
Appl. Math. Inf. Sci. 7, No. 2, 683-689 (2013) 683

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

An Input Data Related Behavior Extracting and
Measuring Model
Dan Wang, Min Dong, Wenbing Zhao

College of Computer Science, Beijing University of Technology, Beijing 100124 P.R.China

Received: Sep. 20, 2012; Revised Oct.4,2012; Accepted Oct.24,2012
Published online: 1 Mar. 2013

Abstract: It is difficult to dynamically assess the runtime trustworthiness of a software program. Improperly validated user input is
the underlying root cause for a wide variety of attacks on applications. This paper proposes an approach for constructing a trusted
software behaviour model related with the input data for identifying and tracking the insecure information flows based on dynamic
tainting analysis and dynamic slicing technology. It can tag and track user input at runtime and prevents its improper use to maliciously
affect the execution of the program. We regard an instruction as a basic analysis unit and focus on information flow caused by variable
assignment, the information flow of each instruction is defined as its behaviour specification. During the execution, instructions that
use untrusted variable are tracked to determine whether the address modified by the instructions belongs to the specification or not.
A method of extraction and checking of the behaviour specification was researched and designed. In order to prove for efficiency and
performance of the model, a set of tests were conducted, and preliminary results show the validity of our approach.

Keywords: dynamic behaviour, taint, information flow, slice technology

1. Introduction

The increasing size and complexity of modern software
systems lead to an increasing number of security vulner-
abilities, such as buffer overflow, heap corruption, format
string, integer overflow, etc. By carefully exploiting these
vulnerabilities, attackers may cause severe damages to the
running process or even ultimately gain the control of vic-
tim computers.

In the trusted software computing field [1], the solution
for a software system to reduce be attacked is to construct
softwares expected behavior, then to verify its conforma-
tion with its expected ones during runtime. If a software
systems behavior and runtime result can meet its users ex-
pectation and can provide continuous service when strained
by malicious interference, it can be regarded as a kind of
trusted software system. It is evident that how to construct
and verify expected softwares behavior is the fundamen-
tal work. On the other hand, as we know, many vulner-
abilities in various applications are caused by permitting
unchecked input to take control of the application, which
an attacker will turn to unexpected purposes [2–4]. For
example, improper input validation accounts for most se-

curity problems in database and web applications [5]. If
an attacker tampers with important data of the process by
using existing vulnerability when the software is running,
such as modification of a functions return address, a func-
tion pointer, etc., it can interfere with or change the be-
havior of the software. The optimal approach to prevent
attacks caused by input data would be to eliminate the vul-
nerabilities in the affected applications. It means an appli-
cation must properly validate all input data and its related
data.

In order to reduce the code amount that needs to be ex-
amined when validating the insecure flow caused by input
data, this paper focuses on modifying the outcome of spe-
cific conditions by narrowing the search space to include
only untrusted sensitive input, and we need only take into
consideration those instructions that either directly or in-
directly process untrusted input data.

This paper proposes an approach for constructing a
software behavior model related with input data for identi-
fying and tracking the insecure information flows [6]. Our
approach is based on dynamic tainting analysis and dy-
namic slicing technology to ensure a software systems be-
havior to act as its expectation. Based on our model, the

∗ Corresponding author: Email: wangdan@bjut.edu.cn
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



684 D. Wang et al. : An Input Data Related Behavior Extracting...

produced information flow of untrusted data is tracked in-
side the application. Whenever an attempt to relay such
information is detected, the user is warned and given the
possibility to stop the transfer.

The idea behind dynamic taint analysis [?] is to tag un-
trusted data and track its propagation through the system.
Any new data derived from untrusted data is also tagged.
If tainted data is used in a potentially unsafe manner, such
as executing a tagged SQL command or dereferencing a
tagged pointer, a security exception is raised. More re-
cently, researchers have started to investigate the use of
tainting based approaches in domains other than security,
such as program understanding, software testing, and de-
bugging. On the other hand, dynamic slicing technology
can compute a conservative estimate of all instructions in
a program that are either affected by or affecting the value
of a variable at a specific program point and for a given
execution, and it widely be used in software analysis field.

In our study, we firstly analyze code for the presence
of taint vulnerabilities related with input data, and then dy-
namically track tainted data at runtime. The dynamic taint-
ing analysis is used to detect insecure information flows
about an input data and the dynamic slicing is gotten. It
focuses on computing which subset of the data in the pro-
gram is affected by a given input set of data, then the dy-
namic slicing technology is used to extract the relevant
portion of the code, which is the set of instructions that
propagated information along the insecure flow. This set
of instructions, which is called concerned instructions in
this paper, is used to reduce the amount of code that needs
to be examined instead of the tagging the untrusted data.

The rest of this paper is structured as follows. In Sec-
tion 2, we present related works. In Section 3, we intro-
duce our concerned instruction set and its extracting ap-
proach. Then, in Section 4, we discuss our dynamic check-
ing and some implementation issues, respectively. Section
5 presents the evaluation of our approach, and, finally, Sec-
tion 6 concludes this paper.

2. Motivation and Related works

At present, to help deal with software debugging and ver-
ification, a variety of runtime checking and tracking ap-
proaches have been proposed. Among them, a number of
these proposals have adopted dynamic taint propagation
technology, and dynamic taint tracking and checking has
been widely accepted as a promising mitigation method.
Based on the observation that attacks are always launched
from suspicious I/O channels such as files or network sock-
ets, it seeks to capture the essence of attacks. It treats data
from those suspicious input channels as tainted data and
keeps track of the tainted data propagation as they may
directly or indirectly affect other data values in the pro-
gram. Besides, various approaches have been explored to
attack the taint problem. Broadly, these fall into two cate-
gories including statically analyzing code for the presence
of taint vulnerabilities, and dynamic approaches that track

tainted data at runtime. However, although there has been
significant previous work in the use of tainting to protect
user applications, there is a few of research to combine the
construct software behavior model with tainting checking
technology.

From the view point of software behavior, there has
been some research on constructing software expected be-
havior models. In 1996, Forrest et al. proposed a behav-
ior model N-gram [9] based on a short sequence of sys-
tem calls. Inspired by that, other research based on system
calls sprang up. Reference [10] proposed a model combin-
ing static analysis and dynamic binding, which had a more
powerful capability of detection and lower rates of false
alarm. Reference [11] proposed a model utilizing FSA to
construct a calling sequence model, which can describe
the structure of loop and branch better. Reference [12] ab-
stracted system calling sequence and information of con-
text from practicing software over and again, and defined
the difference between two different running on informa-
tion of context as behavior model, VtPath model. It signifi-
cantly increased accuracy and lowered rates of false alarm
compared to N-gram model. Reference [13] proposed a
Control Flow Integrity (CFI) model based on function call
relations. CFI constructs function call graph by static an-
alyzing function call relations, and abstracted normal re-
lations as expected behavior model. By rewriting binary
execution files, CFI added a piece of codes into function
calls and returns jump respectively, then checked the real
jump if matched the expected. If not, it recognized the
jump as abnormal behavior. Reference [4] proposed a soft-
ware information flow expected model. It marks data com-
ing from outside untrusted and traces the transition of that
data. According to its defined security strategy, it monitors
trust level assigned by the data to protect untrusted data
used for address transition, format string, system calling
parameters, etc. Reference [14] also proposed an informa-
tion flow behavior model which protects software control
flow integrity from untrusted data contaminating control
data. It ensures software control flow trusted by ensuring
the integrity of control data.

Our work essentially brings the idea of taint propaga-
tion to construct software behavior model related with un-
trusted input data. The important difference is that our ap-
proach is more flexible and extensible because the list of
sources is expressed by concerned instructions rather than
by annoation.

3. Model analysis and design

Generally, the existence of the vulnerability does not af-
fect the normal function of the software unless triggered
by the malicious user through the elaborately-designed in-
put data. Therefore, when we construct the model of soft-
ware behavior, it is not necessary to focus on each of the
instructions in the instruction set for a program. On the
contrary, for reducing overhead we only take into consid-
eration those instructions that either directly or indirectly

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2, 683-689 (2013) / www.naturalspublishing.com/Journals.asp 685

process untrusted input data. In order to track tainted user
input, we need to specify the following thing:

(1) Sources: A source is a method that returns user in-
put. Generally, all strings emanating from sources must be
marked tainted. For reduce the cost of tracking the source,
we regard our concerned instruction as the tracking source
in this paper. It includes all the instruction which use un-
trusted input data directly or indirectly.

(2) Propagation: Strings from sources are usually ma-
nipulated to form other strings such as queries, or scripts,
or file system paths. Strings that are derived from tainted
strings also need to be marked tainted. In this paper, we
mainly concentrate on the variable assignment behavior
related with input data and take the assignment behavior
as the propagation action.

(3) Sinks: A sink is a method that consumes input or
derivative of user input. This includes methods that ex-
ecute some form of code, or methods that output data.
Tainted strings must be prevented from being used as pa-
rameters to sinks.

3.1. Model extracting concerned instruction set

Firstly, we need to determine the taint source by analyz-
ing the instruction set for instructions which have used
untrusted input data directly or indirectly. Under our ap-
proach, instructions are classified as either taintless instruc-
tions or tainted instructions prior to program execution. An
instruction is called a tainted instruction if it is supposed
to deal with tainted data. Otherwise it is called a taintless
instruction. A security alert is raised whenever a taintless
instruction encounters tainted data at runtime. Here a data
value becomes tainted if it is arithmetically derived or sim-
ply copied from tainted data.

Whether an instruction is a taintless instruction or tainted
instruction must be determined before program runs. It
can be collected either through manual annotation, static
analysis or dynamic training. In this paper, static analy-
sis is adopted to acquire the tainted instruction and help
to identify taint program variables and those correspond-
ing instructions. The forward slicing technology [15] is
adopted to extract our concerned instruction set. Based
on the slice criterion < instruction1,variablen >, the ac-
quired program slicing is the program subset which is com-
posed of the partial instructions and the control predicate
expressions in the program.

Assume that the program P reads data from untrusted
input uin, the instruction set which reads data from uin
in P is {s1,s2, . . . ,si, . . . ,sn}, for any instruction si among
them, and variable set which reads data from si notes for
Vari={v1,v2, . . . ,vi, . . . ,vm}. The steps of the extraction the
concerned instruction set are described as follows:

(1)Calculating program slicing. Make the forward slice
analysis to the source file to obtain the instruction set slic-
ing(si,v) (not including the dependence of control flow)
by for any v ∈ Vari by using slice technology and taking
< si,v > as the slice criterion.

(2)Calculate FS(si):

FS(si) = slicing(si,v1)
∪

slicing(si,v2)
∪

. . .∪
slicing(si,vl) (1)

(3)Calculate FSuin :

FSuin = FS(s1)
∪

FS(s2)
∪

. . .
∪

FS(s3) (2)

FSuin is what we want, the instructions in which are the
source to be tracked.

3.2. Process of extracting related variables

If instruction s1 uses the variable defined in the instruc-
tion s2, and the variable in any path from s2 to s1 has
not been redefined, it is believed that there is information
between them. Therefore, we need to further extract vari-
ables which are assigned by instructions in the concerned
instruction set.

An abstract syntax tree is one kind of middle expres-
sion of the program, and can express grammar structure
quite intuitively and contain all static information in the
source program. Furthermore, it is very convenient to carry
out the traversal and the inquiry to AST. With the help of
AST, the analysis process of assigned variables of instruc-
tions is summarized as follows:

(1) Extract variable identifier of assignment instruction
from the AST(Abstract Syntax Tree) including a pointer
variable.

(2) Determine the scope of the variable identifier by
traversing the programs AST.

(3) Use points-to analysis to compute the variable set
to which pointer variables may point, and translate the
pointer dereference into the corresponding variables set.

In addition, according to different types of variables,
we adopt different extracting methods. For basic type vari-
ables, the variable identifier is extracted. For pointer vari-
ables, the variable identifier and the number of the ref-
erence of the pointers solution are extracted. For arrays,
structure-type variables, the variable identifier as a whole
without distinguishing between the arrays elements and
structures member variables is extracted.

Accordingly, for the different the types of instruction,
the correspondent method of the extracting variable iden-
tifier is described as follows:

(1)Expression instructions are like a = b +1; i ++; etc.
After found in AST, assignment variable identifier can be
extracted by the structure of AST directly. It is evident that
the assigned variable set of branch instructions is empty.

(2)Do while instruction and while instructions are con-
ditional judgment instructions, so the set of the assigned
variable is empty. Variable set assigned by for instruction
is loop control variable. Variable set assigned by break,

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



686 D. Wang et al. : An Input Data Related Behavior Extracting...

continue, goto instruction is also an empty set. Similaly,
the assigned variable by return instruction is empty set or
the temporary variable assigned by the compiler.

However, calling a library function needs special treat-
ment. We introduce the explanatory document for a stan-
dard library function, in which the output parameters of
the library function are marked out. Combining with the
variable identifier AST provides and makes use of the in-
struction of the parameter list, we can obtain the assigned
variable identifier of the call library information.

To determine the scope of a variable, from the scope
of a function where the instruction begins, and according
to the identifier variable, we will traverse in turn from in-
side to outside until global scope to search the definition
of the variable. Within this set, the formal parameters of a
function and its locally-defined variables are considered to
have function scope.

Pointer analysis [16,17] is a kind of static analysis tech-
nologies. It can calculate the set of storage locations for
each pointer variable of source file, including global vari-
ables, local variables and the spaces dynamic allocation.

Taking into account that the Andersen algorithm is more
balanced in terms of accuracy and efficiency and suitable
for analyzing large-scale software, we chose the Andersen
algorithm to analyze pointer variables. Because some ap-
plications use pointers that can have multiple targets, we
need to analyze these multiple-target pointers. Our anal-
ysis method is as follows: assuming that program has a
pointer variable p, p points to the set of variable pts(p) =
{p1, p2, . . . , pi, . . . , pn}, among them, p1, p2, . . . , pi, . . . , pn
are all pointer variables. When the instruction s assigns to
∗ ∗ p, then the variable set that s can assign is denoted by
pts(p1)

∪
pts(p2)

∪
. . .

∪
pts(pn).

Since tracking the software behavior during execution
will impose additional expenses in time and space, we need
make some optimization to minimize the time and space
overhead in the phase of dynamic tracking and checking.
If an instruction only writes into a fixed address, or only
writes a fixed number of bytes, or the assigned variable is
a temporary variable that the compiler allocates, we con-
sider that the instruction is safe, then our optimized strat-
egy is to remove the following two types of instructions
from the concerned set of instructions:

(1)Control instructions. According to the above analy-
sis, the set of variable which a control instruction can as-
sign is empty set or only contains the loop control variable
or temporary variable, and the loop control variable is as-
sumed to be of a basic type, either global or local variable,
so we can think of these as safe instructions.

(2)Expression instructions which assign variables of
basic types directly, such as a=b+1, i++. They accord
with the above safety conditions and dont produce abnor-
mal information flow, so we can consider they are safe in-
structions.

So far, the concerned instruction set and its variables
have been acquired. However, the extracted variable is ex-
pressed in the form of (scope, variable identifier), which
is based on source-level representation, and cannot be di-

rectly used for dynamic tracking. Therefore, source-level
representation needs to be converted into actual memory
addresses. As we know, variables can be divided into global
variables, local variables and dynamically allocated heap
space. Global and local variables have been allocated ad-
dresses at compile time, so the address can be obtained
from the debugging information directly. However, heap
space data arent allocated by address at compile time, they
are assigned address dynamically by functions such as mal-
loc().

In this paper, we mainly concentrate on the variable as-
signment behavior related with input data and take the as-
signment behavior as the insecure information flows. There-
fore, we regard an instruction as a basic analysis unit and
focus on information flow caused by variable assignment.
Concretely, we are concerned only with those instructions
which write data into memory. We analyze this kind of
writing instructions and their corresponding addresses taken
from debugging information. First, we locate a group of
instructions corresponding to concerned instructions after
compilation, then filter out the other types of instructions,
retaining only the writing instructions and calls to the stan-
dard library, then extracting their address.

4. Runtime Tracking and Checking

During runtime execution, taint checking will monitor the
actual behavior of software through obtaining the assign-
ment behavior of concerned statements and extracting its
assignment memory address, then it compare them with
the corresponding expected statements behavior. It is car-
ried out in the following steps:

(1)Load the collected taintless-instructions profile along
with program code into the main memory. These instruc-
tions are considered safe.

(2)Tag data from suspicious input channels as tainted.
All data derived from input data has been added into our
concerned instruction set during statically code analysis.

(3)Track taintedness propagation through execution. It
is tracked when a program is executed upon a sink, such
as the methods output data.

(4)Raise an alarm when a taintless-instruction encoun-
ters some tainted operand.

As a whole, writing instructions and call instructions
of library functions are our concerned sink. However, be-
cause the address of local variables changes constantly with
the call to and exit from a function, it is difficult to deter-
mine the sink which is the location or timing of updat-
ing and maintaining a local variables address. This space
may be dynamically allocated and released continually.
We classify the runtime taint sink into the following cat-
egories:

(1) Call and exit of function. During software runtime,
the expected address of a local variable needs to be up-
dated when function is called or exits.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2, 683-689 (2013) / www.naturalspublishing.com/Journals.asp 687

(2) Allocation and release of heap space. During soft-
ware runtime, heap space is allocated and released through
calling malloc() and free().

(3) The loading of dynamic link library. When the li-
braries are loaded and linked into the process space, their
address range of sections is added to address set that can
be assigned by library functions. This paper assumes that
the program only links the runtime library glibc of C.

Then, we need to track the taintedness propagation through
execution. We need to check whether the writing instruc-
tion accord with their address range, which is described as
follows:

For writing instructions, if the actual writing address
doesnt belong to any address range of set, we think that
it is inconsistent with expectations and raise an alert. Dur-
ing the running process of library functions, all written ad-
dresses are verified after returning from library functions.
The addresses written by the library functions can be di-
vided into the following categories:

(1)The local variable address of library functions. If
writing address is the local variable address of library func-
tions or belongs to the local variable address of function
call in its internal implementation, we think that the as-
signment is legal and doesnt need to be tracked.

(2)The address of the heap area. If the writing address
belongs to an allocated address in the heap, we first check
whether the address belongs to the allocated heap space of
application-defined functions. If not, it indicates that it is
the internal heap space of library functions, we believe that
the assignment operation is legal, otherwise, we search for
in the address set that can be assigned in the sink and verify
whether the writing to heap space belongs to the expected
address set.

(3)Other Address. If a writing address doesnt belong to
the address above, for example, the global variables of pro-
cess, the local variables of application-defined functions
and so on, we scan the address set that can be assigned
in the sink and verify whether the address belongs to the
expected address set.

5. Analysis and tests

For the sake of simplicity, accuracy as well as effective-
ness, this paper utilized the tool ROSE [18] to construct the
expected behavior model at first. During dynamic check-
ing, we need to monitor binary codes execution and ex-
tract features during software runtime, so we used dynamic
Instrumentation tool Dyninst [19,20] to achieve dynamic
checking of software behavior.

We tested the expected behavior model by using some
test programs with artificial security vulnerabilities includ-
ing stack buffer overflow, heap buffer overflow and format
string attack. Fig.5.1 shows our test program. It treated in-
puts from stdin as untrusted data.

(1) Stack buffer overflow. In the code fragment shown
in Fig.5.1(a), instruction 3 had a vulnerability of stack buffer

overflow. If it inputs 18 bytes into buf and covers the re-
turn address of foo() with the entrance address of fun(),
the function foo() would be unable to return to its correct
address after execution.

Figure.5.1 Two tests
(2) Format string attacks. In the codes show in Fig.5.1(b),

instruction 6 had a vulnerability of format strings. The ad-
dress of global variable i is 0x8049604. If we input string
\x04\x96\x04\08%d%d%d%d%n into buf via function
scanf() at instruction 5, then while performing function
printf() at instruction 6, the value of i would be tampered
as call instruction 8, and branch instruction 7 would be
tampered subsequently.

We tested effectiveness of our approach with two prac-
tical examples, which treated remote input as untrusted:

(1) wu-ftpd format string vulnerability. wu-ftpd is a
commonly used server on Linux, and offers basic and sim-
ple ftp service. In version 2.6.0 or earlier of wu-ftpd server,
it had the format vulnerabilities on calling function vs-
nprintf(). Attackers could use the vulnerability to get super-
user permissions by rewriting user login ID, or to tamper
with function return addresses to change program control
flow. Our test tampered function return address.

(2) Openssh integer overflow vulnerability. Openssh is
a set of connection tools for safe access to remote com-
puters. Before version of 2.9, Openssh had a integer vul-
nerability in the process of authenticating remote accesses.
We used a 32-bit integer to assign a 16-bit integer variable
which is the parameter of function malloc(). After the vari-
able overflowing by malicious input, attackers can tamper
data in any address. Our test used this vulnerability to tam-
per the value of decision variables of branch instructions
in authentication function, and that would allow users at-
tempting a connection to bypass the security authentica-
tion mechanism.

Test results showed that our expected behavior model
did detect the two security attacks above.

6. Conclusion and future works
The most prevalent attacks on software applications, such
as command injection, parameter tampering, cookie poi-
soning, cross-site scripting, all have the same root cause-
improperly validated user input. In this paper, we proposed

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



688 D. Wang et al. : An Input Data Related Behavior Extracting...

an approach for tracking and detecting the improper use of
improperly validating user input. We marked data origi-
nating from the client input as tainted, and this attribute is
propagated throughout the execution of the program. Con-
cretely, we regard an instruction as a basic analysis unit
and focus on information flow caused by variable assign-
ment, instructions that use untrusted variable. These be-
haviors are tracked to determine whether the address mod-
ified by the instructions belongs to the specification or not
during execution.

In the future we plan to further investigate how to in-
crease accuracy and lower miss-reports for tracking dif-
ferent types of variables, especially the taint source analy-
sis and sink methods capture as well as the taint propaga-
tion policy. How to analyze assignment behavior of library
functions effectively for library functions is also our con-
cern. In addition, our method is a kind of static approaches
which requires the presence of source code. Follow-up re-
search will conduct the approach for the software behavior
with executing code and conduct validation experiments
on larger data sets.

Acknowledgement

This work is partially supported by Beijing Natural Sci-
ence Foundation of China under Grant No.4122007.

References
[1] Changxiang Shen, Huanguo Zhang, Huaimin Wang et al. Re-

search and development of Trusted Computing China Sci-
ence:Information Science,40(2):139-166(2010).

[2] A.Nguyen-Tuong, S.Guarnieri, D.Greene, J. Shirley, and
D.Evans. Automatically Hardening Web Applications Using
Precise Tainting. Proc. of the 20th IFIP International Infor-
mation Security Conference,295-308 (2005).

[3] G.Venkataramani, I.Doudalis, Y.Solihin, M. Prvulovic. Flex-
iTaint: A programmable accelerator for dynamic taint prop-
agation. Proc. of the 14th Intl Symp. on High Performance
Computer Architecture (HPCA). New York: ACM Press,173-
184(2008)

[4] J.Newsome. D.Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. Proc. 12th Annual Network and Dis-
tributed System Security Symposium, 2,10-17(2005).

[5] Martin Szydlowski, Christopher Kruegel, Engin Kirda. Se-
cure Input for Web Applications. Proc. of Twenty-Third An-
nual Computer Security Applications Conference,375-384 (
2007)

[6] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas De-
vadas. Secure Program Execution via Dynamic Information
Flow Tracking. Proc. of the 11th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems,85-96(2004)

[7] James Clause, Wanchun Li, Ro Orso Venue. Dytan: A generic
dynamic taint analysis framework. Proc. of the International
Symposium on Software Testing and Analysis (ISSTA),196-
206 (2007)

[8] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, Sy-Yen Kuo. Securing Web Application
Code by Static Analysis and Runtime Protection. Proc. of the
Thirteenth International World Wide Web Conference, 40-52
(2004).

[9] S. Forrest, S.A.Hofmeyr, A.Somayaji, T.A.Longstaff. A
Sense of Self for UNIX Processes. Proc. IEEE Symposium
on Security and Privacy. Los Alamitos, CA. IEEE Computer
Society Press,120-1289(1996).

[10] W.Li,Y.X.Dai,Y.F.Lian. Context sensitive Host-based IDS
using Hybrid Automaton. Journal of Software. 20(1),138-
151(2009)

[11] C.Michael, A.Ghosh. Using Finite Automate to Mine Ex-
ecution Data for Intrusion Detection: A Preliminary Re-
port.Lecture Notes in Computer Science (1907),66-79(2000).

[12] H.Feng, O.Kolesnikov, P.Fogla, W.Lee, W.Gong. Anomaly
Detection Using Call Stack Information. In IEEE Symposium
on Security and Privacy, Oakland, California, 62-76(2003).

[13] M.Abadi, M.Budiu, .Erlingsson. Control-flow integrity
Principles, Implementations and Applications. Proc. 12th
ACM conference on Computer and Communications secu-
rity, New York, USA, 340-353(2005).

[14] R.Jedidiah. Crandall, T.C.Frederic. Minos: Control Data
Attack Prevention Orthogonal to Memory Model. Proc. of
the 37th annual IEEE/ACM International Symposium on
Microarchitecture,221-232(2004).

[15] S.Horwitz, T.Reps, D.Binkley. Interprocedural slicing us-
ing dependence graphs. ACM SIGPLAN Notices,39(4): 229-
243(2004).

[16] N.Wang,J.Liu. Proficiency and effectiveness comparision of
five types pointer analysis algorithm. Computer Engineer and
design,24(12):38-42(2003).

[17] Shuo Chen, Jun Xu, Nithin Nakka, Abigniew Kalbarczyk,
and Ravi Iyer. Defeating Memory Corruption Attacks via
Pointer Taintedness Detection. Proc. of IEEE International
Conference on Dependable Systems and Networks, 378-387
(2005)

[18] ROSE. https:// www.rosecompiler.org/.
[19] Dyninst . http:// www.dyninst.org.
[20] L.DeRose, T.Hoover, J.K.Hollingsworth. The Dynamic

Probe Class Library-an infrastructure for Developing In-
strumentation for Performance Tools. Proc. of 15th Interna-
tional Parallel and Distributed Processing Symposium, 66-
72(2001).

Dan Wang received the Ph.D
degree in computer software from
Northeastern University in 2002.
She is currently a professor at
Beijing University of Technol-
ogy. Her research interests in-
clude software verification, trust-
worthy software and distributed
computing.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2, 683-689 (2013) / www.naturalspublishing.com/Journals.asp 689

Min Dong is a postgradu-
ate candidate at Beijing Uni-
versity of Technology.

Wenbing Zhao received the
Ph.D. degree in Signal and In-
formation Process from Peking
University in 2004. She is an
assistant professor at Beijing
University of Technology. Her
research interests include data
mining, trustworthy software.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


