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1 Introduction and Preliminaries

Kubiak [10] and Šostak [15] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that
not only the objects are fuzzified, but also the axiomatics. In [16,17] Šostak gave some
rules and showed how such an extension can be realized. Chattopadhyay et al. [4] have
redefined the same concept under the name gradation of openness. A general approach to
the study of topological type structures on fuzzy powersets was developed in [7-11].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced
by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and his colleague [5,6] defined
the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [14] introduced
the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets
there is a definite grade of openness and there is a grade of nonopenness. Thus, the concept
of intuitionistic gradation of openness is a generalization of the concept of gradation of
openness and the topology of intuitionistic fuzzy sets.

In this paper, we have used the intuitionistic supra gradation of openness that was cre-
ated from an intuitionistic fuzzy bitopological spaces to introduce and study the concepts
of continuity, some kinds of separation axioms and compactness.
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Throughout this paper, let X be a nonempty set, I = [0, 1], I0 = (0, 1], I1 = [0, 1).
For α ∈ I, α(x) = α for each x ∈ X . The set of all fuzzy subsets of X are denoted by
IX . For x ∈ X and t ∈ I0 a fuzzy point is defined by

xt(y) =

{
t, if y = x

0, if y 6= x.

xt ∈ λ iff t ≤ λ(x). We denote a fuzzy set λ which is quasi-coincident with a fuzzy set µ

by λqµ, if there exists x ∈ X such that λ(x) + µ(x) > 1. Otherwise by λqµ.

Definition 1.1. [1,14] An intuitionistic supra gradation of openness (ISGO, for short) on
X is an ordered pair (τ, τ∗) of mappings from IX to I such that
(ISGO1) τ(λ) + τ∗(λ) ≤ 1, ∀ λ ∈ IX .
(ISGO2) τ(0) = τ(1) = 1, τ∗(0) = τ∗(1) = 0.
(ISGO3) τ(

∨
i∈∆ λi) ≥

∧
i∈∆ τ(λi) and τ∗(

∨
i∈∆ λi) ≤

∨
i∈∆ τ∗(λi), ∀ λi ∈ IX , i ∈ ∆.

The triplet (X, τ, τ∗) is called an intuitionistic supra fuzzy topological space (isfts, for
short).

An ISGO (τ, τ∗) is called an intuitionistic gradation of openness (IGO, for short) on X

iff (IT) τ(λ1 ∧ λ2) ≥ τ(λ1) ∧ τ(λ2) and τ∗(λ1 ∧ λ2) ≤ τ∗(λ1) ∨ τ∗(λ2), ∀λ1, λ2 ∈ IX .

The triplet (X, τ, τ∗) is called an intuitionistic fuzzy topological space (ifts, for short).
τ and τ∗ may be interpreted as gradation of opennes and gradation of nonopenness, respec-
tively. The (X, (τ, τ∗), (ν, ν∗)) is called an intuitionistic fuzzy bitopological space (ifbts,
for short) where (τ, τ∗) and (ν, ν∗) are IGO’s on X .

Definition 1.2. [1] A map C : IX × I0 × I1 → IX is called an intuitionistic supra fuzzy
closure operator on X if for λ, µ ∈ IX and r ∈ I0, s ∈ I1, it satisfies the following
conditions:

(C1) C(0, r, s) = 0.
(C2) λ ≤ C(λ, r, s).
(C3) C(λ, r, s) ∨ C(µ, r, s) ≤ C(λ ∨ µ, r, s).
(C4) C(λ, r1, s1) ≤ C(λ, r1, s2) if r1 ≤ r2 and s1 ≥ s2.
(C5) C(C(λ, r, s), r, s) = C(λ, r, s).

The pair (X, C) is called an intuitionistic supra fuzzy closure space.

The intuitionistic supra fuzzy closure space (X, C) is called the intuitionistic fuzzy
closure space iff

(C) C(λ, r, s) ∨ C(µ, r, s) = C(λ ∨ µ, r, s).

Theorem 1.1. [1] Let (X, τ, τ∗) be an isfts. Then ∀λ ∈ IX , r ∈ I0, s ∈ I1 we define an
operator Cτ,τ∗ : IX × I0 × I1 → IX as follows:

Cτ,τ∗(λ, r, s) =
∧
{µ ∈ IX : λ ≤ µ, τ(1− µ) ≥ r, τ∗(1− µ) ≤ s}.
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Then (X,Cτ,τ∗) is an intuitionistic supra fuzzy closure space. The mapping Iτ,τ∗ : IX ×
I0 × I1 → IX defined by

Iτ,τ∗(λ, r, s) =
∨
{µ ∈ IX : µ ≤ λ, τ(µ) ≥ r, τ∗(µ) ≤ s}

is an intuitionistic supra fuzzy interior space. And Iτ,τ∗(1− λ, r, s) = 1− Cτ,τ∗(λ, r, s).

Theorem 1.2. [1] Let (X, C) be an intuitionistic (intuitionistic supra) fuzzy closure space.
Define the mappings τc, τ

∗
c : IX → I on X by

τc(λ) =
∨
{r ∈ I0 : C(1− λ, r, s) = 1− λ},

τ∗c (λ) =
∧
{s ∈ I1 : C(1− λ, r, s) = 1− λ}.

Then,
(1) (τc, τ

∗
c ) is an IGO’s (ISGO’s) on X ,

(2) CτC ,τ∗C ≤ C.

Theorem 1.3. [1] Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an isfbts. We define the mappings C12, I12 :

IX × I0 × I1 → IX as follows:

C12(λ, r, s) = Cτ1,τ∗1 (λ, r, s) ∧ Cτ2,τ∗2 (λ, r, s),

I12(λ, r, s) = Iτ1,τ∗1 (λ, r, s) ∨ Iτ2,τ∗2 (λ, r, s),

for all λ ∈ IX , r ∈ I0, s ∈ I1. Then,
(1) (X,C12) is an intuitionistic supra fuzzy closure space,
(2) I12(1− λ, r, s) = 1− C12(λ, r, s).

Corollary 1.1. [1] Let (X,C12) be an intuitionistic supra fuzzy closure space. Then, the
mappings τC12 , τ

∗
C12

: IX → I on X defined by

τC12(λ) =
∨
{r ∈ I0 : C12(1− λ, r, s) = 1− λ}

and
τ∗C12

(λ) =
∧
{s ∈ I1 : C12(1− λ, r, s) = 1− λ}

is an ISGO’s on X .

Theorem 1.4. [1] Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. Let (X, C12) be an intuitionistic

supra fuzzy closure space. Define the mappings τsu, τ∗su : IX → I on X by

τsu(λ) =
∨
{τ1(λ1) ∧ τ2(λ2) : λ = λ1 ∨ λ2},

τ∗su(λ) =
∧
{τ∗1 (λ1) ∨ τ∗2 (λ2) : λ = λ1 ∨ λ2},

where
∨

and
∧

are taken over all families {λ1, λ2 : λ = λ1 ∨ λ2}. Then,
(1) (τsu, τ∗su) = (τc12 , τ

∗
c12

) is the coarsest ISGO on X which is finer than both of
(τ1, τ

∗
1 ) and (τ2, τ

∗
2 ).

(2) C12 = Cτsu,τ∗su
= Cτc12 ,τ∗c12

.
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Definition 1.3. [13, 14] Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a map-

ping. Then f is called
(1) IFP -continuous iff τi(f−1(µ)) ≥ νi(µ) and τ∗i (f−1(µ)) ≤ ν∗i (µ) ∀µ ∈ IY , i =

1, 2;
(2) IFP -open iff τi(λ) ≤ νi(f(λ)) and τ∗i (λ) ≥ ν∗i (f(λ)) ∀λ ∈ IX , i = 1, 2;
(3) IFP -closed iff τi(1 − λ) ≤ νi(1 − f(λ)) and τ∗i (1 − λ) ≥ ν∗i (1 − f(λ)) ∀λ ∈

IX , i = 1, 2;
(4) IFP -weakly open iff τi(λ) ≥ r and τ∗i (λ) ≤ s =⇒ νi(f(λ)) ≥ r and ν∗i (f(λ)) ≤

s ∀λ ∈ IX , i = 1, 2;
(5) IFP -weakly closed iff τi(1 − λ) ≥ r and τ∗i (1 − λ) ≤ s =⇒ νi(1 − f(λ)) ≥ r

and ν∗i (1− f(λ)) ≤ s ∀λ ∈ IX , i = 1, 2.

2 IFP ∗-Continuous Mapping

Definition 2.1. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a map-

ping. Then f is called IFP ∗-continuous (resp. IFP ∗-open, IFP ∗-closed) iff f :
(X, τsu, τ∗su) → (Y, νsu, ν∗su) is IF -continuous (resp. IF -open, IF -closed).

Theorem 2.1. Every IFP -continuous (resp. IFP -open, IFP -closed) is IFP ∗-
continuous (resp. IFP ∗-open, IFP ∗-closed).

Proof. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be an IFP -continuous

mapping and (X, τsu, τ∗su), (Y, νsu, ν∗su) their associated isfts. Suppose that there exists
µ ∈ IY and s0 ∈ I1 such that

τ∗su(f−1(µ)) ≥ s0 ≥ ν∗su(µ).

There exist µ1, µ2 ∈ IY with µ = µ1 ∨ µ2 such that ν∗su(µ) = ν∗1 (µ1) ∨ ν∗2 (µ2) ≤ s0.
Then ν∗1 (µ1) ≤ s0 and ν∗2 (µ2) ≤ s0. By IFP -continuity, we have

τ∗1 (f−1(µ1)) ≤ ν∗1 (µ1) ≤ s0 and τ∗2 (f−1(µ2)) ≤ ν∗2 (µ2) ≤ s0.

This implies that τ∗1 (f−1(µ1)) ∨ τ∗2 (f−1(µ2)) ≤ s0, and so τ∗su(f−1(µ)) ≤ s0. It is
contradiction. Hence τ∗su(f−1(µ)) ≤ ν∗su(µ), ∀ µ ∈ IY .

By the same way, we can prove τsu(f−1(µ)) ≥ νsu(µ), ∀µ ∈ IY . So, f is IFP ∗-
continuous. The other parts can be proved in a similar manner.

Example 2.1. Let X = {a, b, c}. Define ρ1, ρ2, µ1, µ2 ∈ IX as follows
ρ1(a) = 0.3, ρ1(b) = 0.5, ρ1(c) = 0.4,
ρ2(a) = 0.2, ρ2(b) = 0.3, ρ2(c) = 0.5,
µ1(a) = 0.3, µ1(b) = 0.5, µ1(c) = 0.2,
µ2(a) = 0.5, µ2(b) = 0.4, µ2(c) = 0.3.
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We define τ1, τ∗1 , τ2, τ∗2 , ν1, ν∗1 , ν2, ν∗2 : IX → I as follows

τ1(ρ) =





1 if ρ = 0, 1
0.5 if ρ = ρ1

0 otherwise,
τ∗1 (ρ) =





0 if ρ = 0, 1
0.4 if ρ = ρ1

1 otherwise,

τ2(ρ) =





1 if ρ = 0, 1
0.6 if ρ = ρ2

0 otherwise,
τ∗2 (ρ) =





0 if ρ = 0, 1
0.3 if ρ = ρ2

1 otherwise,

ν1(µ) =





1 if µ = 0, 1
0.5 if µ = µ1

0 otherwise,
ν∗1 (ρ) =





0 if µ = 0, 1
0.4 if µ = µ1

1 otherwise,

ν2(µ) =





1 if µ = 0, 1
0.4 if µ = µ2

0 otherwise,
ν∗2 (ρ) =





0 if µ = 0, 1
0.5 if µ = µ2

1 otherwise.

The mapping f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (X, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) defined by f(a) =

c, f(b) = a, f(c) = b, is IFP ∗-continuous but not IFP -continuous.

Theorem 2.2. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a mapping. Then

the following statements are equivalent: ∀λ ∈ IX , µ ∈ IY , r ∈ I0, s ∈ I1

(1) f is IFP ∗-continuous.
(2) τsu(1− f−1(µ)) ≥ νsu(1− µ) and τ∗su(1− f−1(µ)) ≤ ν∗su(1− µ).
(3) f(C12(λ, r, s)) ≤ C12(f(λ), r, s).
(4) C12(f−1(µ), r, s) ≤ f−1(C12(µ, r, s)).
(5) f−1(I12(µ, r, s)) ≤ I12(f−1(µ), r, s).

Proof. (1) ⇒ (2) is Obvious.
(2) ⇒ (3): For each λ ∈ IX , r ∈ I0, s ∈ I1, we have

f−1(C12(f(λ), r, s))

= f−1(Cνsu,ν∗su
(f(λ), r, s))

= f−1[
∧
{η ∈ IY : f(λ) ≤ η, νsu(1− η) ≥ r, ν∗su(1− η) ≤ s}]

≥
∧
{f−1(η) ∈ IX : λ ≤ f−1(η), τsu(1− f−1(η)) ≥ r, τ∗su(1− f−1(η)) ≤ s}

= Cτsu,τ∗su
(λ, r, s) = C12(λ, r, s).

Thus f(C12(λ, r, s)) ≤ C12(f(λ), r, s).
(3) ⇒ (4): For each µ ∈ IY , r ∈ I0, s ∈ I1, put λ = f−1(µ). From (3), we have

f(C12(f−1(µ), r, s)) ≤ C12(f(f−1(µ)), r, s) ≤ C12(µ, r, s),
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which implies that

C12(f−1(µ), r, s) ≤ f−1(f(C12(f−1(µ), r, s))) ≤ f−1(C12(µ, r, s)).

(4) ⇒ (5): For each µ ∈ IY , r ∈ I0, s ∈ I1, we have

C12(f−1(1− µ), r, s)) ≤ f−1(C12(1− µ, r, s)),

which implies that

1− f−1(C12(1− µ, r, s)) ≤ 1− C12(f−1(1− µ), r, s),

⇒ f−1[1− C12(1− µ, r, s)] ≤ 1− C12(f−1(1− µ), r, s).

By Theorem 1.3 (2), we have

f−1(I12(1− µ, r, s)) ≤ I12(1− f−1(1− µ), r, s) = I12(f−1(µ), r, s).

(5) ⇒ (1): Suppose that there exists µ ∈ IY , r ∈ I, s ∈ I1 such that

τ∗su(f−1(µ)) > s ≥ ν∗su(µ) and τsu(f−1(µ)) < r ≤ νsu(µ).

Then, there exist µ1, µ2 ∈ IY such that ν∗su(µ) = ν∗1 (µ1) ∨ ν∗2 (µ2), νsu(µ) = ν1(µ1) ∧
ν2(µ2), and µ = µ1 ∨µ2. This implies that ν∗1 (µ1) ≤ s and ν∗2 (µ2) ≤ s. Also, ν1(µ1) ≥ r

and ν2(µ2) ≥ r, then, Iν1,ν∗1 (µ1, r, s) = µ1 and Iν2,ν∗2 (µ2, r, s) = µ2. From Theorem 1.3,
we have

I12(µ, r, s) = Iν1,ν∗1 (µ1, r, s) ∨ Iν2,ν∗2 (µ2, r, s) = µ1 ∨ µ2 = µ.

By (5), we have

f−1(µ) = I12(f−1(µ), r, s) = Iτsu,τ∗su
(f−1(µ), r, s).

This implies that τ∗su(f−1(µ)) ≤ s and τsu(f−1(µ)) ≥ r, which is a contradic-
tion. So, τ∗su(f−1(µ)) ≤ ν∗su(µ) and τsu(f−1(µ)) ≥ νsu(µ)∀µ ∈ IY . Hence,
f : (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) is IFP ∗-continuous.

Theorem 2.3. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a mapping. Then

the following statements are equivalent: ∀λ ∈ IX , µ ∈ IY , r ∈ I0, s ∈ I1

(1) f is IFP ∗-weakly open.

(2) f(I12(λ, r, s)) ≤ I12(f(λ), r, s).
(3) I12(f−1(µ), r, s) ≤ f−1(I12(µ, r, s)).



Intuitionistic Supra Gradation of Openness 297

Proof. (1) ⇒ (2): For each λ ∈ IX and r ∈ I0, s ∈ I1, Since I12(λ, r, s) =
Iτsu,τ∗su

(λ, r, s) ≤ λ, we have

f(Iτsu,τ∗su
(λ, r, s)) ≤ f(λ).

Also,
τsu(Iτsu,τ∗su

(λ, r, s)) ≥ r and τ∗su(Iτsu,τ∗su
(λ, r, s) ≤ s.

By (1),

νsu(f(Iτsu,τ∗su
(λ, r, s))) ≥ r and ν∗su(f(Iτsu,τ∗su

(λ, r, s))) ≤ s.

Hence
f(I12(λ, r, s)) ≤ I12(f(λ), r, s).

(2) ⇒ (3): For each µ ∈ IY , r ∈ I0, s ∈ I1, put λ = f−1(µ). From (2), we have

f(I12(f−1(µ), r, s)) ≤ I12(f(f−1(µ)), r, s) ≤ I12(µ, r, s),

which implies that

I12(f−1(µ), r, s) ≤ f−1(f(I12(f−1(µ), r, s))) ≤ f−1(I12(µ, r, s)).

(3) ⇒ (1): For each λ ∈ IX with τsu(λ) ≥ r, τ∗su(λ) ≤ s implies I12(λ, r, s) = λ. Put
µ = f(λ), by (3), we have

I12(λ, r, s) ≤ I12(f−1(f(λ)), r, s) ≤ f−1(I12(f(λ), r, s)),

which implies that λ ≤ f−1(I12(f(λ), r, s)) and so f(λ) ≤ I12(f(λ), r, s). Then

νsu(f(λ)) ≥ r and ν∗su(f(λ)) ≤ s.

Hence,
f : (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 ) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 ))

is IFP ∗-weakly open.

Theorem 2.4. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a mapping. Then

the following statements are equivalent:
(1) f is IFP ∗-weakly closed.
(2) C12(f(λ), r, s) ≤ f(C12(λ, r, s)), ∀λ ∈ IX , r ∈ I0, s ∈ I1.

Theorem 2.5. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 ) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be a bijective map-

ping. Then the following statements are equivalent:
(1) f is IFP ∗-weakly closed.
(2) f−1(C12(µ, r, s)) ≤ C12(f−1(µ), r, s), ∀µ ∈ IY , r ∈ I0, s ∈ I1.
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Proof. (1) ⇒ (2): Put λ = f−1(µ), from Theorem 2.4(2)

C12(f(f−1(µ)), r, s) ≤ C12(µ, r, s) ≤ f(C12(f−1(µ), r, s)).

Also, since f is onto, we have

f−1(C12(µ, r, s)) ≤ f−1(f(C12(f−1(µ), r, s))) = C12(f−1(µ), r, s).

(2) ⇒ (1): Put µ = f(λ). Since f is injective,

f−1(C12(f(λ), r, s)) ≤ C12(f−1(f(λ)), r, s) = C12(λ, r, s).

Since f is onto,
C12(f(λ), r, s) ≤ f(C12(λ, r, s)).

3 Some Types of Separation Axioms

Definition 3.1. For i, j ∈ {1, 2}, i 6= j, an ifbts (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is called

(1) IFPR0 iff xtqCτi,τ∗i (ym, r, s) implies that ymqCτj ,τ∗j (xt, r, s) for any xt 6= ym.
(2) IFPR1 iff xt qCτi,τ∗i (ym, r, s) implies that there exist λ, µ ∈ IX with τi(λ) ≥ r,

τ∗i (λ) ≤ s and τj(µ) ≥ r, τ∗j (µ) ≤ s such that xt ∈ λ, ym ∈ µ and λ q µ.
(3) IFPR2 iff xtq ρ = Cτi,τ∗i (ρ, r, s) implies that there exist λ, µ ∈ IX with τi(λ) ≥

r, τ∗i (λ) ≤ s and τj(µ) ≥ r, τ∗j (µ) ≤ s such that xt ∈ λ, ρ ≤ µ and λ qµ.
(4) IFPR3 iff η = Cτi,τ∗i (η, r, s) qρ = Cτj ,τ∗j (ρ, r, s) implies that there exist λ,

µ ∈ IX with τi(λ) ≥ r, τ∗i (λ) ≤ s and τj(µ) ≥ r, τ∗j (µ) ≤ s such that η ≤ λ, ρ ≤ µ and
λ q µ.

(5) IFPT0 iff xt q ym implies that there exist λ ∈ IX such that τi(λ) ≥ r, τ∗i (λ) ≤ s

and xt ∈ λ, ym q µ or ym ∈ λ, xt q µ.
(6) IFPT1 iff xt q ym implies that there exist λ ∈ IX such that for i = 1 or 2

τi(λ) ≥ r, τ∗i (λ) ≤ s, xt ∈ λ and ymq λ.
(7) IFPT2 iff xtq ym implies that there exist λ, µ ∈ IX with τi(λ) ≥ r, τ∗i (λ) ≤ s

and τj(µ) ≥ r, τ∗j (µ) ≤ s such that xt ∈ λ, ym ∈ µ and λ q µ.
(8) IFPT2 1

2
iff xt q ym implies that there exist λ, µ ∈ IX with τi(λ) ≥ r, τ∗i (λ) ≤ s

and τj(µ) ≥ r, τ∗j (µ) ≤ s such that xt ∈ λ, ym ∈ µ and Cτj ,τ∗j (λ, r, s) q Cτi,τ∗i (µ, r, s).
(9) IFPT3 iff it is IFPR2 and IFPT1.
(10) IFPT4 iff it is IFPR3 and IFPT1.
(11) IFP ∗Ri iff its associated isfts (X, τsu, τ∗su) is IFRi, i = 0, 1, 2.
(12) IFP ∗Ti iff its associated isfts (X, τsu, τ∗su) is IFTi, i = 0, 1, 2, 21

2 , 3, 4.
In this definition if i = j we have the definition of IFR0, IFR1, IFR2, IFR3, IFT0,

IFT1, IFT2, IFT2 1
2

, IFT3 and IFT4, respectively.
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Theorem 3.1. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. Then we have

(1) IFPRi ⇒ IFP ∗Ri, i = 0, 1, 2, 3.
(2) IFPTi ⇒ IFP ∗Ti, i = 0, 1, 2, 2 1

2 , 3.
(3) IFP ∗Ti ⇒ IFPTi, i = 0, 1.
(4) IFP ∗R2 ⇒ IFP ∗R1 ⇒ IFP ∗R0.
(5) IFP ∗T4 ⇒ IFP ∗T3 ⇒ IFP ∗T2 1

2
⇒ IFP ∗T2 ⇒ IFP ∗T1 ⇒ IFP ∗T0.

Proof. (1) Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an IFPR0 and let xtqCτsu,τ∗su

(ym, r, s).
From Theorem 1.4(2), we have xtqC12(ym, r, s). Also, by Theorem 1.3, we
have xtq[Cτ1,τ∗1 (ym, r, s) ∧ Cτ2,τ∗2 (ym, r, s)]. Then, xt ∈ 1 − [Cτ1,τ∗1 (ym, r, s) ∧
Cτ2,τ∗2 (ym, r, s)] = [1 − Cτ1,τ∗1 (ym, r, s)] ∨ [1 − Cτ2,τ∗2 (ym, r, s)], this implies that
xt ∈ 1− Cτ1,τ∗1 (ym, r, s) or xt ∈ 1− Cτ2,τ∗2 (ym, r, s).

Therefore, xtqCτ1,τ∗1 (ym, r, s) or xtqCτ2,τ∗2 (ym, r, s). Since (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 ))

is IFPR0, we have ymqCτ1,τ∗1 (xt, r, s) or ymqCτ2,τ∗2 (xt, r, s) this implies that
ymq[Cτ1,τ∗1 (xt, r, s) ∧ Cτ2,τ∗2 (xt, r, s)] = C12(xt, r, s) = Cτsu,τ∗su

(xt, r, s), so,
(X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R0.

(2) Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an IFPT2 1

2
and xt q ym. Then there exist λ, µ ∈ IX

with τi(λ) ≥ r, τ∗i (λ) ≤ s and τj(µ) ≥ r, τ∗j (µ) ≤ s for i, j ∈ {1, 2}, i 6= j such that
xt ∈ λ, ym ∈ µ and Cτj ,τ∗j (λ, r, s)qCτi,τ∗i (µ, r, s). Since Cτsu,τ∗su

≤ Cτi,τ∗i for i = 1, 2
we have, Cτsu,τ∗su

(λ, r, s)q Cτsu,τ∗su
(µ, r, s). Then (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗T2 1

2
.

(3) Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an IFP ∗T1 and xtqym. Then there exists λ ∈ IX

such that xt ∈ λ, τsu(λ) ≥ r, τ∗su(λ) ≤ s and ym qλ. Since, τsu(λ) ≥ r, τ∗su(λ) ≤ s

there exist λ1, λ2 ∈ IX such that τsu(λ) = τ1(λ1) ∧ τ2(λ2), τ∗su(λ) = τ∗1 (λ1) ∨ τ∗2 (λ2)
and λ = λ1 ∨ λ2, then τ1(λ1) ≥ r, τ2(λ2) ≥ r and τ∗1 (λ1) ≤ s, τ∗2 (λ2) ≤ s. And xt ∈ λ

implies that xt ∈ λ1 or xt ∈ λ2. Also, ymq λ implies that ym q λ1 and ym q λ2. Thus
(xt ∈ λ1, τ1(λ) ≥ r, τ∗1 (λ) ≤ s and ym q λ1) or (xt ∈ λ2, τ2(λ) ≥ r, τ∗2 (λ) ≤ s and ym

q λ2). Hence, (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFPT1.

(4) and (5) obvious from the definition. Other parts are similarly proved.

Lemma 3.1. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. Then

(1) If (X, τ1, τ
∗
1 ) or (X, τ2, τ

∗
2 ) is IFTi, then (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗Ti, i =

0, 1, 2, 2.5, 3.
(2) If (X, τ1, τ

∗
1 ) or (X, τ2, τ

∗
2 )) is IFRi, then (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗Ri, i =

0, 1, 2.

Proof. (2) Let (X, τ1, τ
∗
1 ) or (X, τ2, τ

∗
2 ) be an IFR0. For any two fuzzy points xt 6= ym

such that xt q Cτsu,τ∗su
(ym, r, s) this implies that xt q [Cτ1,τ∗1 (ym, r, s)∧Cτ2,τ∗2 (ym, r, s)]

implies xt q Cτ1,τ∗1 (ym, r, s) or xt q Cτ2,τ∗2 (ym, r, s). Then ym q Cτ1,τ∗1 (xt, r, s) or ym q

Cτ2,τ∗2 (xt, r, s) this implies that ym q [Cτ1,τ∗1 (xt, r, s) ∧ Cτ2,τ∗2 (xt, r, s)] = C12(xt, r, s)
= Cτsu,τ∗su

(xt, r, s). This implies that (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R0.



300 A. M. Zahran et al.

Example 3.1. Let X = {a, b}. Define τi, τ∗i : IX → I , i ∈ {1, 2, 3, . . . , 12} as follows:

τ1(λ) =





1 if λ = 0, 1
0.5 if λ ∈ {aα ∨ b0.5, a0.5 ∨ bα}, α ∈ (0, 1)− {0.5}
0.5 if λ = α, α ∈ (0, 1)
0 otherwise,

τ∗1 (λ) =





0 if λ = 0, 1
0.5 if λ ∈ {aα ∨ b0.5, a0.5 ∨ bα}, α ∈ (0, 1)− {0.5}
0.5 if λ = α, α ∈ (0, 1)
1 otherwise,

τ2(λ) =





1 if λ = 0, 1
0.5 if λ = 0.4
0 otherwise,

τ∗2 (λ) =





0 if λ = 0, 1
0.5 if λ = 0.4, 0.5
1 otherwise,

τ3(λ) =





1 if λ = 0, 1
0.5 if 0 6= λ < 0.5
0.4 if 0.5 < λ 6= 1
0 otherwise,

τ∗3 (λ) =





0 if λ = 0, 1
0.5 if 0 6= λ < 0.5
0.6 if 0.5 < λ 6= 1
0.6 if λ = 0.5
1 otherwise,

τ4(λ) =





1 if λ = 0, 1
0.4 if λ = 0.5
0 otherwise,

τ∗4 (λ) =





0 if λ = 0, 1
0.6 if λ = 0.5
1 otherwise,

τ5(λ) =





1 if λ = 0, 1
0.5 if λ ∈ {a1, b1, a0.4, b0.4}
0.6 if λ ∈ {0.4, a0.4 ∨ b1, a1 ∨ b0.4}
0 otherwise,

τ∗5 (λ) =





0 if λ = 0, 1
0.5 if λ ∈ {a1, b1, a0.4, b0.4, a0.6, b0.6, a0.4 ∨ b0.6, a0.6 ∨ b0.4}
0.4 if λ ∈ {0.4, 0.6, a0.4 ∨ b1, a1 ∨ b0.4, a0.6 ∨ b1, a1 ∨ b0.6}
1 otherwise,
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τ6(λ) =





1 if λ = 0, 1
0.6 if λ = 0.7
0 otherwise,

τ∗6 (λ) =





0 if λ = 0, 1
0.4 if λ = 0.7
0.6 if λ = 0.3
1 otherwise,

τ7(λ) =





1 if λ = 0, 1
0.5 if λ ∈ {aα, bα}, α ∈ (0, 1)
0.6 if λ = α, α ∈ (0, 1)
0 otherwise,

τ∗7 (λ) =





0 if λ = 0, 1
0.5 if λ ∈ {aα, bα, aα ∨ b1, a1 ∨ bα}, α ∈ (0, 1)
0.4 if λ = α, α ∈ (0, 1)
1 otherwise,

τ8(λ) =





1 if λ = 0, 1
0.5 if λ = 0.6
0 otherwise,

τ∗8 (λ) =





0 if λ = 0, 1
0.5 if λ = 0.6
0.6 if λ = 0.4
1 otherwise,

τ9(λ) =





1 if λ = 0, 1
0.5 if 0 6= λ < 1
0 otherwise,

τ∗9 (λ) =





0 if λ = 0, 1
0.5 if 0 6= λ < 1
1 otherwise,

τ10(λ) =





1 if λ = 0, 1
0.4 if 0.5 < λ < 1
0 otherwise,

τ∗10(λ) =





0 if λ = 0, 1
0.6 if 0.5 < λ < 1
1 otherwise,

τ11(λ) =





1 if λ = 0, 1
0.5 if λ ∈ {α, aα ∨ b1, a1 ∨ bα}, α ∈ (0, 1)
0 otherwise,

τ∗11(λ) =





0 if λ = 0, 1
0.5 if λ ∈ {α, 1}, {1, α}, α ∈ (0, 1)
0.4 if λ = α, α ∈ (0, 1)
1 otherwise,
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τ12(λ) =





1 if λ = 0, 1
0.5 if λ = 0.3
0 otherwise,

τ∗12(λ) =





0 if λ = 0, 1
0.5 if λ = 0.3
0.6 if λ = 0.4
1 otherwise.

(1) For 0 < r ≤ 0.5, 0.5 ≤ s < 1, (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R1, but it is neither

IFPR1 nor IFPR0.
(2) For 0 < r ≤ 0.4, 0.6 ≤ s < 1, (X, (τ3, τ

∗
3 ), (τ4, τ

∗
4 )) is IFP ∗R2, but it is not

IFPR2.
(3) For 0 < r ≤ 0.4, 0.6 ≤ s < 1, (X, (τ5, τ

∗
5 ), (τ6, τ

∗
6 )) is IFP ∗T2, but it is not

IFPT2.
(4) For 0 < r ≤ 0.4, 0.6 ≤ s < 1, (X, (τ7, τ

∗
7 ), (τ8, τ

∗
8 )) is IFP ∗T2 1

2
, but it is not

IFPT2 1
2

.
(5) For 0 < r ≤ 0.4, 0.6 ≤ s < 1, (X, (τ9, τ

∗
9 ), (τ10, τ

∗
10)) is IFP ∗T3, but it is not

IFPT3.
(6) For 0 < r ≤ 0.4, 0.6 ≤ s < 1, (X, (τ11, τ

∗
11), (τ12, τ

∗
12)) is IFP ∗R0, but it is not

IFP ∗R1.

Lemma 3.2. [12] Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. For r ∈ I0, s ∈ I1, we have

(1) For λ ∈ IX with τsu(λ) ≥ r, τ∗su(λ) ≤ s, λqµ iff λqC12(µ, r, s), µ ∈ IX .
(2) xtqC12(λ, r, s) iff λqµ for all µ ∈ IX with τsu(µ) ≥ r, τ∗su(µ) ≤ s and xt ∈ µ.

Theorem 3.2. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. Then, ∀λ ∈ IX , r ∈ I0, s ∈ I1, the

following statements are equivalent:
(1) (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R0.

(2) C12(xt, r, s) ≤ λ with τsu(λ) ≥ r, τ∗su(λ) ≤ s, xt ∈ λ.
(3) If xt q λ = Cτsu,τ∗su

(λ, r, s), there exists µ ∈ IX with τsu(µ) ≥ r, τ∗su(µ) ≤ s

such that xt q µ and λ ≤ µ.
(4) If xt q λ = Cτsu,τ∗su

(λ, r, s) then, Cτsu,τ∗su
(xt, r, s) q λ = Cτsu,τ∗su

(λ, r, s).

Proof. (1) ⇒ (2): Let ym q C12(xt, r, s). By Theorem 1.3, we have ym q

Cτsu,τ∗su
(xt, r, s). Using (1), we obtain xt q Cτsu,τ∗su

(ym, r, s), i.e. xt q C12(ym, r, s).
Using Lemma 3.2(2), we find that ym q µ ∀µ ∈ IX with τsu(µ) ≥ r, τ∗su(µ) ≤ s and
xt ∈ µ. Then, we have C12(xt, r, s) ≤ µ.

(2) ⇒ (1): If ym q Cτsu,τ∗su
(xt, r, s), we have ym ∈ 1−Cτsu,τ∗su

(xt, r, s). By (2) and
the fact τsu(1− Cτsu,τ∗su

(xt, r, s)) ≥ r, τ∗su(1− Cτsu,τ∗su
(xt, r, s)) ≤ s, we get

C12(ym, r, s) ≤ 1− Cτsu,τ∗su
(xt, r, s) ≤ 1− xt.

Thus, xt q C12(ym, r, s) = Cτsu,τ∗su
(ym, r, s). Hence, (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R0.
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(1) ⇒ (3): Let xt q λ = Cτsu,τ∗su
(λ, r, s). Since Cτsu,τ∗su

(ym, r, s) ≤
Cτsu,τ∗su

(λ, r, s), ∀ym ∈ λ, we have xt q Cτsu,τ∗su
(ym, r, s). By (1), we have ym q

Cτsu,τ∗su
(xt, r, s). Using Lemma 3.2(2), ∀ ym q Cτsu,τ∗su

(xt, r, s), there exists η ∈ IX such
that xt q η, τsu(η) ≥ r, τ∗su(η) ≤ s and ym ∈ η. Let µ =

∨
ym∈λ{η : xtqη, ym ∈ η}.

From the definition of ISGO, we have τsu(µ) ≥ r, τ∗su(µ) ≤ s. Then, xt q µ, λ ≤ µ,
τsu(µ) ≥ r, τ∗su(µ) ≤ s.

(3) ⇒ (4): Let xt q λ = Cτsu,τ∗su
(λ, r, s). By (3), there exists µ ∈ IX such that xt q

µ, λ ≤ µ with τsu(µ) ≥ r, τ∗su(µ) ≤ s. Since xt q µ, it follows that xt ∈ 1 − µ, which
implies that

Cτsu,τ∗su
(xt, r, s) ≤ Cτsu,τ∗su

(1− µ, r, s) = 1− µ ≤ 1− λ.

Hence, Cτsu,τ∗su
(xt, r, s) q λ = Cτsu,τ∗su

(λ, r, s).

(4) ⇒ (1): Let xt q Cτsu,τ∗su
(ym, r, s). By (4), we have Cτsu,τ∗su

(xt, r, s) q

Cτsu,τ∗su
(ym, r, s) and since ym ≤ Cτsu,τ∗su

(ym, r, s), ym q Cτsu,τ∗su
(xt, r, s). Hence

(X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R0.

Theorem 3.3. An ifbts (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is an IFP ∗R1 iff xt q C12(ym, r, s), there

exist λi ∈ IX for i = 1, 2 such that (1 − λ1) q (1 − λ2) and C12(xt, r, s) ≤ λ2,
C12(ym, r, s) ≤ λ1, τsu(λi) ≥ r, τ∗su(λi) ≤ s.

Proof. (⇒) Let xt q C12(ym, r, s) = Cτsu,τ∗su
(ym, r, s). By IFP ∗R1, there exist λi ∈ IX

for i = 1, 2 with λ1 q λ2 such that

xt ∈ λ1, ym ∈ λ2 and τsu(λi) ≥ r, τ∗su(λi) ≤ s.

Since (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is an IFP ∗R1 implies that (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is an

IFP ∗R0, by Theorem 3.2(4), xt q (1 − λ1) with τsu(λ1) ≥ r, τ∗su(λ1) ≤ s implies
C12(xt, r, s) ≤ 1− λ1 ≤ λ2. Similarly, C12(ym, r, s) ≤ 1− λ2 ≤ λ1.

(⇐) Straightforward.

Theorem 3.4. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. Then, ∀ r ∈ I0, s ∈ I1, the following

statements are equivalent:

(1) (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R2.

(2) If xt ∈ λ with τsu(λ) ≥ r, τ∗su(λ) ≤ s, there exist µ1 ∈ IX with τsu(µ1) ≥ r,
τ∗su(µ1) ≤ s such that xt ∈ µ1 ≤ Cτsu,τ∗su

(µ1, r, s) ≤ λ.

(3) If xt q λ with τsu(1 − λ) ≥ r, τ∗su(1 − λ) ≤ s, there exists µi ∈ IX with
τsu(µi) ≥ r, τ∗su(µi) ≤ s, i = 1, 2 such that xt ∈ µ1, λ ≤ µ2 and Cτsu,τ∗su

(µ1, r, s) q

Cτsu,τ∗su
(µ2, r, s).
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Proof. (1) ⇒ (2): Let xt ∈ λ with τsu(λ) ≥ r, τ∗su(λ) ≤ s. Then xt q (1 − λ). Since
(X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R2, there exists µi ∈ IX with τsu(µi) ≥ r, τ∗su(µi) ≤ s for

i = 1, 2 such that xt ∈ µ1, 1−λ ≤ µ2 and µ1 q µ2, which implies xt ∈ µ1 ≤ 1−µ2 ≤ λ.
(2) ⇒ (3): Let xt q λ with τsu(1 − λ) ≥ r, τ∗su(1 − λ) ≤ s. Then xt ∈ 1 − λ. By

(2), there exists µ ∈ IX with τsu(µ) ≥ r, τ∗su(µ) ≤ s such that

xt ∈ µ ≤ Cτsu,τ∗su
(µ, r, s) ≤ 1− λ.

Since τsu(µ) ≥ r, τ∗su(µ) ≤ s and xt ∈ µ. Again by (2), there exists µ1 ∈ IX with
τsu(µ1) ≥ r, τ∗su(µ1) ≤ s such that

xt ∈ µ1 ≤ Cτsu,τ∗su
(µ1, r, s) ≤ µ ≤ Cτsu,τ∗su

(µ, r, s) ≤ 1− λ,

which implies that

λ ≤ (1− Cτsu,τ∗su
(µ, r, s)) = Iτsu,τ∗su

(1− µ, r, s) ≤ 1− µ.

Put µ2 = Iτsu,τ∗su
(1− µ, r, s). Then,

Cτsu,τ∗su
(µ2, r, s) ≤ 1− µ ≤ 1− Cτsu,τ∗su

(µ1, r, s),

that is, Cτsu,τ∗su
(µ1, r, s) q Cτsu,τ∗su

(µ2, r, s).
(3) ⇒ (1): It is trivial.

4 IFP ∗−Compactness

Definition 4.1. Let (X, τ, τ∗) be an ifts and µ ∈ IX , r ∈ I0, s ∈ I1. Then
(1) The family {ηj : τ(ηj) ≥ r, τ∗(ηj) ≤ s, j ∈ J} is called (τ, τ∗)-cover of µ iff for

each xt ∈ µ there exists j0 ∈ J such that xt ∈ ηj0 .
(2) µ is C-set iff every (τ, τ∗)-cover of µ have a finite subcover.
(3) (X, τ, τ∗) is IF -compact iff ∀λ ∈ IX such that τ(1 − λ) ≥ r, τ∗(1 − λ) ≤ s is

C-set.
(4) An ifbts (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is called IFP ∗-compact iff its associated isfts

(X, τsu, τ∗su) is IF -compact.

Theorem 4.1. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an ifbts. If (X, τ1, τ

∗
1 ) or (X, τ2, τ

∗
2 ) is IF -

compact, then (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗-compact.

Proof. Suppose that (X, τ1, τ
∗
1 ) is IF -compact, and λ ∈ IX such that τsu(1 − λ) ≥ r,

τ∗su(1 − λ) ≤ s, r ∈ I0, s ∈ I1 and {ηj : τsu(ηj) ≥ r, τ∗su(ηj) ≤ s, j ∈ J} be
(τsu, τ∗su)-cover of λ. Since τsu(1− λ) ≥ r, τ∗su(1− λ) ≤ s, we can write

λ = λ1 ∧ λ2, τi(1− λi) ≥ r, τ∗i (1− λi) ≤ s, (i = 1, 2).
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Then, for every xt ∈ λ, there exists ηj0 ∈ IX with τsu(ηj0) ≥ r, τ∗su(ηj0) ≤ s

such that xt ∈ ηj0 = η(1) ∨ η(2), for some η(i) ∈ IX with τsu(η(i)) ≥ r, τ∗su(η(i)) ≤
s, (i = 1, 2). Then, xt ∈ η(1) or xt ∈ η(2). Now, the family {η(1)

i : τ1(η
(1)
i ) ≥ r,

τ∗1 (η(1)
i ) ≤ s, i ∈ ∆} is (τ1, τ

∗
1 )-cover of λ1 or {η(2)

i : τ2(η
(2)
i ) ≥ r, τ∗2 (η(2)

i ) ≤ s, i ∈ ∆}
is (τ2, τ

∗
2 )-cover of λ2. If (X, τ1, τ

∗
1 ) is IF -compact, then λ1 is C-set i.e., there exists

finite subset ∆0 of ∆ such that λ ≤ λ1 ≤
∨

i∈∆0
η
(1)
i . Hence, λ is C-set. Consequently

(X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗-compact. Similarly, if (X, τ2, τ

∗
2 ) is IF -compact, then

(X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗-compact.

Theorem 4.2. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an IFP ∗T2, xt ∈ Pt(X), λ, µ ∈ IX , r ∈

I0, s ∈ I1. Then
(1) If λ is C-set such that xtqλ, then there exist ηi ∈ IX with τsu(ηi) ≥ r, τ∗su(ηi) ≤ s,

(i = 1, 2) such that xt ∈ η1, λ ≤ η2 and η1 q η2.
(2) If λ, µ are C-sets such that λ q µ, then there exist ρi ∈ IX , τsu(ρi) ≥ r, τ∗su(ρi) ≤

s, (i = 1, 2) such that λ ≤ ρ1, µ ≤ ρ2 and ρ1 q ρ2.
(3) If λ is C-set, then Cτsu,τ∗su

(λ, r, s) = λ.

Proof. (1): Since xt q λ, then xt q ym ∀ ym ∈ λ. By IFP ∗T2 of (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 ))

there exist η1, υ ∈ IX with τsu(η1) ≥ r, τ∗su(η1) ≤ s, τsu(υ) ≥ r, τ∗su(υ) ≤ s such that
xt ∈ η1, ym ∈ υ and η1 q υ. Then the family {υi : τsu(υi) ≥ r, τ∗su(υi) ≤ s, i ∈ ∆}
is (τsu, τ∗su)-cover of λ. Since λ is C-set, there exists a finite subset ∆0 of ∆0 such that
λ ≤ ∨

i∈∆0
υi. Put η2 =

∨
i∈∆0

υi. Then

τsu(η2) = τsu(
∨

i∈∆0

υi) ≥
∧

i∈∆0

τsu(υi) ≥ r,

τ∗su(η2) = τ∗su(
∨

i∈∆0

υi) ≤
∨

i∈∆0

τ∗su(υi) ≤ s.

Since η1 q υi, i ∈ ∆0, then η1 ≤ 1− υi, which implies that

η1 ≤
∧

i∈∆0

(1− υi) = 1−
∨

i∈∆0

υi = 1− η2.

Then, η1 q η2.
(2): Let xt ∈ µ and λ q µ, then xt q λ. By (1) there exist σ, ρ2 ∈ IX with τsu(σ) ≥ r,

τ∗su(σ) ≤ s, τsu(ρ2) ≥ r, τ∗su(ρ2) ≤ s such that xt ∈ σ, λ ≤ ρ2 and σ q ρ2. Then the
family {σi : τsu(σi) ≥ r, τ∗su(σi) ≤ s, i ∈ ∆} is (τsu, τ∗su)-cover of µ, so there exists a
finite subset ∆0 of ∆ such that µ ≤ ∨

i∈∆0
σi. Put ρ1 =

∨
i∈∆0

ρi, then τsu(ρ1) ≥ r and
τ∗su(ρ1) ≤ s. Since ρ2 q σi, i ∈ ∆0 we have ρ2 q ρ1.

(3): Let xt ∈ 1− λ, then xt q λ. Since λ is C-set, then by (2), there exist η1, η2 ∈ IX

with τsu(ηi) ≥ r, τ∗su(ηi) ≤ s (i = 1, 2) such that xt ∈ η1, λ ≤ η2 and η1 q η2. This
implies that xt ∈ η1 ≤ 1 − η2 ≤ 1 − λ. Thus, 1 − λ =

∨{η1 : xt ∈ 1 − λ}. So,
τsu(1− λ) ≥ r, τ∗su(1− λ) ≤ s. Hence, Cτsu,τ∗su

(λ, r, s) = λ.



306 A. M. Zahran et al.

Theorem 4.3. Let (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) be an IFP ∗-compact. Then

IFP ∗T2 ⇐⇒ IFP ∗T4.

Proof. (⇒): Since (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗T2 it is clear that it is IFP ∗T1. We

only need to prove that (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R3,

Let λ1 = Cτsu,τ∗su
(λ1, r, s)qλ2 = Cτsu,τ∗su

(λ2, r, s). Then, τsu(1 − λi) ≥ r, τ∗su(1 −
λi) ≤ s, (i = 1, 2). Since (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗-compact, λ1 and λ2 are C-sets.

Since λ1 q λ2, by Theorem 4.2(2), there exist ρ1, ρ2 ∈ IX , such that λ2 ≤ ρ2 and ρ1 q ρ2.
Thus, (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗R3. Hence, (X, (τ1, τ

∗
1 ), (τ2, τ

∗
2 )) is IFP ∗T4.

(⇐): See Theorem 3.1(5).

Theorem 4.4. Let f : (X, (τ1, τ
∗
1 ), (τ2, τ

∗
2 )) → (Y, (ν1, ν

∗
1 ), (ν2, ν

∗
2 )) be an IFP ∗-

continuous and µ ∈ IX is C-set. Then f(µ) is C-set in Y .

Proof. Let {ηi : i ∈ J} be (νsu, ν∗su)-cover of f(µ). Then, f(µ) ≤ ∨
i∈J ηi, νsu(ηi) ≥ r,

ν∗su(ηi) ≤ s. By IFP ∗-continuity of f we have

τsu(f−1(ηi)) ≥ νsu(ηi) ≥ r, τ∗su(f−1(ηi)) ≤ ν∗su(ηi) ≤ s.

Also,

µ ≤ f−1(f(µ)) ≤ f−1(
∨

i∈J

ηi) =
∨

i∈J

f−1(ηi).

Then, the family {f−1(ηi) : i ∈ J} is (τsu, τ∗su)-cover of µ.
But µ is C-set, there exist a finite subset J0 of J such that µ ≤ ∨

i∈J0
f−1(ηi), which

implies that

f(µ) ≤ f(
∨

i∈J0

f−1(ηi)) =
∨

i∈J0

f(f−1(ηi)) ≤
∨

i∈J0

ηi.

Hence, f(µ) is C-set in Y .

Corollary 4.1. The IFP ∗-continuous image of an IFP ∗-compact is IFP ∗-compact.
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