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Abstract: A vendor has several secrets which he regards as of equal worth and importance. He is willing to sell any of these secrets
to a buyer. The bargain is said to be secure when the following two conditions are satisfied: 1) the buyer can only obtain one secret if
he pays for only one secret, and 2) the vendor will not be able to find out which secret the buyer picked. This cryptographic problem
is customarily called all-or-nothing disclosure of secrets (ANDOS). Previous ANDOS schemes have a few defects: neither the number
of the secrets is restricted within narrow limits, nor the security is desirable. In this paper, we propose two new and novel ANDOS
protocols in quantum computing environment. The first protocol is shown to be as secure as a classical one. The second protocol
is based on unambiguous state discrimination, which is proven to be secure in quantum world. Moreover, all our schemes have no

limitation on the number of the secrets to be sold.
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1. Introduction

All-or-nothing disclosure of secrets (ANDOS for short)
describes the following cryptographic task [4]. A vendor
has several secrets which he regards as of equal worth and
importance. He is willing to sell any of these secrets to a
buyer. The bargain is said to be secure when the following
two conditions are satisfied: 1) the buyer can only obtain
one secret if he pays for only one secret, and 2) the vendor
will not be able to find out which secret the buyer picked.
Of course, a basic assumption is that Alice will not send
junk to Bob, otherwise the ANDOS is trivial.

Similar to those cryptographic tasks such as in Refs.[26,
23,7,25], ANDOS can be described by a black-box in the
following. In the black-box, the inputs of Alice are n bi-
nary strings s, s1,- - ,S,—1. She has no output. Bob’s input
is his choice n (0 < ¢ < n—1). His output is the string s,
the secret he wants to obtain. A typical ANDOS process is
shown in Fig. 1.

The concept of ANDOS was first introduced in 1986
by Brassard, Crépeau and Robert in [4]. After that, a lot of
various ANDOS schemes were proposed. However, pre-
vious ANDOS protocols in classical computing environ-
ment, even in quantum computing environment, have some
defects that affect their practicability or availability. For

Alice Bob
S ——» 4+—c
s, N ANDOS
S, — 5 > S,

Figure 1 All-or-nothing disclosure of secrets.

example, in [24] the number of secrets is limited to no
more than three. As a contrast, there is no limitation of
the number of secrets in [21]. While [21] is vulnerable to
collusion among the participants. Under cryptographic as-
sumptions, the security obtained by [4] and [22] can com-
plement each other: the former is computationally secure
for Alice and unconditionally secure for Bob, the latter
provides unconditional security to Alice and computational
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security to Bob. In [11], Adrian Kent claims that his proto-
col is unconditionally secure. However, he used a bit com-
mitment protocol as a building block in his scheme. In fact,
unconditionally secure bit commitment is known to be im-
possible in both the classical and quantum worlds [17,15,
5,16]. Thus the protocol given in [11] does not really have
the property of unconditional security.

In this paper, we present two new and novel ANDOS
protocols in quantum computing environment. The first
protocol is shown to be as secure as a classical one. Namely,
it does not gain an advantage over its classical counter-
parts. In contrast, the second quantum ANDOS protocol
is based on unambiguous state discrimination, which is
proven to be of unconditional security and has a perfor-
mance that is superior to previous one, both in classical en-
vironment and in quantum world. Moreover, all our schemes
have no limitation on the number of the secrets to be sold.

The present paper is organized as follows. Section 2
contains the material necessary for understanding the pro-
tocols of this paper as well as their context. In Section 3,
we propose two quantum ANDOS protocols, where Proto-
col 1 has the property that it is as secure as previous clas-
sical ones, and Protocol 2 is superior to classical ones in
a quantum computing environment. We provide detailed
analysis of efficiency and proof of security of Protocol 2
(also in contrast with Protocol 1) in Section 4. Section 5
concludes the paper with some remarks.

2. Preliminaries

Readers are supposed to have fundamental knowledge about
quantum computation and quantum information. In this
section, we only briefly review the quantum concepts and
techniques that are closely relevant to our quantum AN-
DOS protocols.

2.1. Unambiguous State Discrimination

In quantum information theory and quantum computing,
a fundamental task is to determine the quantum state [27,
28]. Given a mix of quantum states, can we distinguish be-
tween them without any confusion? It is well known that
if the quantum states are all orthogonal, then we can dis-
criminate among these states with certainty. For example,
assume that we are given an ensemble of Bell states, then
we can easily distinguish between these four states via a
Bell State Measurement.

However, if a set of quantum states are not orthogonal
with each other, the discrimination task seems not so opti-
mistic. Fortunately, we do have some techniques to dis-
criminate among them, but at the cost of losing all the
information of the state if an inconclusive result is got.
Customarily, we call the technique to distinguish between
mix states with some probability to get a conclusive re-
sult unambiguous state discrimination (USD) [20]. A sim-
ple instance is positive operator valued measure (POVM
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|o.)

26 83>

|‘/’1>

Y

e))

Figure 2 Non-orthogonal states and POVM elements, where
1
= o TT.
8

measurements) [19, 18], also known as probability opera-
tor measure (POM), can provide the most general phys-
ically measurement by quantum laws. POVM has a few
elegant properties, one of which is that it can be used to
perform unambiguous measurements and thus discrimi-
nate between non-orthogonal states reliably if we allow
for the probability of an inconclusive result. Now we give
a concrete example of USD using POVM measurement.

Suppose that the task we are given is to distinguish
between two non-orthogonal states |y;) = |0) and |yn) =
cos(37)|0) +sin(§7)|1) reliably with certain success prob-
ability. Can we accomplish it? Let |e;) = |1),
sin(7)|1), and |e3) = cos(7)|0) +sin(§7)[1). Consider
a POVM containing three elements

E; =2n-|er) - (e1]
Er, =21m-|ez) - {ea] (D
E3 =221 - |e3) - (e3]

where 1 = ﬁ

If we describe |y1), |y2), |e1), |e2) and |e3) in a com-
plex plane, then |y ) is vertical to |e;) and |y5») is vertical
to |e2), as shown in Fig. 2. It is not hard to verify that E,
E5 and E; obey the conditions: E; >0, Y, E; = 1.

Therefore we know that they constitute a complete quan-
tum measurement. If the result of his measurement is £
then one can safely conclude that the state must be |y5).
A similar line of reasoning shows that if the measurement
outcome E» occurs then it must be the state |y;). Some
of the time, however, we will obtain the measurement out-
come E3, and then we will infer nothing about the identity
of the original state.

In this paper, we construct a USD with qutrit measure-
ment, which will be shown in next section.
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2.2. Qutrit

A qutrit is the quantum information analogue of the classi-
cal trit. It is also the natural extension of qubit and the spe-
cial case of qudit with d = 3 [1]. Typically, a qutrit takes
the state

(W) = ala) + BIb) +7ic) )

where |a), |b), |c) are three-dimensional column vectors
with the values

0 0 1
@ =10 [,b)=|1]:lep=10 3)
1 0

and o, B and y are complex numbers that satisfy the nor-
malization condition

o>+ B +[r* =1 4)

Qutrits have some advantages that outperform qubits.
For example, qutrits provide better security than qubits in
quantum bit commitment [13]. Another instance is their
possible implementation in the fundamental tests of quan-
tum mechanics, which are strongly resistant to noise [6].
Experimental realization of arbitrary qutrit states has been
studied by Klimov et al. [12] and Bogdanov et al. [3].
These implementations open up a bright prospect for qutrits
in quantum information area.

Like that of qubit, two non-orthogonal qutrit states can-
not be reliably distinguished.

3. Quantum ANDOS Protocols

3.1. Quantum ANDOS Protocol Being
Equivalent to Its Classical Counterpart

Enlightened by the fact that two non-orthogonal qubit states
cannot be distinguished with certainty and the famous quan-
tum key distribution scheme BB84 [2], readers may think
that it is not hard to realize ANDOS scheme within the
domain of quantum mechanics. A typical protocol is de-
scribed in the following box.

Suppose that before the protocol, Alice and Bob come
to an agreement that polarizations horizontal (0°) and 45°
represent classical bit 0, and vertical (90°) and 135° rep-
resent classical bit 1. The parameters n and s denote the
number of Alice’s secrets and the length of each secret,
respectively.

Protocol 1 Quantum ANDOS Protocol Being Equivalent
to Its Classical Counterpart

1.Alice prepares randomly and uniformly 2ns photons,
each of which is independently in one of the four pos-
sible polarizations: 0°, 90°, 45°, and 135°. She then
sends these photons to Bob sequentially.

2.For each photon, Bob randomly selects between recti-
linear base ({]0), |1)}) and diagonal base

dl+) = %7 |-) = @%}) to perform a measure-
ment. He records every outcome sequentially.

3.Alice announces her encryption bases to Bob and de-
mands that Bob declare about "n;' of the outcomes that
Bob measured with determinate results.

4.If Bob passes Alice’s verification, he will get about
s measurement outcomes with certainty from the re-
maining photons which were not declared to Alice.
Bob now pick ns photons from this set and divided
them into n subsets with the cardinality of each sub-
set is equal to s, where one of the subset contains the
photons he measured with determinate results. He is
thus able to hide the number of the secret he wanted
and sends these subsets to Alice.

5.For each subset, Alice performs a bitwise exclusive
or operation with her corresponding secret. She sends
Bob the n encrypted secret strings.

6.Bob decodes his secret with his “secret key”.

It is not hard to see that if both Alice and Bob carry
out Protocol 1 honestly, they will accomplish an ANDOS
transaction in the end, with the guarantee that Alice can-
not learn which secret Bob has picked and no information
about the other secrets is obtained by Bob. However, con-
sider that a dishonest Bob may attempt to get other secrets
without paying more. He can initiate the following attack
strategy: in Step 2 of Protocol 1, he just stores the photons
sent by Alice without any operation instead of measuring
these photons. He waits until Alice announces her encryp-
tion bases and then performs his measurements according
to the encryption information. Thus he will get all the in-
formation of Alice’s 2ns photons and further he will obtain
all the n secrets form Alice. The only setup that Bob needs
to perform this kind of attack strategy is a photon stor-
age device. Namely, he needs a quantum computer. There-
fore, similar to those classical ANDOS schemes, Protocol
1 will be insecure in the future when a quantum computer
is available. Or in other words, Protocol 1 does not gain an
advantage of previous classical ones.

3.2. Quantum ANDOS Protocol Based on
Unambiguous State Discrimination

Similar to those of Protocol 1, the parameters n and s in
the following represent the number of Alice’s secrets and
the length of each secret, respectively.

Protocol 2 Quantum ANDOS via USD

1.For k = 1 to ns, Alice selects randomly and uniformly a
bit by. If by = 0, she prepares and sends a qutrit in state
|91) = p|c) + q|b) to Bob. Otherwise, she prepares and
sends Bob a qutrit in state |¢2) = ulc) +v|a). (p, ¢, u
and v are real numbers that will be determined later.)
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2.Bob receives each qutrit and performs the quantum
measurements with basis {M, M, M3}, where

100
000 5)
000

M, = |a)(a| =

000
010 (6)
000

000
000 7)
001

M; = |c)(c| =

The probability p; of obtaining a measurement out-
come M; on system in state p is given by

pi="Tr(Mip) ®)

Bob then records each measurement outcome sequen-
tially. (In the next section, we will show that by Eq.
(10), for some qutrits he can get definite conclusions,
while for other ones he just cannot determine which
state Alice prepared.)

3.For the qutrit states determined with certainty in step
2, Bob divides them into two sets R; and R, where the
cardinality of R; is given by

0.5
Rl = =2 -ns ©)

(The value of |R;| will be explained in the next sec-
tion.) Then he sends R; to Alice via a public channel.
Meanwhile, R; is kept secret against Alice.

4.Alice verifies that, each state in R; was rightly ob-
tained by Bob. If all the states pass the test Alice can
safely conclude that: i) there was no eavesdropper on
the quantum channel, and ii) Bob is honest. Thus she
informs Bob to continue. Otherwise, if an eavesdrop-
per Eve is detected, Alice tells Bob about it and they
abort the scheme.

5.If Bob is told that the quantum channel is secure, then
he constitutes (n — 1) sets form the qutrits which he
did not get conclusive results. He then announces an
n-tuple Z = {Ry,Ry,--- ,R;,--- ,R,} to Alice, where
R; = R; and the subscript i indicates the index of the
secret that Bob wants to get.

6.For each element in Z, Alice performs a bitwise exclu-
sive or operation with her corresponding secret. Namely,
she will sends Bob an n-tuple
7= {Rl @SlvRZ@SZ; T 7Ri@siv' o 7Rn @Sn}~

7.Bob decodes his secret with his “secret key”, namely,
R;.

Detailed analysis of efficiency and proof of security of
Protocol 2 (also in contrast with Protocol 1) are provided
in Sec. 4.

4. Analysis and Proof

4.1. Analysis of efficiency

In protocol 2, Bob performs qutrit measurement on each
state he received from Alice. If there is no eavesdropper on
the channel, then for states |@;) = p|c) +g|b) and |¢r) =
u|c) + v|a), his probability of measurement outcomes M,
M, and M3 are shown in Tab. 1.

Table 1 Probabilities of qutrit measurement outcomes.

Probability M; M, M3
91) 0 4¢* P’
2 V2 0 uz

In order for Bob to get unbiased measurement proba-
bilities, p, g, u and v should satisfy that

2 2

q =V (10)
and

PrPig=1 (1

w4t =1 (12)

Because p, g, u and v are all real numbers, from Egs.
(4.1)~(4.3) we get that

q=v (13)
p=u (14)
p=V1-¢ (15)

Note that the qutrit states |@; ) and |¢) are non-orthogonal,
so we also have

p>0 (16)

In Protocol 2, we let

1.6

n

p=y/1-[—] a7
then the probability Bob obtains each state sent by Alice
definitely is given by

&deZPm%#%] (18)
By Eq. (18), we now understand that in Eq. (9), about 0.5s
measurement results are used for eavesdropping purpose.
If no eavesdropper is detected and the channel is error-
free, then Alice and Bob can secretly share, on average,
1.1s classical bits when ns qutrits are transmitted. While
in Protocol 1, Alice and Bob share s qubits via an initial
amount of 2ns qubits.

Another parameter to measure the performance an AN-
DOS scheme is the number of ideal communication rounds,
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which considers the minimal number of ideal communica-
tion rounds that an error-free scheme needs. In our Proto-
col 2, there is no need for Alice to declare her encryption
basis to Bob. This is because Bob’s measurement method
is a kind of unambiguous means. After his measurement
on each qutrit, he knows whether he obtains the state of
it at once. Thus Bob can get the right information of each
qutrit with some success probability by himself, without
the help of Alice. In contrast with Protocol 2, Protocol 1
is less efficient. It is because that in the latter, Alice has to
declare her encryption basis to Bob. Therefore, the num-
ber of ideal communication rounds of our Protocol 2 is 5.
By contrast, in Protocol 1, Bob cannot get the right result
independently (he has to combine Alice’s encryption basis
and his measurement result to determine the information
of each qubit). Therefore, the number of ideal communi-
cation rounds of Protocol 1 is 6.

4.2. Security proof

Let us first consider the attacking strategy that an eaves-
dropper Eve may adopt. Without loss of generality, we can
assume that Eve can eavesdrop on both classical and quan-
tum channel. In order to get secret information shared by
Alice and Bob, Eve may intercept and forward the qutrits
on the channel. By the above analysis, we know that Eve’s
best strategy is to perform the same measurements adopted
by Bob. According Eq. (17), for each qutrit sent by Alice,
the probability of Eve’s failing to confirm its state is given
by

Prait = Paey = p* = 1—[1,'76] (19)
Then Eve has to guess a significant number of states ran-
domly. When Bob receives the states sent by Eve, his prob-
ability of getting the right information is a value less than
Pyqi1. Therefore by comparing small quantities of their bits
publicly, Alice and Bob can reach a conclusion. If they find
more differences than can be attributed to known sources,
they will know that there is an eavesdropper on the chan-
nel.

Another way Eve may adopt is to introduce an auxil-
iary qutrit. She then makes this auxiliary qutrit entangle
with the qutrit she intercepted from Alice. After that, she
sends the auxiliary qutrit Bob and keeps the qutrit she in-
tercepted in her hands. Eve attempts to obtain the secret
information generated between Alice and Bob by postpon-
ing the measurement of her qutrit until Bob has completed
his operation. However, by computation we know that this
strategy also cannot help Eve avoid being detected.

Thus any eavesdropping on the channel will always be
detected by Alice and Bob and therefore our scheme is
secure against any potential eavesdropper.

Now let us consider the security aspect of our ANDOS
scheme. Namely, how can Protocol 2 satisfy the two prop-
erties: Alice cannot learn which secret Bob has picked, and
Bob cannot learn more information than the secret he has
paid for.

In order to investigate the privacy of Bob’s choice, we
have the following conclusion:

Theorem 4.1. Alice knows noting about Bob’s choice i in
Protocol 2.

Proof. In fact, Bob does not reveal anything that involves
i until Step 5. Moreover, Bob’s “secret key” RR; is purely
random and information-theoretically hidden from Alice
for that she is unable to distinguish which of Bob’s set
he had measured with affirmative outcomes. Therefore,
sending n-tuple Z = {R;,Ry,--- ,R;,--- ,R,} to Alice at
Step 5 does not reveal anything about i either. Thus it is
information-theoretically impossible for Alice to cheat, re-
gardless of her computing power and available technology.

On the other hand, even if Alice deviates from Proto-
col 2 by sending entangled states to Bob, it will not help
her to tell which secret Bob has obtained. Suppose Al-
ice sends entangled states instead of |¢;) and |¢2). Bob
receives it and performs USD measurement as usual. By
Egs. (13)~(15) we know that, the measurement outcomes
no longer have the property of infallibility. This will render
Bob unable to decide a state correctly. The subsequence is
that Bob will obtain none of Alice’s secrets. By the as-
sumption mentioned in Sec. 1, the whole of the scheme
will fall to the ground and have to abort. Obviously, this
kind of attack is trivial and Alice will not take it. [J

In order for Bob to get one and only one secret, the
key issue is that the number of qutrits he get with certainty
is actually less than 2s and more than 1s. In fact, we have
Theorem 4.2 and Theorem 4.4 to explain it.

Theorem 4.2. For sufficiently large ns, there exist a con-
stant & (0 < & < 1) such that Bob can obtain at least one
secret with a probability at least 1 — ™.

In order to prove Theorem 4.2 we need an inequality
named “Chernoff Bound” [8]. We give the inequality first,
and then come back to the proof.

Theorem 4.3. (Chernoff inequality) [19]: Let p < 0.5, and
X1,X2,- -+, X, be independent O—1 random variables so that
Pr[X;=1] = pforeachi. Thenforall €,0 < &€ < p(1—p),
we have

Z?:] X; e

Pr| —p|>€]<2-¢ WD (20)
n

Now we continue to proving Theorem 4.2.
Proof. First we let

__ | 1 Bob got ry, reliably
= {O otherwise @0
where k € [1,ns].

By (21), Pr[X = 1] = [1], PrX, = 0] = 1 — [1!] (note
that here we omit the qutrits used for checking purpose),
and }}* | X; indexes the total number of the bits Bob reli-

ably got from Alice. Thus we have

Pr[Bob gets at least one secret]

=1 — Pr[Bob gets none secret]
(22)

ns
=1 —Pr[ZXk <]
k=1
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For Pr{y}% | Xi < s], we have
ns
Pr[z Xk < 5]
k=1

ns
=Pr[— ZXk > —s]
k=1

ZZi]Xk 1
=Pr|l— == "> —_
l ns n] (23)
WX 1.1 0.1
ns n n
YS X, 1.1, 0.
<P EE - )5 2
ns n n

In the last step of (23), we have used Lemma 3. Be-
cause
__ &y

o S P L)
2.¢ ME0-5h

< 2 . g70.0045-ns (24)

We now get that

Pr[Bob gets at least one secret] > 1 —2-¢ 000475 (25)

Therefore as long as ns is large enough, for any con-
stant &, e 70004 < £ < 1, Theorem 34.2 follows. (]

Theorem 4.2 tells us that Bob can get at least one of Al-
ice’s secrets with a probability that can be made arbitrarily
close to 1. Then, suppose Bob is honest, will he obtain
more than one secret sent by Alice? For this, we have

Theorem 4.4. For sufficiently large ns, there exist a con-
stant 17 ( 0 < M < 1) such that Bob can obtain more than
one secret with probability at most ™.

Proof. Let x; be defined as in (21), then

Pr[Bob gets more than one secret]

ns
=Pr[) X; > 2s]
k=1
ns X 2
—pr[ =122 ks -]
ns n 26)
"X 1.1 09
:Pr[z":‘ L —]
ns n n
"X 1.1 0.9
Spr“@ e P
ns n n

where the last inequality uses inequality (20) once more.
Because

0.9,2
G )1.1 -ns

2-e VUG T <. e 03682ms 27)

Similarly, combine (26) and (27), we now can safely
get that

Pr[Bob gets more than one secret] < 2-¢ 030827 (28)

That is to say, for sufficiently large ns, the probability
that Bob gets more than one secret at the same time can
be made arbitrarily small. Therefore as long as ns is large
enough, for any constant 1, e 03%82 < 1 < 1, Theorem
344 follows. [J

Combine Theorems 4.1, 4.2 and 4.4, we know that a
secure and fair quantum ANDOS protocol is achieved by
Protocol 2.

5. Summary

In this paper, we have proposed two new quantum ANDOS
protocols. Both of them have the property that the number
of the secrets of Alice can be arbitrarily large. Moreover,
Protocol 1 makes use of quantum laws to achieve ANDOS,
but it does not embody the superiority over its classical
counterparts. On the other hand, Protocol 2 is carefully
constructed based on unambiguous state discrimination.
This makes Alice be free of declaring her encryption bases
and further result in an efficiency and security improve-
ment. Detailed analysis and proof show that Bob will get
the only secret he has paid for, and he cannot learn more
information about other secret. Furthermore, Alice is not
able to learn which secret Bob has picked.

In addition, there are already known physical imple-
mentations for quantum key distribution based on entan-
gled qutrits using two-photon states from spontaneous para-
metric down-conversion, see for instance of Ref. [9]. There-
fore, it is not hard to envisage an implementation based
on single qutrits and heralded detection [14,10]. These
achievements all suggest that our protocols in this paper
will be feasible in the near future.
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