheduled task sets by
using Worst-Fit Bin Packing and First-Fit Bin Packing al-
gorithms are obtained. Finally, the task set with a smaller
L and C is stored into the tuple of {T S T mp,Ltmp,Ctmp}.

TtotalTtotal

Worst-FitBinPacking(); First-FitBinPacking();

TS_Worst-Fit TS_First-FitTS_Worst-Fit TS_First-Fit

L LLL LL

TS_CurCalculate Task Migration Number Calculate Task Migration NumberTS_CurCalculate Task Migration Number Calculate Task Migration Number

Calculate Workload Balance Calculate Workload BalanceCalculate Workload Balance Calculate Workload Balance

C CCC CC

Choose a Task Set
with Better Workload Balance

TS_Tmp C
L

TS_Tmp CC
LL

(T, cfsi, TS_Cur)

Figure 3 The scheduling flow of CTM mechanism.

3.3. Predictive Power Model (PPM)

As mentioned earlier, implementing the entire CPPM man-
ager includes BPM-DFS and Core Task Mapping algo-
rithms, need the power consumption of the current system.
Actual power consumption of the evaluated computer can
not be measured precisely and immediately by the power
meter. Therefore, this work presents a novel power esti-
mation mechanism, referred to herein as predictive power
model (PPM). PPM can estimate the current power con-
sumption of the computer system by identifying three ma-
jor portions of the power consumption: power consump-
tion of core execution, power consumption of the computer
system except for cores, and baseline power consumption
of the idle core, as shown in Eq. 1.

PredictivePowerModel = ε +β (1)

In Eq.1, ε and β denote the power consumptions of
cores and other components except for cores in the com-
puter system, respectively. Notably, β can be treated as a
constant when the configurations of the components in the
computer system are the same. When the multicore sys-
tem contains κ cores, the power consumption of a core is
denoted as µ . Eq. 2 shows the total power consumption of
the cores, ε .

ε =
κ

∑
h=1

µh (2)

According to the results of [1][2], power consumption
of the core is formulated as P = kCV 2 f , where k denotes
the constant; C represents the effective capacitance of the
core; V refers to the working voltage; and f is the work-
ing frequency. According to our results, while the system
workload is increased, the power consumption of the cor-
responding cores is increased. Additionally, the enabling
status (power-on/shutdown) of the core also affects the power
consumption of the core. Therefore, Eq. 2 can be extended
as in Eq. 3.

µh = Ph ×C×V 2
h ×Fh ×ϖ ×Loadh (3)

Where Ph denotes the enabling status of the core h;
Ph = 1 refers to a situation in which the power of core h
is turned on; Ph = 0 refers to a situation in which core h
is shutdown; Fh represents the working frequency of core
h; Vh denotes the working voltage of core h; and Loadh
refers to the workload of core h, which can be estimated by
the auxiliary function, Load(), and the current T S of this
core. Moreover, ω is a constant factor of workload and the
power consumption of the core. Finally, the overall power
consumption of the system can be represented as Eq. 4.

PredictivePowerModel = (
κ
∑

h=1
Ph ×λ ×Fh ×ϖ ×Loadh)+β (4)

Where ε , β , and ω can be obtained by using the aux-
iliary function, offlineComputing(), which varies with the
varied computer system.

4. Experimental Results

This section discussed the experimental results of CPPM,
which runs on an actual multicore Android system. The
power-aware scheduling capabilities of CPPM, SCA-ICA
[3] and Linux CPUFreq Governor [4] are also compared
and adopted in this experiment. The multicore Android
platform adopts Intel Core 2Quad Q6600 and Android 2.3.5
with Linux Kernel 2.6.39. Notably, Intel Core2Quad Q6600
is a quad cores x86 processor, in which the available work-
ing frequencies of each core is 1603MHz, 1870MHz, 2136MHz,
and 2403MHz. The actual system power consumption is

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

798 Slo-Li Chu et al. : CPPM: a Comprehensive Power-aware Processor Manager...

measured by a recordable digital power meter. The experi-
ments are based on a task list with sixteen individual tasks
executed within the same period. This task list can repre-
sent the controlled case of executing tasks to evaluate the
results of power consumption under three power manage-
ment mechanisms. The task lists, task execution sequence,
and three scheduling mechanisms are implemented to eval-
uate the power consumption and compare the scheduling
results of CPPM, SCA-ICA, and Linux CPUFreq Gover-
nor. Next, a heavy loading benchmark application is exe-
cuted in the background to represent the general situation
in the real multicore Android system. The four heavy load-
ing applications adopted in this section are db, mtrt, gcc,
and mcf. The former two benchmarks are adopted from
SPECJVM98 [5], the latter two benchmarks are adopted
from SPEC2000 [5] to illustrate the execution by Dalvik
Virtual Machine (DVM) and execution by native program
(JNI), respectively. Since Linux CPUFreq Governor is not
shut down or the power of the cores is turned on, the ex-
periments of Linux scheduling turn on all of the cores.

SPECJVM98: db

1471.22

1139.48

1569.27

1208.76

1045.99
1083.88

1100

1200

1300

1400

1500

C
P

P
M

(9
1)

L
in

ux
P

er
fo

rm
an

ce

S
C

A
IC

A

C
P

P
M

(7
8)

L
in

ux
P

ow
er

sa
ve

C
P

P
M

(7
1)

T
ot

al
 P

ow
er

(W
at

t)

1000

1100

1200

1300

1400

1500

1600

1700

T
ot

al
 E

xe
cu

te
 T

im
e(

se
c)

 .

Total Power(Watt)

Total Execute Time(sec)

Figure 4 The experimental results of three scheduling mecha-
nisms with db benchmark.

The general situation of a multicore Android system is
demonstrated in the first experiment, which adopts a heavy
loading program executed in the background. The heavy
loading task, db benchmark as adopted from SPECJVM98,
also functions as the performance metric to evaluate how
the three scheduling mechanisms i.e. CPPM, Linux CPUFreq
Governor, and SCA-ICA differ in performance. Figure 4
summarizes the experimental results, where the left Y-axis
denotes the power consumption of the three scheduling
mechanisms, and the right Y-axis represents the execution
time of the db under three scheduling mechanisms. The
Power budget of CPPM is set as 71, 78, and 91 to represent
low power, general case, and high performance situations,
respectively. The execution mode of Linux CPUFreq Gov-
ernor is set at ”powersave” and ”performance”. The power
consumption of Linux Performance mode is 1423, while
the execution time of db is 1046 sec. However, when the

power budget of CPPM is sets as 91, the power consump-
tion is only 1413, and the execution time of db is 1084 sec.
The power consumption of CPPM is better than that of the
Linux Performance mode, owing to the improved power
management capability of CPPM under a heavy loading
system. Also, the Linux performance mode is the default
configuration of Linux/Android system. Experimental re-
sults indicate that CPPM can obtain a power savings of
1%. Consider a situation in which the power budget of
CPPM is set as 71. Under this situation, CPPM can reduce
power consumption by 21% over that of the Linux perfor-
mance mode. Although CPPM with power budget set as 71
can save power by 20% over that of SCA-ICA, the former
takes more time than the latter in completing the execution
of db.

SPECJVM98: mtrt

5888

4621
5243

11487

6841

6514

1100

1200

1300

1400

1500

1600

C
P

P
M

(9
1)

L
in

ux
P

er
fo

rm
an

ce

S
C

A
IC

A

C
P

P
M

(7
8)

L
in

ux
P

ow
er

sa
ve

C
P

P
M

(7
1)

T
ot

al
 P

ow
er

(W
at

t)

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

T
ot

al
 E

xe
cu

te
 T

im
e(

se
c)

 .

Total Power(Watt)

Total Execute Time(sec)

Figure 5 The experimental results of three scheduling mecha-
nisms with mtrt benchmark.

Exactly how the three scheduling mechanisms differ
in performance is evaluated in the second experiment, in
which the heavy loading task, mtrt benchmark as adopted
from SPECJVM98 are used to act as the Android appli-
cation that is executed on Dalvik Virtual Machine. The
experimental setting is the same as that of the first ex-
periment. Figure 5 summarizes the experimental results.
The power consumption of Linux performance mode is
1532, and the execution time of mtrt is 4621 sec. How-
ever, when the power budget of CPPM is set as 91, the
power consumption is only 1413; in addition, the execu-
tion time of mtrt is 1084 sec. Although the power con-
sumption of CPPM is better than that of Linux perfor-
mance mode by 2%, the execution time of the former is
slower than that of the latter by 22%. Consider a situa-
tion in which the power budget of CPPM is set as 71. Un-
der this situation, CPPM can reduce power consumption
by 24% over that of the Linux performance mode. CPPM
with Power Budget set as 71 can save power consumption
by 20% over that of, the former takes more time than the
latter in executing mtrt.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 793-800 (2013) / www.naturalspublishing.com/Journals.asp 799

SPEC2000: gcc

2934.61

2514.25

2904.37

5971

3501.87

3867

1100

1200

1300

1400

1500

1600

C
P

P
M

(9
1)

L
in

ux
P

er
fo

rm
an

ce

S
C

A
IC

A

C
P

P
M

(7
8)

L
in

ux
P

ow
er

sa
ve

C
P

P
M

(7
1)

T
ot

al
 P

ow
er

(W
at

t)

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

T
ot

al
 E

xe
cu

te
 T

im
e(

se
c)

 .

Total Power(Watt)

Total Execute Time(sec)

Figure 6 The experimental results of three scheduling mecha-
nisms with gcc benchmark.

Exactly how three scheduling mechanisms CPPM, Linux
CPUFreq Governor, and SCA-ICA differ in performance
is evaluated in the third experiment, in which the heavy
loading task, gcc benchmark as adopted from SPEC2000
act as the native application. The experimental setting is
the same as that of the above two experiments. Figure 6
summarizes the experimental results. Power consumption
of the Linux performance mode is 1590, while the execu-
tion time of gcc is 2514 sec. However, when the power
budget of CPPM is set as 91, the power consumption is
only 1532, and the execution time of gcc is 2935 sec. Al-
though the power consumption of CPPM is lower than
that of the Linux performance mode by 4%, the execu-
tion time of the former is slower than that of the latter by
14%. Consider a situation in which the power budget of
CPPM is set at 71. Under this situation, CPPM can reduce
power consumption by 24% over that of the Linux perfor-
mance mode. Although CPPM with Power Budget set at
71 can save power consumption by 18% over that of SCA-
ICA, but the former consumes more time than the latter
in completing the execution of gcc. Additionally, CPPM
(71) can save power consumption by 3% over that of the
Linux powersave mode. This finding illustrates the advan-
tage of CPPM mechanism in saving more power consump-
tion than that of the power manager in the widely adopted
Linux operating system.

Exactly how the three scheduling mechanisms differ
in performance is evaluated in the fourth experiment, in
which the heavy loading task and mcf benchmark adopted
from SPEC2000 are used to function as the native appli-
cation. The experimental setting is the same as that of the
above two experiments. Figure 7 summarizes the experi-
mental results. The power consumption of Linux perfor-
mance mode is 1690, while the execution time of mcf is
2611 sec. However, when the power budget of CPPM is
set at 91, the power consumption is only 1623, and the
execution time of mcf is 3029 sec. Although CPPM con-
sumes 4% more power than the Linux performance mode,

SPEC2000: mcf

3524.82

3518.02

5603

2960.57

2610.81

3028.89

1100

1200

1300

1400

1500

1600

1700

C
P

P
M

(9
1)

L
in

ux
P

er
fo

rm
an

ce

S
C

A
IC

A

C
P

P
M

(7
8)

L
in

ux
P

ow
er

sa
ve

C
P

P
M

(7
1)

T
ot

al
 P

ow
er

(W
at

t)

2000

2500

3000

3500

4000

4500

5000

5500

6000

T
ot

al
 E

xe
cu

te
 T

im
e(

se
c)

 .

Total Power(Watt)

Total Execute Time(sec)

Figure 7 The experimental results of three scheduling mecha-
nisms with mcf benchmark.

the execution time of the former is slower than that of the
latte by 14%. Consider a situation in which the power bud-
get of CPPM is set as 71. Under this situation, CPPM can
reduce more power consumption than the Linux perfor-
mance mode by 26%. Although CPPM with power budget
set as 71 can save more power consumption than SCA-ICA
by 20%, the former consumes more time than the latter in
completing the execution of mcf. Additionally, CPPM set
at 71 can save more power consumption than the Linux
Powersave mode by 2%. This finding illustrates the ad-
vantage of CPPM mechanism in saving more power than
the power manager in the widely adopted Linux operating
system. The above comparison reveals that the more power
savings generally induces a greater execution time. Since
CPPM allows users to assign the expected power budget,
users can select the most feasible power budget for their
specific purpose.

5. Conclusions

The growing functionality of mobile devices explains in-
creasing system performance requirements and the sub-
sequent wide adoption of multicore processors. The An-
droid/Linux operating systems are widely adopted to sat-
isfy the requirements of high performance multimedia ap-
plications. The conventional power management system
of embedded systems such as the Linux kernel scheduler
adopts an automatic scheme to control the usage of pe-
ripheral operations and processor frequency. These mecha-
nisms fail to consider user requirements, task loading, and
operational status of processors in the multicore system, to
comply with actual operating conditions. Also, the multi-
ple cores are not required since most of the idle time of
Android devices is light loading. The unused idle cores
can be shut down to save more power. Therefore, this work
describes a novel power-aware scheduling mechanism re-
ferred to herein as comprehensive power-aware proces-

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

800 Slo-Li Chu et al. : CPPM: a Comprehensive Power-aware Processor Manager...

sor manager (CPPM), which can dynamically set system
configurations, turn off the idle cores, adjust the working
frequency, and rearrange executed tasks among multiple
cores, to adhere the limitation of power consumption that
is assigned by the user. Experimental results reveal that
CPPM can save 26% and 18% more power consumption
than the Linux performance mode, and SCA-ICA, respec-
tively. Moreover, CPPM can save 3% more in power con-
sumption than that of the Linux powersave mode. Above
results demonstrate that CPPM can reduce system power
consumption by using feasible system configuration deci-
sion and task rearrangement.

Acknowledgement

This work is supported in part by the National Science
Council of Republic of China, Taiwan under Grant NSC
101-2221-E-033-049.

References

[1] E. Talpes and D. Marculescu, IEEE Transactions on Very
Large Scale Integration Systems, 13, 591-603 (2005).

[2] G. Magklis, G. Semeraro, D. H. Albonesi, S. G. Dropsho, S.
Dwarkadas, and M. L. Scott, IEEE Micro, 23, 62-68 (2003).

[3] W. Y. Lee, Proc. 13th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, 216-
223 (2009).

[4] P. Mochel, Proc. Linux Symposium, 326-339 (2003).
[5] SPEC, SPEC Benchmark Suits, http://www.spec.org/.
[6] J. Wang, B. Ravindran, and T. Martin, Proc. IEEE Workshop

on Software Technologies for Future Embedded Systems,
21-28 (2003).

Slo-Li Chu received his PhD
degree in Electrical Engineer-
ing from National Sun Yat-sen
University in 2002. He is cur-
rently an assistant professor of
Department of Information and
Computer Engineering, Chung
Yuan Christian University, Tai-
wan. His research interests in-
clude computer architectures,
parallelizing compilers, system

level modeling, system-on-chip design, GPU architectures,
and embedded system.

Shiue-Ru Chen received his
MS degree in Information and
Computer Engineering from Chung
Yuan Christian University, Tai-
wan, in 2010. He is currently
pursuing for his PhD degree in
Electronic Engineering at Chung
Yuan Christian University, Tai-
wan. His research interests in-
clude computer architectures and
embedded system.

Sheng-Fu Weng received
his MS degree in Information
and Computer Engineering from
Chung Yuan Christian Univer-
sity, Taiwan, in 2012. His re-
search interests include com-
puter architectures and embed-
ded system.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

