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Abstract: In this paper, we proposed an improved cuckoo search optimization (ICS) algorithm for solving planar graph coloring
problem. The improved cuckoo search optimization algorithm is consisting of the walking one strategy, swap and inversion strategy
and greedy strategy. The proposed improved cuckoo search optimization algorithm can solve the planar graph coloring problem using
four-colors more efficiently and accurately. The experimental results show that we proposed improved cuckoo search optimization
algorithm can get smaller average iterations and higher correction coloring rate.
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1. Introduction

The graph coloring problem has been proved to be a clas-
sic NP-complete problem. Until now, there is not an ef-
fective strategy to get the best solution. For solving this
kind of problem, both the exact algorithms and approxi-
mate algorithms have been used including ant colony op-
timization algorithm in [1,4,12,13], tabu search algorithm
in [2,7,11], genetic algorithm in [18], particle swarm opti-
mization algorithm in [6,10], neural network algorithm in
[14], Quantum Search Algorithm [19] etc. It can be applied
to many engineering applications, such as time tabling and
scheduling in [5], radio frequency assignment in [8], com-
puter register allocation in [3], and printed circuit board
testing in [9].
Recently, a novel heuristic search algorithm, called Cuckoo
Search(CS) [15], has been proposed by Yang and Deb in
2009. The CS is a search swarm intelligence algorithm
based on the interesting breeding behavior such as brood
parasitism of certain species of cuckoos. Each nest within
the swarm is represented by a vector in multi-dimensional
search space; the CS algorithm also determines how to
update the position of cuckoo laid egg. Each cuckoo up-
dates it position of lay egg based on current step size via
Lévy flights. It has been shown that this simple model has

been applied successfully to continuous nonlinear func-
tion, engineering optimization problem [17], etc. The CS
was originally developed for continuous valued spaces, but
many problems are, however, defined for discrete valued
spaces where the domain of the variables is finite. By solv-
ing planar graph coloring problem using CS, we proposed
a discrete quaternary version of cuckoo search.

The remainder of this paper is organized as follows:
Section 2 briefly overviews the procedure of the planar
graph coloring. Section 3 describes the CS algorithm and
an improved Cuckoo Search algorithm (ICS). The experi-
ment result in Section 4, and discusses the proposed ICS
for solving planar graph coloring problem. This paper con-
cludes in Section 5.

2. The Procedure of the Planar Graph
Coloring

What is the minimum number of colors that can be used
to color the regions in a planar map with neighboring re-
gions having different colors? This has been a problem
of interest for over a century. As early as 100 years ago
there were many scholars who had been attracted to carry
on researches on this problem, and many mathematicians
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had proven that any planar graph could be colored by four
kinds of colors, which is called the four-color problem
(i.e. four-color conjecture). The four-color problem was
originally posed as a conjecture in 1850s. It was finally
proved by the American mathematicians Appel and Haken
in 1976. Coloring regions (whether these are states, coun-
tries, counties) in a map with a minimum number of col-
ors such that neighboring regions (those sharing a com-
mon boundary) are colored differently has been proved to
be a classic NP-complete problem. In this section, a brief
overview of the planar graph coloring is addressed. The
procedure of the planar graph coloring is described as fol-
lows:

Step 1: Transferring the map to a graph
It is not particularly difficult to show that the map can

be colored with four-colors, that is, each region of the map
can be assigned one of four given colors such that neigh-
boring regions are colored differently. So, with each map,
there is associated a graph G, called the dual of the map,
whose vertices are the regions of the map and such that
two vertices of G are adjacent if the corresponding regions
are neighboring regions.

Step 2: Creating the adjacency matrix of graph
As we know, a graph G can be defined by two sets,

namely its vertex set V (G) and edge set E(G) as described
in Eqs. (1) and (2), respectively.

V (G) = {v1, v2, v3, · · · , vn} (1)

E(G) = {e1, e2, e3, · · · , em} (2)

where n is the number of nodes and m is the number of
edges. A graph can also be described by an adjacency ma-
trix using Eq. (3).

aij =

{
1, if vivj ∈ E(G);

0, otherwise.
(3)

Step 3: Specifying color number to the vertex
Coloring program of the adjacency matrix A of planar

graph with n nodes V = v1, v2, · · · , vn can be indicated
as the coloring sequence R = r1, r2, · · · , rn , where rx ∈
R(1 ≤ x ≤ n) and rx ∈ {0, 1, 2, 3} . In order to determine
whether the coloring sequence R satisfies the conditions of
the coloring program, we define the fitness function f(R)
and the conflict matrix Co, according to adjacency matrix
as stated in Eqs. (4) and (5).

f(R) =
n∑

x=1

n∑
y=1

conflictxy (4)

conflictxy =

{
axy if rx = ry and x ̸= y

0 otherwise
(5)

where rx, ry ∈ R(1 ≤ x ≤ n, 1 ≤ y ≤ n), axy ∈ A and
conflictxy represents the coloring conflict between node
vx and node vy , f(R) represents the aggregate of node
coloring in coloring sequence R.

Step 4: Adjust coloring number according to adjacency
matrix

Obviously, the fitness function f(R) ≥ 0 and f(R) is
an even number. In order to consider in such a way that no
two adjacent vertices (i.e. regions) are of the same color,
it corresponds to a reasonable program when the fitness
function f(R) = 0. For f(R) = 0, the vertex must adjust
the color number.

3. Improved Cuckoo Search
In order to describe the Cuckoo Search algorithm more
clearly, let us briefly review the interesting breed behaviour
of certain cuckoo species. Then, we will outline the basic
ideas and steps of the proposed algorithm. Base Cuckoo
Search algorithm, In this section, an improved Cuckoo Search
algorithm for solving planar graph coloring problem is pro-
posed.

3.1. Cuckoo Breeding Behaviour [15, 18]

In nature, cuckoo is fascinating birds, not only because of
the beautiful sounds they can make, but also because of
their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal
nests, though they may remove others’ eggs to increase
the hatching probability of their own eggs. Quite a num-
ber of species engage the obligate brood parasitism by lay-
ing their eggs in the nests of other host birds (often other
species). There are three basic types of brood parasitism:
intraspecific brood parasitism, cooperative breeding, and
nest takeover. Some host birds can engage direct conflict
with the intruding cuckoos. If a host bird discovers the
eggs are not their owns, they will either throw these alien
eggs away or simply abandon its nest and build a new nest
elsewhere. Some cuckoo species such as the New World
brood-parasitic Tapera have evolved in such a way that fe-
male parasitic cuckoos are often very specialized in the
mimicry in colour and pattern of the eggs of a few cho-
sen host species. This reduces the probability of their eggs
being abandoned and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is
also amazing. Parasitic cuckoos often choose a nest where
the host bird just laid its own eggs. In general, the cuckoo
eggs hatch slightly earlier than their host eggs. Once the
first cuckoo chick is hatched, the first instinct action it will
take is to evict the host eggs by blindly propelling the eggs
out of the nest, which increases the cuckoo chicks share
of food provided by its host bird. Studies also show that a
cuckoo chick can also mimic the call of host chicks to gain
access to more feeding opportunity.

3.2. Lévy Flight

On the other hand, various studies have shown that flight
behaviour of many animals and insects has demonstrated
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the typical characteristics of Lévy flights [20]. A recent
study by Reynolds and Frye shows that fruit flies or Drosophila
melanogaster, explore their landscape using a series of straight
flight paths punctuated by a sudden 900 turn, leading to
a Lévy-flight-style intermittent scale free search pattern.
Studies on human behaviour such as the Ju/’hoansi hunter-
gatherer foraging patterns also show the typical feature of
Lévy flights. Even light can be related to Lévy flights [20].
Subsequently, such behaviour has been applied to opti-
mization and optimal search, and preliminary results show
its promising capability.

Furthermore, various studies have shown that ?ight be-
haviour of many animals and insects has demonstrated the
typical characteristics of Lévy lights. A recent study by
Reynolds and Frye shows ?ies or Drosophila melanogaster,
explore their that fruit landscape using a series of straight
?ight paths punctuated by a sudden 90◦ turn, leading to
a Lévy-flight-style intermittent scale free search pattern
[19]. Studies on human behaviour such as the Ju/’hoansi
hunter-gatherer foraging patterns also show the typical fea-
ture of Lévy flights [20]. The conclusion that light is re-
lated to Lévy flights is proposed by P.Barthelemy, etc (2008)
[21]. The study by Mercadier etc. shows that the Lévy
flights of photons in hot atomic vapours (2009) [22]. Sub-
sequently, such behaviour has been applied to optimiza-
tion and optimal search, and preliminary results show its
promising capability.

3.3. Basic CS

Cuckoo Search (CS) is an efficient, robust and simple opti-
mization algorithm for solving many continuous optimiza-
tion problems. Aiming at the particularity of the discrete
space optimization problem such as the graph coloring, we
adapt the quaternary CS to our problem and introduce the
walking one strategy, swap and inversion strategy and the
greedy transform algorithm.

CS is a heuristic search algorithm which has been pro-
posed recently by Yang and Deb [15]. The algorithm is in-
spired by the reproduction strategy of cuckoos. At the most
basic level, cuckoos lay their eggs in the nests of other host
birds, which may be of different species. The host bird may
discover that the eggs are not its own and either destroy the
egg or abandon the nest all together. This has resulted in
the evolution of cuckoo eggs which mimic the eggs of lo-
cal host birds. To apply this as an optimization tool, Yang
and Deb [16] used three ideal rules:

–Each cuckoo lays one egg, which represents a set of so-
lution co-ordinates, at a time and dumps it in a random
nest;

–A fraction of the nests containing the best eggs, or so-
lutions, will carry over to the next generation;

–The number of nests is fixed and there is a probability
that a host can discover an alien egg. If this happens,
the host can either discard the egg or the nest and this
result in building a new nest in a new location.

Based on these three rules, the basic steps of the Cuckoo
Search (CS) can be summarized as the pseudo code as fol-
low [16]:

————————————————————————

begin
Objective function f(x), x = (x1, x2, · · · , xd)

T ;
Generate initial population of
n host nests xi(i = 1, 2, . . . , n).

while (t < MaxGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights;
evaluate its quality/fitness Fi;
Choose a nest among n (say, j) randomly.

if (Fi > Fj)
replace j by the new solution;

end
A fraction (pa) of worse nests;
are abandoned and new ones are built;
Keep the best solutions
(or nests with quality solutions);
Rank the solutions and find the current best.

end while
Postprocess results and visualization.

end
————————————————————————

when generating new solution x(t+1) for, say cuckoo
i, a Lévy flight is performed.

x
(t+1)
i = x

(t)
i + ∂ ⊕ Lévy(β) (6)

where ∂ is the step size which should be related to the
scales of the problem of interests. In most cases, we can
use ∂ = 1 . The above equation is essentially the stochas-
tic equation for random walk. In general, a random walk is
a Markov chain whose next status/location only depends
on the current location (the first term in the above equa-
tion) and the transition probability (the second term). The
product means entrywise multiplications. This entrywise
product is similar to those used in PSO, but here theran-
dom walk via Lévy flight is more efficient in exploring the
search space as its step length is much longer in the long
run.

From a quick look, it seems that there is some simi-
larity between CS and hill-climbing in combination with
some large scale randomization. But there are some sig-
nificant differences. Firstly, CS is a population-based algo-
rithm, in a way similar to GA and PSO,GSO (glowworm
search optimization), but it uses some sort of elitism and/or
selection similar to that used in harmony search. Secondly,
the randomization is more efficient as the step length is
heavy-tailed, and any large step is possible. Thirdly, the
number of parameters to be tuned is less than GA and PSO,
GSO, and thus it is potentially more generic to adapt to
a wider class of optimization problems. In addition, each
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nest can represent a set of solutions, CS can thus be ex-
tended to the type of meta-population algorithm.

The product ⊕ means entry-wise walk while multipli-
cations. Lévy flights essentially provide a random walk
while their random steps are drawn from a Lévy Distri-
bution for large steps

Lévy ∼ µ = t−1−β(0 ≤ β ≤ 2) (7)

This has an infinite variance with an infinite mean.
Here the consecutive jumps/steps of a cuckoo essentially
form a random walk process which obeys a power-law
step-length distribution with a heavy tail. In addition, a
fraction pa of the worst nests can be abandoned so that
new nests can be built at new locations by random walks
and mixing. The mixing of the eggs/solutions can be per-
formed by random permutation according to the similar-
ity/difference to the host eggs.

Obviously, the generation of step size s samples is not
trivial using Lévy flights. A simple scheme discussed in
detail by Yang can be summarized as

x
(t+1)
i = x

(t)
i + ∂ ⊕ Lévy(β)

Lévy(β) ∼ 0.01
µ

|ν|1/β
(x

(t)
i − x

(t)
j ) (8)

where µ and ν are drawn from normal distributions.
That is

µ ∼ N(0, σ2
µ), ν ∼ N(0, σ2

ν) (9)

With σµ = { Γ (1+β)sin(πβ/2)
Γ [(1+β)/2]β2(β−1)/2 }1/β , σν = 1. Here where

Γ is the standard Gamma function.

3.4. The New Planar Graph Coloring Model

A new planar graph coloring, named ICS, based on the
cuckoo search. The ICS model is inspired by the literature
[10], which employs the walking one strategy, swap and
inversion strategy and greedy transform algorithm, is pro-
posed in this paper.

3.4.1. Walking One Strategy

Cui et al. (2008) developed a quaternary-valued PSO method
by defining the particles positions and velocities. The walk-
ing one strategy is a probability function based on quaternary-
valued PSO; it depends on the node and adjacent nodes of
the number of the conflicts. The number of the conflict
nodes could get from Eq. (10) based on Eq. (5). Then the
number of the conflict nodes will be converted to collision
factor through the sigmoid function (i.e. Eq. (11)). If the
collision factor is large, then it will be assigned a higher
probability to change its color number. Otherwise, it will

Figure 1 An example of swap node

Figure 2 An example of inverse node

be assigned a lower probability. (i.e. Eqs. (12) and (13)).
The walking one strategy is shown as follows:

Crj = Σn
k=1conflictjk(10)

Cfj =
1

1 + e−Crj+2
(11)

M(Vj) =

{
1, if Cfj > rand()&S(Vj) > rand()

0, otherwise
(12)

Pj = mod((Pj +M(Vj)), 4)(13)

where Crj(1 ≤ j ≤ n) is the number of conflict nodes
with jth node, and Cfj is the collision factor of jth node
in the range [0, 1], n is the number of nodes, rand() is a
uniformly distributed random number in the range [0, 1],
S(Vj) is the sigmoid function given by S(ν) = 1/(1 +
e−v).

3.4.2. Swap and Inversion Strategy

See fig. 1 and fig. 2 please.

3.4.3. Greedy transform algorithm

In graph coloring, the maximum conflict node is the most
troublesome and needs to be processed first. In this strat-
egy, we will find the maximum conflict node. The strategy
is described in algorithm 1 as follow:

————————————————————————

Algorithm 1 (Greedy transform algorithm)
————————————————————————

Calculate the conflict matrix cr;
Sort the cr matrix in descending order;
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for i, (1 ≤ i ≤ n) do % is the number of node
for color c(0 ≤ c ≤ 3) do

Calculate the new conflict matrix;
(i.e.,fni)

if fni = 0 then
Exit for;

else if fni < foi then
Accept the color;

endif
endfor

endfor
————————————————————————

3.4.4. ICS Algorithm

The whole running procedure of the ICS is described in
algorithm 2 as follow:

————————————————————————

Algorithm 2 (ICS algorithm)
————————————————————————

Initialize all nest’s position
while the stop condition is not satisfied do
for nest do

Calculate the step size of nest i according to levy flight.
Calculate the Cri of nest according to Eq.(10).
Calculate the Cfi of nest according to Eq.(11).
Calculate the M(Vi) of nest i according to Eq.(12).
Calculate the Pi of nest i according to Eq.(13).
Greedy transform algorithm.
Evaluate its quality/fitness Fi.

Swap node.
Evaluate its quality/fitness Fi.

Inverse node.
Evaluate its quality/fitness Fi;
Keep the best solutions (or nests with quality solu-

tions);
Rank the solutions and find the current best;

endfor
endwhile
————————————————————————

4. Experimental Results

In this section, the performance of the ICS algorithm is
extensively investigated by a large number of experimental
studies. All computational experiments are conducted with
Matlab R2010a, and run on Celeron (R) Dual-core CPU
T3100, 1.90GHZ with 2GB memory capacity. The essen-
tial parameters of ICS model for the planar graph coloring

are set as follows. We simulated 100 runs (nodes 30) and
10 runs (nodes¿30). Let the maximal number of iterations
be 10000, the number of nests be 25.

In order to validate the results of the ICS algorithms
presented in this paper to compare the performance of the
ICS algorithm with improved MPSO algorithm and the
original PSO algorithm (the number of particles as 200).
By randomly generating a given scaled planar graph and
calculating 100/10 times to ICS, the experimental results
we obtained are shown in Table 1. Here,-represents no
records in the literature. It can be seen that ICS has a faster
convergent velocity and a better global search capability to
solve the same problem. In order to demonstrate the per-
formance of ICS algorithm for solving the planar graph
coloring problem further, we take the coloring problem of
the map of China as an example. Fig.3 is the map of China,
including 32 provinces, municipalities and autonomous re-
gions, of which incidence matrix is a symmetric matrix of
3232. We, respectively, use PSO, the improved MPSO and
ICS to perform the experiment and simulation. The results
demonstrate that the ICS method is able to present a col-
oring scheme to this problem in a feasible time. Figure 3
to Figure 4 is also a specific description of one solution for
solving its 4-coloring problem using ICS algorithm.

The best individual color coding 2 3 1 0 2 0 3 0 1 2 0
2 1 0 2 1 0 2 0 3 1 1 3 0 2 1 0 0 1 2 0 2.

5. Conclusions

In terms of the discrete space optimization problem such
as the graph coloring, in this paper, we proposed a modi-
fied CS algorithm. A greedy transform algorithm is added
to a cuckoo search algorithm for improving CS algorithms
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Figure 3 The map of China administrative region Numbers

Figure 4 The effect coloring

Figure 5 The convergence curve of coloring map

Figure 6 The convergence curve of coloring 100 regions

performance. The experimental results show that this algo-
rithm is considerably effective to the graph coloring prob-
lem with moderate size, and the ICS is more efficient and
accurate than the modified PSO algorithm proposed by
Cui et al. (2008), however, with the increasing scale of
the problem, the nests iterations need increase and they
are more and more difficult to jump out of the approxi-
mate best solution. Generally speaking, the larger scale of
the nest swarms needs more evolutionary time so the more
quantities of the best solutions are required, and the com-
putational complexity will subsequently increase greatly.
Therefore, it is necessary to continually find a more effec-
tive coloring algorithm to the larger scale coloring prob-
lem. This will be the direction in the future research.
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