
Appl. Math. Inf. Sci. 7, No. 2, 691-699 (2013) 691

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

An Optimization Algorithm of Variable Allocation Based
on Block Architecture
XU Chao1,2, HE Yan-xiang1,3, CHEN Yong1,3, WU Wei1,3, Zeng Xiao-ling1,3

1School of computer of Wuhan University, Wuhan 430072P. R. China
2 Xuzhou College of Industrial Technology, Jiangsu, Xuzhou 221000, China
3State Key Laboratory of Software Engineering of Wuhan University, Wuhan 430072P. R. China

Received: 13 Oct. 2012; Revised 2 Nov. 2012; Accepted 16 Nov. 2012
Published online: 1 Mar. 2013

Abstract: In this paper, an optimization algorithm of selection block instruction (heuristic allocation algorithm) based on 8-bit mi-
croprocessor of block memory architecture as experiment platform is proposed to solve the problem of variable allocation and reduce
the number of selection instructions. First the RAM space allocation is designed in an optimizational way, then an heuristic allocation
algorithm of variable is designed, finally the position inserted by selection block instructions is optimized. This method can reduce
the number of selection block instructions effectively and produce a good effect in code compression. To verify the correctness and
efficiency of the above algorithm, this paper adopts the actual embedded system as test case to perform in the experiment. The result
shows that the method can obviously reduce the number of selection block instructions, save memory space and improve the integral
performance of system.

Keywords: 8-bit microprocessor,block architecture,variable allocation,optimization of selection block instruction

1. Introduction

When embedded system is developed, memory space and
computing power in target platform is limited, the general
compilation tool chain requires large memory and strong
computing power, so it is impossible to compile in the
same computer. Embedded cross-compiler[13] which can
compile executable code for target platform in host plat-
form with strong CPU and enough space is introduced to
solve the problem. By contrast with universal system, em-
bedded system puts forward more requirements on cost,
power consumption and function for quality of application
software. Since cost of ic chip is in proportion to area den-
sity of that, the density is higher, the capacity is larger and
the cost will be higher. If code generated by embedded
compiler isn’t optimized fully[3], it is likely to upgrade
hardware system and push business cost. So code quan-
tity in embedded system[7] can have immediate impact on
hardware cost. In the process of embedded system devel-
opment, it is crucial to optimize code[4][15]. Only when is
code size reduced as far as possible, system efficiency can
be improved.

8-bit microprocessor[8] is most widely used account-
ing for 55% in the embedded platform field. Usually the
space of memory address supported by 8-bit microproces-
sor is limited. 8-bit microprocessor usually adopts block
architecture and combines corresponding selection block
instructions to access the data space beyond single block
for expanding the limited memory space[10]. The selec-
tion block instructions can be inserted into source code to
select the block the next instruction will reach, but the in-
sertion can increase code size and the cost of execution
time[2]. Therefore, how to insert selection block instruc-
tions as less as possible is meaningful for embedded plat-
form with limited space. This paper takes 8-bit micropro-
cessor with block architecture as platform, expects to re-
duce the number of awaiting selection block instructions
by analyzing relationship between variables in program
beginning with variable allocation to realize better code
optimization.

To begin with, the paper introduces a prerequisite of
knowledge. In Section 2 block architecture of 8-bit micro-
processor is introduced. In Section 3 an heuristic allocation
algorithm for variable is introduced including the optimum

∗ Corresponding author: e-mail: xuch@whu.edu.cn
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

692 XU Chao et al. : An Optimization Algorithm of Variable...

Flash Program

Memory

8Kx16)

Program

Counter

PC 14

8 hardware stack

13

Data Memory

SRAM)

720x8

Instruction

Register

Index register

Clock

Generator

Status RegisterData

Selector

A RegisterVDD, VSS
Mains Pin

MRST

Reset Pin

OSC1/OSC2

DataBus 8
13/14

16

7 address

8

8

P
o
w
e
r-o
n

re
s
e
t

W
a
tc
h
d
o
g

ALU Arithmetic unit

P
o
w
e
r-u
p

T
im
e
r

S
ta
rt-u
p

T
im
e
r

B
ro
w
n
-

o
u
t
re
s
e
t

A
d
d
re
s
s

S
e
le
c
to
r

B Register

TIMER2

Instruction decoder

Control Signal

PA0/AN0

PA1/AN1

PA2/AN2

PA3/AN3

PA4/T0CK1

PA5/SS

PB0/INT0

PB1/INT1

PB2/INT2

PB3/INT3

PB4

PB5

PB6

PB7

PC0/TIOSCO/T1CK1

PC1/T10SC1/CCP2

PC2/CCP1

PC3/SCK/SCL

PC4/SDI/SDA

PC5/SDO

PC6/TX/DT

PC7/RX/DTA/D Converter

TIMER0 HUSART HSPI/HIIC

CCP1CCP2LVD&BORTIMER1

Figure 1 Structure diagram of a chip in HR6Pseries

design of RAM space allocation and insertion position of
selection block instructions. In Section 4 results and anal-
ysis are demonstrated. In the last part related work and
conclusion are presented.

2. An Introduction to 8-bit Microprocessor
Platform

In this paper 8-bit microprocessor of HR6P series adopt-
ing RISC Harvard structure is embedded with hardware
multiplier and encrypted by special users’ code, the in-
struction of which has the characteristics of high confi-
dentiality and efficiency. Buses of program and data ac-
cess in the structure are mutually independent. Chip in-
struction set in this series has 48 reduced instructions in
it with the characteristics of high coding efficiency and
easy extension. Chip integrates many devices including
PWM, analog comparing, LCD DRIVERcommunication
module, program memory with capacity from 2K16bits
to 8K16bits,data memory with capacity from 1288bits to
1K8bits and so on.HR6P series chip is given as an example
demonstrating the structure diagram in Figure 1.

3. The Design of Optimization Algorithm of
Selection Block Instructions

Block architecture only supports serial data access, which
means CPU only can access data space in one block once
and which block will be accessed depends on the specific

void fun()

{

Int a,b,c,d,e;

a=1; (1)

b=2; (2)

c=a; (3)

e=3; (4)

d=b; (5)

e=d+e; (6)

a=3; (7)

e=a; (8)

}

Figure 2 Example Description

selection block instruction. Usually CPU has a special reg-
ister to store the address of the selection instruction. By in-
serting the selection instruction into source code the block
that the next instruction will reach will be selected. But the
insertion of the selection instruction increases code size
and pushes the cost of execution time. So how to insert se-
lection instruction as less as possible is meaningful for the
embedded platform with limited space.

3.1. The Optimum Design of RAM Space
Allocation

Optimization for RAM space allocation is that life period
of each local variable is achieved by analyzing control
flow and data flow of function and non-life-period-overlap
variable can be allocated in same RAM space without in-
fluencing the correctness of program. Optimization Algo-
rithm 1 for RAM space allocation is shown as follows:

Algorithm 1
Input:

three address code statements before optimization
Output:

three address code statements after optimization
1: Analyze control flow and data flow and generate ud chain of

local variable in function
2: Achieve life period of each variable according to ud chain
3: Calculate life period overlap of each variable to get overlap

graph
4: Allocate variable according to overlap graph

To illustrate optimization algorithm for RAM space al-
location, a specific function shown in Figure 2 is taken as
an example and the concrete implementation procedure is
presented.

In Figure 2, (1)to(8)represents life period of variable.
Analyze control flow and data flow in function to get ud
chain of function and b represents basic block. Division of
life period is shown as follows:

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 691-699 (2013) / www.naturalspublishing.com/Journals.asp 693

3

8

5

7

2

4

1

6

a

b

e

d

a

Figure 3 Variable Life Period and Space Allocation without Op-
timization

–There is neither def nor use in b, b is in life period.
–There is no def but use in bif there is a covered block
subsequentlyb is in life periodotherwise from the be-
ginning of the block to the last point of use in block is
in life period.

–There is def but no use in bfrom the definition point to
the finishing of the block is in life period.

–Def is before the first point of useif there is a covered
block subsequentlyfrom the definition point to the fin-
ishing of the block is in life period otherwise from the
definition point to the last point of use in block is in
life period.

–Def is between two points of useif there is a covered
block subsequentlyb is in life periodotherwise from the
beginning of the block to the last point of use in block
is in life period.

–Def and use are in the same statementb is in life period.

The corresponding space allocation for variable allo-
cation can be achieved from the analysis. For example, a
diagram of variable life period and space allocation with-
out optimization is presented in Figure 3.

In Figure 3 life periods of Variable a,b,d,e are achieved
by analyzing control flow and data flow and allocated to
their respective space, Variable c isn’t analyzed because
definition of Variable c isn’t used and is optimized before
optimization of space allocation. A space is mapped as a
Web, according to the sequence of variable’s definition,
space for variable a is short for Web0, space for variable b
is short for Web1 and so on. It is shown in Figure 4 that five
Webs are respectively allocated to five different variables.
The concrete optimization algorithm for space allocation
is as follows:

–Calculate the overlap relationship between webs. If two
webs’ reachable blocks are not the same, there is no
overlap for the two webs. If two webs’ reachable blocks
are the same, the statements covered by the two webs
in the block should be analyzed. If two webs cover

Figure 4 A diagram of Overlap Relationship between Webs in
the Example

the same statement, it illustrates that they overlap, oth-
erwise they don’t. The overlap relationship between
webs is shown in Figure.3.3 in which line represents
the overlap between two webs.

–Arrange all webs in order of space size from large to
small and then arrange them in order of use frequency
from more to less. In this way it can reduce some sub-
sequent chip selection instructions. Store the arranged
webs in chained list which is waiting for allocation.
Supposing that the size of Web0 in the above diagram
is 3,Web1 is 4,Web2 is 1,Web 3 is 2,Web4 is 2,the or-
der of chained list is: web1,web0,web4,web3 and web2.

–Allocate space for web in chained list in turns. Before
allocation, judge if this web overlaps the web in the
allocated space. If no overlap, this web can be stored
in the space and space size depends on the larger one,
otherwise space should be allocated again. After web
allocation in above diagram the situation is that space
size of Web0,Web2 and Web4 is 3,space size of Web1
and Web3 is 4, Web 4 can be put in either of the two
spaces for it has no overlap with the two spaces.

3.2. An Heuristic Allocation Algorithm

3.2.1. Brief Introduction to Heuristic Allocation
Algorithm of Variable Class

The set in which all of single variable have become sev-
eral variables after RAM space allocation optimization is
allocated to a mutual space. A set is called a variable class.
Block architecture of 8-bit microprocessor requires corre-
sponding selection block to access the data space in dif-
ferent block. It means that when variable class can’t be
stored in one block after RAM space allocation optimiza-
tion, how to allocate variable classes to different blocks for
reducing the number of selection block instructions should
be taken into account.

Two cases are involved: there are two variable classes,
if both are in the same block, chip selection instruction

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

694 XU Chao et al. : An Optimization Algorithm of Variable...

Figure 5 Construction Algorithm of Weighted Digraph

isn’t needed; if two variable classes are in different blocks,
block selection instruction is needed for accessing them.
For different blocks the number of selection block instruc-
tion is different when switchover between blocks occurs.
For example, switchover from Block0 to Block1 needs one
selection block instruction, but switchover from Block0 to
Block3 needs two selection block instructions. Consider-
ing these two cases, this paper proposes heuristic alloca-
tion algorithm of variable class which can reduce the num-
ber of sequent block selection instructions by allocating
the neighboring variable classes to two blocks with less
switchover cost.

3.2.2. Description of Heuristic Allocation Algorithm of
Variable Class

For solving the above problem about variable class allo-
cation, construct an access relationship diagram in which
weighted digraph containing node set and edge set is used
to describe the variable class access relationship. Each node
represents a variable class and weight of node represents
space size occupied by variable class; Each edge repre-
sents the access relationship between two variable classes
and edge weight represents access sequence between two
nodes. In this way the access relationship flow diagram can
be expressed as G=¡VE¿. V represents node set or variable
class, E represents edge set or access sequence between
variable classes. Suppose there are Node a and Node b, di-
rected edges¡a,b¿ represents it accesses Variable b after ac-
cessing variable a. Construction flow diagram of weighted
digraph is presented in Figure 5.

Now a function can explain the construction progress
of the above weighted digraph in Figure 6 and 7.

In Figure 7, it is clear that edge weight of Variable (ab)
is 2 and edge weight of Variable(ac) and that of Variable
(ad) are both 1.

Void fun ()

{

Int a,b,c,d; (1)

a=b; (2)

c=b+1; (3)

d=a; (4)

}

Figure 6 Construction Example of Weighted Digraph

Figure 7 the Corresponding Access Sequence Diagram

After weighted digraph of variable class access rela-
tionship is constructed, heuristic allocation algorithm of
variable class becomes the question inserting the least se-
lection block instruction in the weighted digraph. The num-
ber of the inserted selection block instruction is influenced
by two factors: (1)if two variable classes are in the same
block, chip selection instruction isn’t needed. (2)if two vari-
able classes are in different blocks, the neighboring vari-
able classes are allocated to two blocks with less switchover
cost. These two factors are the factors of heuristic alloca-
tion algorithm. It means that when two variable classes are
in the same block, space occupied by variable classes is
less than one block, space size occupied is called a heuris-
tic factor; when variable classes are in the different blocks,
instruction switchover cost between blocks is another fac-
tor, switchover cost is decided by edge weight between
blocks and distance between blocks. The concrete descrip-
tion of heuristic allocation algorithm of variable class is
shown in Algorithm 2.

Input Variable G as variable class and get an access
relationship diagram, where V is variable class, E is ac-
cess relationship between two variable classes, V and E are
parameters of the diagram, input Variable K is the block

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 691-699 (2013) / www.naturalspublishing.com/Journals.asp 695

Algorithm 2
Input:

Graph G=(V,E),K
Output:

V’s K Partition Set P=(P1,P2.........Pk)
1: list lst = sort edge weight from large to small
2: while lst is not empty do
3: e(u,v) = the first element in lst
4: if size(u)+ size(v)≤ m then
5: merge u and v into a vertex set
6: end if
7: eject the first element in lst
8: end while
9: while Set(V)> K do

10: take out the first two elements in Set(V) to u′,v′

11: fmin(u′,v′)←+∞
12: for each u ∈ e,v ∈ Set(V) do
13: value(u,v) = weight(e(u,v))+distance(u,v)
14: f (u,v) = α.(size(u)+ size(v))−β .value(u,v)
15: if f (u,v)< fmin(u′,v′) then
16: fmin(u′,v′)← f (u,v)
17: u′← u
18: v′← v
19: end if
20: end for
21: merge vertex set u′,v′

22: end while

number of space division. Edge weight represents relation-
ship between variable classes. e(u,v) represents the edge
between point u and point v, size()represents space size oc-
cupied by variable, m represents space size of each block,
set(V) represents the number of node set. f(u,v) is heuris-
tic function, α,β respectively represents two heuristic fac-
tors. Value(u,v) is cost function of block division which
is measured by weight(e(u,v)) and distance(u, v). When
fmin(u′,v′), u’ and v’ merged and put into one block space,
the least chip selection instruction can be inserted in the
digraph.

3.3. The Optimum Design of Insertion Position
of Selection Block Instructions

The above research indicates that variable classes have been
allocated to the different blocks in optimizational way, there-
fore, the corresponding selection block instructions need
to be inserted into data of access block and the insertion
position of instructions will influence the number of inser-
tion instructions which happens between basic blocks.

In this paper the optimization of insertion position is
divided into two parts:(1)select statements are added to the
entries of all basic blocks; (2)find out basic blocks’ joint
with bone pattern branches and put the two merged en-
try selects at the exit of predecessor block to reduce select
statements.

Process of algorithm: input a mapping table varsTo-
Bank and an intermediate code representation sequence

of a function noBSLCodeList to construct basic block of
this function (the first line of code);output intermediate
code representation sequence inserted selection block in-
struction; insert corresponding selection block instructions
(from line 2 to line 15 of code) in the basic block and then
insert selection instruction between basic blocks (from line
16 to line 30 of code); decomposition blocks generates
new intermediate code representation sequence BSLCodeList
inserted selection block instruction. Function BtoB used
to reduce the number of inserted selection block instruc-
tions represents the least inserted instructions for block
switchover and BtoB(1,2)represents switchover from Block
1 to Block 2. The optimum design of insertion position of
selection block instructions in Algorithm 3.

Algorithm 3
Input:

varsToBank, noBSLCodeList
Output:

BSLCodeList
1: B = construct the basic block of noBSLCodeList
2: for each b ∈ B do
3: currentBank = -1;
4: for each intermediate code i in b do
5: if i using variable a then
6: if currentBank==-1 then
7: b.entryBank = varsToBank[a]
8: else if varsToBank[a]!=currentBank then
9: i−> push f ront(BtoB(currentBank,varsToBank[a]))

10: end if
11: currentBank = varsToBank[a]
12: end if
13: end for
14: b.exitBank = currentBank
15: end for
16: for each b in B do
17: clear tmpList
18: for each d in b.preBlocks do
19: if !tmpList.contain(d.exitBank) then
20: tmpList.add(d.exitBank)
21: end if
22: end for
23: if tmpList.size==1 then
24: if tmpList[0] != b.entryBank then
25: b.push f ront(BtoB(tmpList[0],b.entryBank))
26: end if
27: else if tmpList.size¿1 then
28: b.push f ront(BtoB(−1,b.entryBank)) //decompo-

sition intermediate code representation sequence
BSLCodeList

29: end if
30: end for
31: BSLCodeList = deconstruct the basic blocks B
32: return BSLCodeList

Process of algorithm: input a mapping table varsTo-
Bank and an intermediate code representation sequence
of a function noBSLCodeList to construct basic block of

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

696 XU Chao et al. : An Optimization Algorithm of Variable...

0

50

100

150

200

250

300

350

400

sy
st

e
m

 t
e

st
 0

0
1

sy
st

e
m

 t
e

st
 0

0
2

sy
st

e
m

 t
e

st
 0

0
3

sy
st

e
m

 t
e

st
 0

0
4

sy
st

e
m

 t
e

st
 0

0
5

sy
st

e
m

 t
e

st
 0

0
6

sy
st

e
m

 t
e

st
 0

0
7

sy
st

e
m

 t
e

st
 0

0
8

te
st

 0
0

1

te
st

 0
0

2

te
st

 0
0

3

te
st

 0
0

4

te
st

 0
0

5

te
st

 0
0

6

te
st

 0
0

7

te
st

 0
0

8

te
st

 0
0

9

Optimize the use of RAM

Optimization of RAM before

PICC use of RAM

Figure 8 The Corresponding Usage Bar Chart of RAM before
and after Optimization

this function (the first line of code);output intermediate
code representation sequence inserted selection block in-
struction; insert corresponding selection block instructions
(from line 2 to line 15 of code) in the basic block and then
insert selection instruction between basic blocks (from line
16 to line 30 of code); decomposition blocks generates
new intermediate code representation sequence BSLCodeList
inserted selection block instruction. Function BtoB used
to reduce the number of inserted selection block instruc-
tions represents the least inserted instructions for block
switchover and BtoB(1,2)represents switchover from Block
1 to Block 2.

4. Results and Analysis

The optimum design in this paper is based on embedded
cross-compiler, on which the test should rely. Test case
set of embedded cross-compiler is experimented with to
verify the correctness and effectiveness. Experimental pro-
cess: input high level C language code to generate ASM
file through target compiler, then generate OBJ file through
assembler, finally generate HEX file through linker. The
optimization effect is measured in terms of three files’ cor-
relate comparison.

1The used space size is calculated according to the cor-
responding information of data segment in the file gen-
erated by compiler in order to verify space used by vari-
ables after RAM space allocation optimization. Compar-
isons between the used space before and after optimization
and PICC are shown in Table 1 and Figure 8.

In whichoptimization rate =RAM before optimization-
RAM after optimization/ RAM used before optimization

Seen from the above chart, effectiveness of the algo-
rithm is verified by saving the space obviously after RAM
space allocation optimization.

2. In order to calculate the number of the inserted chip
selection instructions, the corresponding HEX codes in chip
selection instruction set should be found and searched to
get the frequency that the corresponding instructions use,
thereby the number of chip selection instructions used in

Table 1 The Usage Table of RAM before and after Optimization

RAM RAM Optimiza RAM Optimiz
Test after before tion rate of ation
case optimiz optimi of the PICC rate of

ation zation algorithm PICC
ST001 212 297 28.62% 200 32.66%
ST002 149 203 26.60% 144 29.06%
ST003 237 326 27.30% 216 33.74%
ST004 236 341 30.79% 230 32.55%
ST005 189 258 26.74% 177 31.40%
ST006 147 199 26.13% 142 28.64%
ST007 162 218 25.69% 154 29.36%
ST008 226 312 27.56% 203 34.94%
T001 120 163 26.38% 114 30.06%
T002 81 119 31.93% 84 29.41%
T003 137 189 27.51% 132 30.16%
T004 97 137 29.20% 94 31.39%
T005 78 116 32.76% 82 29.31%
T006 129 184 29.89% 124 32.61%
T007 118 165 28.48% 115 30.30%
T008 53 79 32.91% 57 27.85%
T009 86 123 30.08% 87 29.27%

Table 2 Some HEX File Example

:020000040000FA
:100000000C082B200010826B025824580158055808
:1000100025580158065800588A6D005CA06C206471
:100020000308A16CA1640345086CA0662064030862
:10003000A26CA06620640308A36C2108A1671510B8
:10004000086C2264846CA06620640308806CA2663D
:10005000A3672110086C2464256BA16DA161A66CB7
:0C0060002164A76C8A4900088A4D00103A
:02100000086C7A
:00000001FF

the program is determined to assess the effectiveness of the
algorithm. HEX file is a binary code file which can be di-
rectly loaded to run in the target machine. A simple HEX
file is given as an example shown in Table 2.

In HEX file the first two bytes of each binary code rep-
resents the number of the instruction, the next two are flag
bits and the last two are check codes. Number calculation
of the inserted selection block instruction before and af-
ter optimization and comparison with PICC are shown in
Table 3 and Figure 9.

In which: optimization rate=(the number of selection
block instructions used before optimization - the number
of selection block instructions used after optimization) /
the number of selection block instructions used before op-
timization.(The result of the above chart and table shows
that after the optimum design of selection block instruc-
tions, a reduction in the number of selection block instruc-
tions proves the effectiveness of the algorithm. optimiza-
tion effect of selection block instructions is similar to the

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 691-699 (2013) / www.naturalspublishing.com/Journals.asp 697

Table 3 Number Calculation Table of the Inserted Selection
Block Instruction before and after Optimization

after before Optimizat Number Optimiz
Test optimiz optimiz ion rate of ation
case ation ation of the instructio rate of

instruct instruct algorithm ns of PICC
ions ions PICC

ST001 693 950 27.05% 665 30.00%
ST002 192 272 29.41% 201 26.10%
ST003 411 605 32.07% 432 28.60%
ST004 1255 1792 29.97% 1198 33.15%
ST005 879 1210 27.36% 834 31.07%
ST006 1054 1420 25.77% 958 32.54%
ST007 1120 1590 29.56% 1019 35.91%
ST008 332 478 30.54% 348 27.20%
T001 73 106 31.13% 75 29.25%
T002 64 95 32.63% 66 30.53%
T003 108 145 25.52% 99 31.72%
T004 146 211 30.81% 154 27.01%
T005 175 243 27.98% 164 32.51%
T006 26 38 31.58% 27 28.95%
T007 182 248 26.61% 170 31.45%
T008 122 162 24.69% 109 32.72%
T009 98 139 29.50% 101 27.34%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

sy
st

e
m

 t
e

st
 0

0
1

sy
st

e
m

 t
e

st
 0

0
2

sy
st

e
m

 t
e

st
 0

0
3

sy
st

e
m

 t
e

st
 0

0
4

sy
st

e
m

 t
e

st
 0

0
5

sy
st

e
m

 t
e

st
 0

0
6

sy
st

e
m

 t
e

st
 0

0
7

sy
st

e
m

 t
e

st
 0

0
8

te
st

 0
0

1

te
st

 0
0

2

te
st

 0
0

3

te
st

 0
0

4

te
st

 0
0

5

te
st

 0
0

6

te
st

 0
0

7

te
st

 0
0

8

te
st

 0
0

9

Optimization of the selected

block number of instructions

Optimize the number of

instructions before the

election block

PICC Selected block number of

instructions

Figure 9 The Corresponding Usage Bar Chart of the Selection
Block Instruction before and after Optimization

developed PICC but has better optimization effect for some
small test cases.)

3.In order to test the influence over the whole system
after selection block instruction optimization,size of HEX
file (or size of ROM space) generated after each test case
optimization is calculated and compared with the devel-
oped industrial compiler PICC for assessing effectiveness
of optimum design. Comparison of ROM space is shown
in Table 4.

(In which: relative optimization rate = ROM after the
algorithm optimization/ ROM of PICC. The result in above
table shows that space size is almost kept before 0.9-1.1
times of PICC after optimum design, which means its op-
timization effect is almost the same as that of PICC. Opti-

Table 4 Number Calculation Table of the Inserted Selection
Block Instruction before and after Optimization

after before Optimization
Test case optimization optimization rate of the

instructions instructions algorithm
ST001 4560 4785 1.05
ST002 3620 3347 0.92
ST003 4344 4106 0.95
ST004 6072 6412 1.06
ST005 5036 5133 1.02
ST006 5177 5244 1.01
ST007 5285 5467 1.03
ST008 3891 3695 0.95
T001 1377 1183 0.86
T002 1293 1369 1.06
T003 1861 1955 1.05
T004 2014 1859 0.92
T005 2345 2580 1.10
T006 1029 935 0.91
T007 2545 2647 1.04
T008 2221 2351 1.06
T009 1980 1726 0.87

mization effect of the algorithm is better for the small test
cases.)

Seen from the comparison among RAM, the number
of selection block instructions and ROM space, the opti-
mization algorithm saves the space effectively, reduces the
number of selection block instructions obviously, has al-
most the same optimization effect comparing with the de-
veloped industrial compiler PICC but better optimization
effect for the small test cases. Since PICC pays more atten-
tion to global optimization and adopts uniform allocation,
each block has been allocated almost the same number of
variables. In this way for the situation with less variables,
uniform allocation increases the code cost without good
effect of code optimization.

5. Related Work and Conclusion

The optimization algorithm study about variable alloca-
tion[1][14][9] has two aspects: concurrent access data and
serial access data. In the field of concurrent access data[6],
the researchers considered that single instruction can in-
crease the number of block space, and thereby increase
memory bandwidth to improve the concurrent execution
efficiency of program. In the field of serial access data, the
researchers at home and abroad also did some research.
In the literature[12][11], Scholz et al in Sydney University
proposed an optimization technique that can minimize the
cost of block switchover by optimizing the position of in-
sertion block instruction. In the literature Bradlee et al pro-
posed a dynamic programming algorithm on the base of
block memory architecture and global shared memory.This
method can reduce chip selection instruction by allocating

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

698 XU Chao et al. : An Optimization Algorithm of Variable...

some frequently switching variables to shared memory. In
the literature Minming Li et al in City University of H.K
proposed a rounding two approximation algorithm by an-
alyzing CFG[5]. The above methods all suppose that vari-
ables have been allocated to each block in advance before
optimization of chip selection instruction. But if variables
can be allocated automatically to put variables with close
relationship to the same block through program in terms of
relationship between variables before variables allocation,
probably better allocation effect can be achieved to reduce
chip selection instruction and programming load of pro-
grammer. So this paper studies how to reduce the inserted
selection block instructions in terms of variables alloca-
tion and combines optimum design of instruction insertion
position to achieve better optimization effect.

This paper introduces the block architecture of 8-bit
microprocessor, the architecture of HR6P series chip used
as experiment platform and instruction system. Next, heuris-
tic allocation algorithm is proposed in the paper when the
question of variable allocation is mentioned. At the same
time, the detailed algorithms about optimum design of RAM
space allocation and selection block instruction are pre-
sented. Finally correctness and effectiveness are verified
through experiment and the experimental result shows that
the design saves the space effectively, reduces the number
of selection block instruction obviously and achieves ef-
fect of space optimization. In the future work, we’ll try to
find better allocation algorithm of variable class and seek
the best way to allocate variable class so that the num-
ber of selection block instruction will be reduced further.
Meanwhile, test case set will be improved to increase the
correctness and comprehensiveness of test.

Acknowledgement

The paper is supported by the State Key Program of Na-
tional Natural Science Foundation of China (Grant No.
91118003), National Natural Science Foundation of China
(Grant No. 61170022), Jiangsu Qing Lan Project and Jiangsu
Overseas Research Training Program for University Promi-
nent Young Middle-aged Teachers and Presidents.

References

[1] J. Davidson and C. Fraser. Register allocation and exhaus-
tive peephole optimization. Software: Practice and Experi-
ence, 14(9):857–865, 1984.

[2] C. EMBEDDED. Hardware-software co-design of embed-
ded systems.

[3] W. Y. L. Fang L He, G P. A new non-interior-point contin-
uation method for nonlinear complementarity prohlem with
po-function. Acta Mathematica Scientia, 31A(1):229–238,
2011.

[4] C. Han, Y. Wang, and G. He. On the convergence of
asynchronous parallel algorithm for large-scale linearly con-
strained minimization problem. Applied Mathematics and
Computation, 211(2):434–441, 2009.

[5] M. Li, C. Xue, T. Liu, and Y. Zhao. Analysis and approxi-
mation for bank selection instruction minimization on parti-
tioned memory architecture. In ACM Sigplan Notices, vol-
ume 45, pages 1–8. ACM, 2010.

[6] L. Liu, L. Xu, and D. Yang. A decentralized resource al-
location approach for response-time guarantees in storage
system.

[7] Y. Mengting, W. Guoqing, and Y. Chao. Optimizing bank
selection instructions by using shared memory. In Embed-
ded Software and Systems, 2008. ICESS’08. International
Conference on, pages 447–450. IEEE, 2008.

[8] S. Miller and R. John. An interval type-2 fuzzy multiple
echelon supply chain model. Knowledge-Based Systems, 23
(4):363–368, 2010.

[9] P. Panda, N. Dutt, and A. Nicolau. On-chip vs. off-
chip memory: the data partitioning problem in embedded
processor-based systems. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES), 5(3):682–704,
2000.

[10] R. Qin, Y. Liu, and Z. Liu. Methods of critical value re-
duction for type-2 fuzzy variables and their applications.
Journal of Computational and Applied Mathematics, 235
(5):1454–1481, 2011.

[11] B. Scholz, B. Burgstaller, and J. Xue. Minimizing bank se-
lection instructions for partitioned memory architecture. In
Proceedings of the 2006 international conference on Com-
pilers, architecture and synthesis for embedded systems,
pages 201–211. ACM, 2006.

[12] B. Scholz, B. Burgstaller, and J. Xue. Minimal placement of
bank selection instructions for partitioned memory architec-
tures. ACM Transactions on Embedded Computing Systems
(TECS), 7(2):12, 2008.

[13] Z. Wang and X. Hu. Energy-aware variable partitioning and
instruction scheduling for multibank memory architectures.
ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), 10(2):369–388, 2005.

[14] C. Xue, T. Liu, Z. Shao, J. Hu, Z. Jia, W. Jia, and E. Sha. Ad-
dress assignment sensitive variable partitioning and schedul-
ing for dsps with multiple memory banks. In Acous-
tics, Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on, pages 1453–1456. IEEE,
2008.

[15] X. Zhuang, S. Pande, and J. Greenland. A framework for
parallelizing load/stores on embedded processors. In Par-
allel Architectures and Compilation Techniques, 2002. Pro-
ceedings. 2002 International Conference on, pages 68–79.
IEEE, 2002.

Xu Chao PhD candidate,

member of China Computer Fed-
eration, the reserch interests in-
clude trusted software and em-
bedded system.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 691-699 (2013) / www.naturalspublishing.com/Journals.asp 699

He Yanxiang holds PhD in
 Computer Science from Wuhan

University of Hubei, China. He
is Professor of Wuhan Univer-
sity, phD supervisor, senior mem-
ber of China Computer Fed-
eration, his research interests
include trusted software, dis-
tributed parallel processing, and

software engineering.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

