
Appl. Math. Inf. Sci. 6 No. 1S pp. 1S-8S (2012)

A Code Automatic Generation Algorithm Based on

Structured Flowchart

WU Xiang-Hu, QU Ming-Cheng, Liu Zhi-Qiang and Li Jian-Zhong
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
Email Address: wuxianghu@hit.edu.cn; qumingcheng@126.com

Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011

Published online: 1 January 2012

Abstract: In order to automatically convert structured flowchart (SFC) to problem analysis diagram

(PAD) for generation of codes, by analyzing the characteristics of PAD and SFC, a structure

identification algorithm is proposed for the structured flowchart. Taking the identified structured

flowchart as input, a transformation algorithm is proposed to transform the structured flowchart into a

semantically equivalent PAD. Then a specific language code is generated using recursive algorithm

based on PAD. The effectiveness of the proposed algorithms of structure identification,

transformation from flowchart to PAD and code automatic generation is verified through example

test.

Keywords: Code automatic generation; Structured flowchart; Problem analysis diagram.

1 Introduction

Flow chart describes the control logic of a

program by top-down process. For PAD (problem

analysis diagram), it has the capability of top-down

and left-right. So we can say if flowchart is a one-

dimension chart, then PAD is a two-dimensional

chart [1]. So, the transformation from flowchart to

PAD can further enhance the readability of an

algorithm, reduce the difficulty of a system design

and improve the reliability and robustness of

software [2].

Flowchart plays an important role in system

requirement analysis, preliminary design and

detailed design aspect [3]. Recently, there are some

reports about the automatic generation of code from

flowchart. However, these researches all have

certain deficiencies, and the core algorithm and

technologies are not public, so the accuracy and

validity are hard to be convinced. More researches,

such as “AthTek Code to FlowChart”, “Code to

Chart”, “AutoFlowchart” etc, are just its reverse

engineering, that is automatic generation of

flowchart from code.

Hemlata Dakhore presented a strategy based on

XML parser to generate code [4]. But the paper did

not discuss how to identify the semantic of a

specific flowchart. That is, the identification method

of selection and loop are not discussed. According

to the method, it must first determine whether a

judgment node is a loop or selection, this

information must be specified in advance by the

modeler. If so it will lose the flexibility and

convenience of a flowchart model, and also lack of

automation and intelligence. And the paper only

gives a sequence-selection simple example, for the

algorithms of converting flowchart to XML and

automatically generating code are not discussed.

Martin C. Carlisle proposed a modeling and

simulation system RAPTOR [5], which provides

selection and loop primitives. This means that the

modelers must know what kinds of structures they

should draw in advance. While in standard

flowchart there is only a judgment node, loop and

selection nodes should be determined according to

the semantic of a specific flowchart. So the

RAPTOR is a specialized and non-standard

graphical language. And this article only describes

the functions of a system. Tia Watts gave a

flowchart modeling tool SFC, which can be used to

Applied Mathematics & Information Sciences

 An International Journal

 @ 2012 NSP
 Natural Sciences Publishing Cor.

 WU Xiang-Hu, et al.: A Code Automatic Generation Algorithm Based on

2

automatically generate code [6]. But its operation is

mechanical, can only inserted pre-standard

graphical elements from fixed points, the flexibility

is very low, operation is not convenient, lack of

scalability, do not support the component model.

Most importantly, it does not support nested

flowchart (processing nodes can be implemented as
sub-flow chart).

By analyzing the characteristics of PAD and

flowchart, a coding strategy is proposed, based on it

we put forward a structure identification and coding

algorithm, after then take the flowchart identified

and coded in previous step as input, a algorithm
which can convert structured flowchart to PAD is

detailedly presented, at last we proposed a algorithm

to generate code from PAD automatically.

2 PAD VS. Structured flowchart
Any complex algorithms can be composed of three

basic structures, sequence, selection and loop. These

basic structures can be coordinates, they can include

each other, but they cannot cross and directly jump

to another structure from the internal of a structure.

As the whole algorithm is constructed by these three

structures, just like composed by modules,

therefore, it has the characteristics of clear structure,

easily verifying accuracy, easy error correction [7-

8].

Fig.1 five structures of structured flowchart

Flowchart is independent of any programming

language. Structured flowchart can be further

divided into five kinds of structures: sequence,

selection, more selection, pre-check loop and post-

check loop, as shown in Figure 1. Any complex

flow chart can be built by the combination or the
nesting of the five basic control structures. Now

there are many tools which support flowchart

modeling, such as Visio, Word, Rose and so on.

PAD is the acronym for Problem Analysis

Diagram. It is made by Japan Hitachi, evolved by

flowchart. It has now been approved by ISO. Its
advantage is clear, intuitive, and the order and

hierarchy of program can be a good show. We can

say that if the flow chart is a one-dimensional, then

PAD is two-dimensional. A lot of people use PAD

for system modeling at present in China and other

countries. As shown in Figure 2, PAD has also set

up five basic control structure primitives.

Fig.2 five structures of PAD

In order to make flowchart model more clear and

intuitive and unambiguously, as shown in Figure 1,

in addition to the order structure, the remaining four

structures all use a judge node, when the executions
exit their structures, the page reference primitive

("o") must be used. It is called "on page reference"

in visio, in this paper is called convergence, as

shown in Figure 2.

In this paper we use the most commonly used five

kinds of primitives for flowchart to automatic
generating of code, and they are: “Begin”, “End”,

“Process”, “Judgment” and “Convergence”.

3 Structure identification

3.1 Identification method
(1) Identification of basic structure

For the three basic structures shown in Figure 3

the loop structure must be a cycle path, while the

sequence and selection structures must not be.

Figures 3-A and 3-B both have a cycle path. For a

basic structure, if a cycle path occurs in a Process

node for the first time, its current father (comes

from) must be a Judgment, if not, the flowchart

must be wrong. We can identify the Judgment as a

do-while structure. If a cycle path occurs in a

Judgment node, we can also identify its current

father (Judgment node) as a do-while structure. If all

the sons of a Judgment have been processed (return

from their Convergence node), and the Judgment

has not been identified, we can identify it as a

Selection structure.

It can be seen from Figure 3 that the identification

of while/for structure depends on its Judgment only;

S. Chang-Guang, H. Minoru: Explicitly Solvable Time-dependent

3

and the identification of do-while must depend on

the first node (see Figure 3, Judgment can exist in

the nesting structure, as shown in Figure 4). The

first node in a “do-while” structure, the Judgment of

a “while” structure and the Convergence of a

selection structure are all called key nodes.

Fig.3 Three basic structures

Fig.4 nesting structure of do-while

(2) Identification of nesting structure

According to the execution process of flowchart,

the structure first executes to end must be the

internal and basic structure. In Figure 4, nesting

structures (1) (2) and (3) are constructed by the

basic structures shown in Figure 3. As each basic

structure completes (jump to their Convergence),

the out layer structures are executed one by one. So

if nesting structures exist, the internal structures

must be identified firstly, and then the out layer.

As the identification of a While structure only

depend the Judgment node itself (begins and

finishes at itself), so if a cycle path appears in the

Process node and its current father (comes from) is

Judgment, then we can identify the father as a do-

while structure. If the Process is the first node (key

node) in multi-do-while, we should record the

nesting level in the Process node and build a link

between the Process node and its current father.

Similarly, if a Judgment node (JN) has been

identified as a while/for or selection structure, and a

cycle path again appears in the Judgment node, and

its current father is Judgment node, then we can

identify the father as a do-while structure. If the

Judgment node (JN) is the first node (key node) in a

multi-do-while structure, then we should record the

nesting level in the Judgment node (JN) and build a

link between the Judgment node (JM) and its

current father.

As shown in Figure 4, the three figures are all

nesting do-while structures. The white nodes in

Figure 4 are all key nodes. In Figure 4-(1) there are

two cycle paths in node F, and its current father F1

or G is Judgment, so F1 and G are both identified as

do-while structures; as shown in Figure 4-(2), H is a

key node of while structure, meanwhile it is a key

node of outer layer do-while structure; as shown in

Figure 4-(3), D is identified as Selection structure,

then a cycle path appears in D, so D is the key node

of the outer do-while.

In order to recursively traverse, every Judgment

node must be able to have a direct access to its

Convergence node, so it can jump current structure

to traverse the outer nodes recursively. As a

Judgment node and its Convergence are matched,

when a Judgment has been traversed, its

Convergence must be the subsequent one. So we

can use a stack to match them. Define a stack as

StackofJudgement, when a Judgment node is first in,

we put it into StackofJudgement, when the

execution arrive at a Convergence (as

currentConvergence), pop the first node (as

currentJudgment), and build a link between

currentJudgment and currentConvergence, i.e.,

currentJudgment.Convergence=currentConvergenc

e.

If the basic structures shown in Figure 3 are

nesting by do-while, we can get the structures

shown in Figure 4. While D, F1, H will be identified

first, then cycle paths will again appear in F, H, D
nodes, so we can know the outer structure must be

do-while. Then E, G, I are identified as do-while

structure. We should build links between them and

G, I, E. Meanwhile the nesting level (as

doWhileCounter) of G, I, E should do

doWhileCounter++. The program can access G, I, E
from D, F, H by the combinative conditions: get the

father of (D,F,H) and father.doWhileNode =(D,F,H)

and father.doWhile- Counter=(D,F,H). doWhile-

Counter.

3.2 Algorithm description
We used a depth-first search algorithm based on

recursion. The return conditions of recursion: no

need return from sequence; when arrive at a

Convergence or End return; when a Judgment has

been Identified return, and jump the Convergence of

Judgment to process the follow-up nodes.

 WU Xiang-Hu, et al.: A Code Automatic Generation Algorithm Based on

4

We process all the sub-nodes recursively when

the program arrives at a Judgment. When a

Judgment is identified, return to recursive call point.

Stack StackofJudgement(Judgment); /* the elements of stack is Judgment, used to match Judgment and its corresponding
Convergnece */
Node root; /*root is Begin node, so the code of first node is root.son*/
StructureIdentify(root, root.son); /*start recursion*/
StructureIdentify(Father, Node)
{
 If(Node is Process) [1]

{
 If(Node has not be traversed) [2]

{
 StructureIdentify(Node, Node.Son); [2-1]
}

 else if(Father is Judgment) [3] /* Include multiple do-while nesting */
{
 Father.type←do-while; /* recognized as do-while structure;*/

 Node.doWhileCounter++; /*the original value is 0*/
 Father. doWhileCounter= Node.doWhileCounter;
 Father.doWhileNode= Node; /* build a link between the Judgement and the first Process of a do-while structure

*/
 }

 }
If(Node is Judgment) [4]
{
 If(Node has not be traversed) [5] /*first in*/
 {
 Stack.push(StackofJudgement, Judgment) /*push Judgment into StackofJudgement */
 for every son of Node do StructureIdentify(Node, Node.Son); [5-1]

If(Node is not recognized) [6] /*loop structures have been recognized, the left is selections*/
{

 /* according to the condition of judgment, the detailed structures of if-else/if/case can be recognized also.*/
 Node.type←selection; /* recognized as selection structures; */
}
Node= Node. directJudgmentNode; /*Continue to process the nodes behind Convergence. */
StructureIdentify(Node, Node.Son); [5-2] /*continue to code the other node after Convergence */

 }
 Else [8] /* traversed */

{
 If(Node is not recognized) [9] /*the first round trip*/
 {
 Node.type←while or for structure /* recognized as while or for structures;*/
 }
 else [10]
 {
 Father.type←do-while; /* recognized as do-while structure;*/

 Node.doWhileCounter++; /*the original value is 0*/
 Father. doWhileCounter= Node.doWhileCounter;
 Father.doWhileNode= Node; /* build a link between the Judgement and the first Process of a do-while structure

*/
}

}
}
If(Node is Convergence) [11]
{
 If(Node has not been traversed) [12] /*match a judgment node and a convergence node*/
 {
 tempJudgeNode=Stack.Pop(StackofJudgement); /*use it when process the nodes behind Convergence */
 Node.directJudgmentNode= tempJudgeNode;
 tempJudgeNode.directJudgmentConvergence= Node;
 Node.code= tempJudgeNode.code;

}
Return;

}
If(Node is End) return;

}

S. Chang-Guang, H. Minoru: Explicitly Solvable Time-dependent

5

3.3 Effectiveness verification of algorithm
As the algorithm is based on recursion, so we

can use exhaustive method to verify its

effectiveness, including the recursive entry and

return. For the three basic structures shown in
Figure 3, they nest with each other or their own

can generate nine nesting structures We use these

twelve structures to verify the effectiveness of the

algorithm.

Take (1) in Figure 4 as an example: F goes into

[1], then [2], execute [2-1] (recursion 1); F1 goes
into [4], [5], and is push into stack, execute [5-1]

(recursion 2); continue to process X or F (no

effect), suppose F first enters [3], and F1 is

identified as do-while structure, build the link

between F and F1, recursive level

(doWhileCounter) of node F is increased by 1,

then return to [5-1] (recursion 2); node X goes into

[12], F1 is popped from stack, construct the link

between F and X, return to [5-1] (recursion 2),

jump [6], execute [5-2] (recursion 3); process node

G, G goes into [5], is pushed into stack, execute

[5-1] (recursion 4); Y goes into [12], G is popped

from stack, the link between G and Y is

constructed, return to [5-1] (recursion 4); then F

enters into [3], G is identified as do-while

structure, construct the link between F and G,

recursive level (doWhileCounter) of node F is

increased by 1, return to [5-1] (recursion 4), jump

[6], process the successor nodes of node Y.

It can be seen from the above process: First, the

basic structure within the dashed box is identified

as do-while, then the outer layer. Similarly we can

check Figures 4-(2) and 4-(3), also the results are

correct.

4 SFC to PAD

4.1 Algorithm description
Define a data structure as BLOCK<Type,

sequencePtr, levelPtr, code>. Type denotes node

type [such as: Sequence, Selection, while/for/do-

while (loop)]; sequencePtr denotes sequence

pointer; levelPtr denotes level pointer (only

Judgment node), code denotes the code contained

in a flowchart node.

 As every new level of PAD only starts from a

Judgment node, so we can use a structure

contained two pointers to build a tree to depict

PAD structure. As shown in Figure 5, black circles

denote pointers, the down pointer is sequence

pointer, and the right pointer is level pointer. The

left figure is a SFC and the right one is its

semantically equivalent data structure of PAD.

 Node B in Figure 5 is a loop node, so its levelPtr

should points to next level; and node D is a

selection node, so its levelPtr should points to a

pointer list, and each element of the pointer list is

used to point each branch of selection structure.

Obviously all the Judgment (loop, selection) must

be recursively processed for their inner structures.

 The algorithm takes the identified SFC as input,

and use recursion to traverse. During the traverse

process we can build a tree for PAD like the right

figure in Figure 5.

Fig.5 example of two-pointer constructing PAD

Fig.6 Combinative conditions to determine do-while nodes

The core algorithm is as follows:

Block firstBlk;
ConvertToPAD(Begin.son, firstBlk);

ConvertToPAD(Node CurrentNode, Block CurrentBlock, Block FatherBlock)
{

If CurrentNode.doWhilecounter is not zero{ [1]
 Get the father of Node as tfather, and met:

tfather.doWhilenode is CurrentNode, and tfather.doWhilecounter== CurrentNode.doWhilecounter,

CurrentNode.doWhilecounter--;
ConvertToPAD(tfather, CurrentBlock); [1-1] /**/

}
If CurrentNode is Process { [2]

New block as newBlock;

CurrentBlock.type=Sequence, CurrentBlock.code= CurrentNode.code;

 WU Xiang-Hu, et al.: A Code Automatic Generation Algorithm Based on

6

CurrentBlock.sequencePtr points to newBlock;
ConvertToPAD(CurrentNode.son, newBlock, CurrentNode); [2-1]

}
If CurrentNode.type is loop { [3]

[3-0]
If CurrentNode has been processed {

free(CurrentBlock), FatherBlock.sequencePtr=null;

}
else{

New Block as levelBlock;
CurrentBlock.type= CurrentNode.type, CurrentBlock.code= CurrentNode.code;

CurrentBlock.levelPtr points to levelBlock;

CurrentNode = the son of CurrentNode who is not Convergence;
ConvertToPAD(CurrentNode, levelBlock); [3-1]

}
New Block as SequenceBlock; /*loop body has been processed*/

CurrentBlock.sequencelPtr points to SequenceBlock;
ConvertToPAD(Node.Convergence.son, SequenceBlock, CurrentBlock); [3-2]
/*jump Convergence to process the other nodes*/

}
If CurrentNode.type is selection { [4]

For every branch of CurrentNode [4-1]
{

define a new block as BranchNewBlock(i),

BranchNewBlock.type= Branch;
}

Let CurrentBlock.levelPtr points to BranchNewBlock(1), CurrentBlock.code= CurrentNode.code, [4-2]
and BranchNewBlock(i). sequencePtr= BranchNewBlock(i+1);
for every branch(i) of Node [4-3]

{
define a new block as LevelBlock (i);

Let levelPtr of BranchNewBlock(i) points to LevelBlock (i);
ConvertToPAD(branch(i), LevelBlock (i)); [4-3-1]

}

If All the sons of CurrentNode have been processed { [4-4]

define a new block as SequenceBlock;
Let CurrentBlock.sequencePtr points to SequenceBlock;

ConvertToPAD(Node.Convergence.son, SequenceBlock, CurrentBlock); [4-4-1]
}

}

If CurrentNode.type is End then Block.type=End, return; [5]
If CurrentNode.type is Convergence {

If FatherBlock is Proces free(CurrentBlock), FatherBlock.sequencePtr=null;
If FatherBlock is Judgment free(CurrentBlock), FatherBlock.LevelPtr=null;

return; [6]
}

}

4.2 Effectiveness verification of algorithm
Take nested do-while structure in Figure 6 as an

example to explain.

For do-while structure, its Judgment can be

reached during the end of traverse, so when
arrive at the first node of a do-while (a node

whose doWhilecounter is not zero), we can
use its dowhilecounter and its father’s

doWhilecounter to get the Judgment. As
shown in Figure 6, node F is a key node (first

node, see section 4.1) of two do-while

structures. By the processing of structure

identification algorithm in section 4, we can

get: F.doWhilecounter=2, F1.doWhilecounte

r=1, G.doWhilecounter=2. And also we can

use a method to get the fathers of F.
(1) First E goes into [2] (see section 5.1 row 16),

the Block of E points to newblock, execute

recursion [2-1], the result can be seen from Figure

7-(3).

(2) F goes into [1], by the condition of

F.doWhilecounter=2, we can know F is a key node

of a do-while. Then get the Father of F as tfather,

and meet tfather.doWhilecounter is

F.doWhilecounter and tfather.doWhilenode is F,

S. Chang-Guang, H. Minoru: Explicitly Solvable Time-dependent

7

by the combinative conditions we can get the

outermost Judgment node G, then do

F.doWhilecounter--,doWhilecounter=1. Execute

recursion [1-1], the newblock defined in step (1) is

passed as a parameter, and no new block is defined

here.

(3) G goes into [3], use the parameters of G to

assign newBlock defined in step (1), define a new

block as levelBlock, and make the levelPtr of block

point to levelBlock, then get node F, execute

recursion [3-1]. The result can be seen from Figure

7-(3).

(4) F enters [1], by F.doWhilecounter=1, we can

know F is a key node of a do-while. Then get the

Father of F as tfather, and meet

tfather.doWhilecounter is F.doWhilecounter and

tfather.doWhilenode is F, by the combinative

conditions we can get the Judgment node F1, do

F.doWhilecounter--, doWhilecounter=0. Execute

recursion [1-1], the newblock defined in step (3) is

passed as a parameter, and no new block is defined

here.

(5) F1 goes into [3], use the parameters of F1 to

assign newBlock defined in step (3), define a new

block as levelBlock, and make the levelPtr of block

point to levelBlock, then get node F, execute

recursion [3-1]. The result can be seen from Figure

7-(5).

(6) F enters [2], use the parameters of F to

assign CurrentBlock, define a new block as

newblock, and make the sequencePtr of

CurrentBlock point to newblock. Get F1, execute

recursion [2-1]. The result can be seen from Figure

7-(6).

(7) F1 goes into [3], execute [3-0], free

CurrentBlock, make the sequencePtr of

fatherblcok be null, create a new block as

SequenceBlock, and let the sequencePtr of

CurrentBlock point to SequenceBlock, execute

recusion [3-2]. The result can be seen from Figure

7-(7).

(8) G goes into [3], execute [3-0], free

CurrentBlock, make the sequencePtr of

fatherblcok be null, create a new block as

SequenceBlock, and let the sequencePtr of

CurrentBlock point to SequenceBlock, execute

recusion [3-2], process the successor nodes of

node Y. The result can be seen from Figure 7-(8).

Fig.7 Result

5 Generation of code from PAD
From the characteristic of PAD, if depth-first

search strategy is adopted, then the program chain

we get will be equivalent to the execution order of

code. So we can give the algorithm of generating

code from a PAD easily.

The depth-first strategy is also used here. First

define string TempCode, then pass it into

CodeGenerate() fucntion, if encounter a process

block, then append the program segment to

TempCode; if encounter selection or loop blocks,

then define a new string to store the program

inside, recursively traverse the sub-nodes inside,

and append that string to TempCode when return.

So in the end, TempCode will contain the all

program code.
String TempCode; /*When pass it into a function, all the operation to it whith that function will effect the original value, as it is
address pass*/

CodeGenerate(beginBlock, TempCode);
PrintAndFormatCode(TempCode); /*output and format the code*/

CodeGenerate(Block CurrentBlock, String CurrentCode)
{

if(CurrentBlock.NodeType is Process) CurrentCode.Append(CurrentBlock.codeBlock);

else if(CurrentBlock.NodeType is Selection)
{

 Generate branch code as SelectionCode;
 for every SubNode in CurrentBlock.SubNodeList do

{
 Generate branch code branchCode;

 WU Xiang-Hu, et al.: A Code Automatic Generation Algorithm Based on

8

 String branchBody;
CodeGenerate(SubNode, branchBody);

Insert branchBody into branchCode;
SelectionCode.Append(branchCode);

 }

 CurrentBlock.Append(SelectionCode);
}
else if(CurrentBlock.NodeType is HeadPtr) /*If type is HeadPtr, then process the sub-nodes*/

{

 for every SubNode in CurrentBlock.SubNodeList do CodeGenerate(SubNode, CurrentCode);
}

else if(CurrentBlock.NodeType is Loop)

{
 Generate loop code as loopCode;

 String loopBody;
 for every SubNode in CurrentBlock.SubNodeList do CodeGenerate(SubNode, loopBody);
 insert loopBody into loopCode;

 CurrentBlock.Append(loopCode);
}

else return;
}

6 Conclusion
We proposed a structure identification algorithm

for structured flowchart. The effectiveness of the

proposed algorithm is checked using exhaustive

method, i.e., twelve structures can be identified,

then an algorithm can be used to convert a

flowchart identified to PAD, and generate code

from PAD using recursion algorithm. The
technologies and algorithms are used in an

integrated development platform, we develop a

weapon system based on the platform to verify the

effectiveness of the proposed algorithm.

References
[1] S. J. Le, W. L. Zhang and L. X. Dong. An Approach to

Generate Scenario Test Cases Based on UML Sequence

Diagrams. Computer Science, 31,2004:1-6

[2] J. T. Ostrand and M. J. Balcer. The Category-Partition

Method for Specifying and Generating Functional Tests.

Communication of ACM. 2006: 31-67

[3] S. Sendall and W. Kozaczynski. Model Transformation:

The Heart and Soul of Model-Driven Software

Development. IEEE Software, 9, 2003:42–45

[4] H. Dakhore and A. Mahajan. Generation of C-Code

Using XML Parser, Proceedings of ISCET 2010, (2010)

March 19-20; Punjab, India:1-6

[5] M. C. Carlisle, T. A. Wilson and J. W. Humphries.

Raptor: introducing programming to non-majors with

flowcharts. Journal of Computing Sciences in Colleges.

19,2004, 1-6

[6] T. Watts. The SFC editor: a graphical tool for algorithm

development. J. Comput. Small Coll. 20, 2004, 73-85

[7] I. Nassi and B. Shneiderman. Flowchart techniques for

structured programming. ACM SIGPLAN Notices, 8,

1973:12-26

[8] J. F. Gimpel. Contour: a method of preparing structured

flowcharts. ACM SIGPLAN Notices. 15,1980:35-41

Xiang-Hu Wu is a professor in

school of computer science and

technology of Harbin institute of
technology (HIT). He is a

advanced member of CCF. His

research interests include

embedded computing, cyber-

physical system, operating system

and software engineering.

Ming-Cheng Qu is a Ph.D. in

school of computer science and

technology of Harbin institute of

technology (HIT). He received his

BS and MS degree from HIT. His

research interests include

embedded computing and

software engineering etc.

