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Abstract: QoS-based service selection is an important issue of service-oriented computing (SOC). A common premise of previous
research is that the QoS values of services to target users are supposed all known. However, the real situation is that many of them may
be missing. In this paper, we propose an enhanced CF-based QoS prediction approach to predict such missing values. Compared with
existing QoS prediction methods, our proposed one has three new features: 1) adding a data normalization process to remove the impact
of different QoS scale; 2) using the adjusted Euclidean Distances equation for similarity calculation to improve the prediction accuracy;
and 3) using a fusion approach to predict the missing values from two sources(user and service based). An extensive performance study
based on a real public dataset is reported to verify its effectiveness.
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1. Introduction

Service-oriented computing (SOC) paradigm and its re-
alization through standardized web service technologies
provide a promising solution for the seam-less integration
of single-function applications to create new large-grained
and value-added services. SOC attracts industrial’s atten-
tion and is applied in many domains, e.g., workflow man-
agement, finances, and e-business. With a growing num-
ber of alternative Web services that provide the same func-
tionality but differ in quality properties, the problem of se-
lecting the best performing candidate service is becoming
more and more important. Recently, there are a number
of studies [1–3] about QoS-based service selection. Their
common premise is that the QoS values of all candidate
services to target users are known. However, it may not
be true in real world. Due to some inevitable elements,
e.g., location and network environment, the QoS of the
same service to different users may be different. For exam-
ple, the response time for user ua(IP:12.108.127.136,
USA) to invoke web service(WSDL:http://biomoby.org/ ser-
vices/ wsdl/mmb.pcb.ub
.es /parseFeaureAASequenceFromFSOLVText, located in
Spain) is 5626ms, while that for user ub(IP:133.1.74.

162, Japan) to invoke the same one is 687ms. A user can
hardly have invoked all services, meaning that the QoS
values of some services that the user has not invoked are
missing. Hence, effective approaches are urgently needed
to provide accurate prediction of the QoS values of differ-
ent Web services for each user without requiring real Web
service invocations.

In recent years, researchers have proposed a number of
QoS prediction approaches [6–9]. Inspired by the applica-
tion of Collaborative Filtering(CF) [7] in product recom-
mendation, CF has been employed to predict QoS values
using Web service QoS evaluations from different users.
Moreover, extensive experimental studies have shown that
CF-based approaches can obtain good overall prediction
precision. However, the CF-based approaches can be re-
stricted under dense past QoS values. As can be seen from
[9], the more sparse QoS values is, the more greatly predic-
tion precision degrades. In fact, QoS values may be very
sparse since users may only invoke a few of candidate ser-
vices each time.

To improve the prediction accuracy under sparse QoS
values, we propose an enhanced CF-based approach to pre-
dict the missing QoS values. The basic idea is that Web
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service QoS values of a user can be predicted by employ-
ing past Web service QoS values of other users. As dif-
ferent QoS scale can impact the prediction accuracy, our
approaches first normalize to make QoS values in different
scale be fair on making prediction. Then, considering over-
estimation of the user similarities using Pearson Correla-
tion Coefficient(PCC), we propose an improved Euclidean
Distances by using the standard derivation of users or ser-
vices. Finally, the final QoS is estimated by fusing predic-
tions from two sources: predictions based on QoS of the
same service to similar users and those based on QoS of
similar services to the same user.

The contributions of this work are as follows: (1) We
propose an enhanced CF-based QoS prediction approach
via adjusted Euclidean Distances. Our approach signifi-
cantly enhances the prediction accuracy under sparse QoS
values; (2) We evaluate the proposed approach experimen-
tally by employing a real-world Web service QoS dataset.
It contains the records of 1, 974, 675 Web service invoca-
tions executed by 339 distributed service users on 5825
Web services.

The rest of this paper is organized as follows: Section 2
presents our QoS value prediction approach. Section 3 de-
scribes our experiments. Section 4 introduces related work
and Section 5 concludes the paper.

2. Our Prediction Approach

2.1. Approach Outline

Our approach consists of four key procedures: 1) Normal-
ization, 2) Similarity Computation, 3). Similarity Neigh-
bor selection, and 4) QoS Prediction. Normalization makes
QoS values into a uniform scope based on Gaussian ap-
proach [2]. Similarity Computation calculates the user and
service similarity with adjusted Euclidean Distances based
on their historical experiences. Similarity Neighbor selec-
tion uses the traditional Top-K algorithm to select the sim-
ilar services or users. QoS Prediction is used to predict the
missing values of services according to the existing QoS
values by using our approach. For the convenience of our
readers, Table 1 summarizes all important notations used
in this paper.

2.2. Normalization

After analyzing real-world Web service QoS values, we
find QoS value can be data type or ratio type. The value
of ratio type property varies in a limited range, such as
0− 100%, while the value of data type property may have
quite different scale. A typical data type is response time,
which is possible to vary in range of [0s, 1s] for one kind
of consumers, but in range of [10s, 20s] for the other king
of consumers.

The differences in QoS scale can impact user and ser-
vice similarity. To solve the problem, Data type should be

Table 1 Key notations and their descriptions

Notation Definition and Brief Description
u1 a user
s1 a Web service
Su1 the set of Web services have been invoked by u1

US1 the set of users have invoked s1
ru1,s1 the QoS of s1 to u1

ϕ similarity between objects
P prediction result
L the set of similar objects
con coefficient weight
T the number of users in training data
g the number of Web services invoked

by the user in testing data

normalized to make data in different range be fair on mak-
ing prediction. Therefore, Gaussian approach [2] is intro-
duced to normalize QoS values from each user separately
as shown in Equation(1), where r̄ui denotes the arithmetic
mean of QoS value from user ui, σi is the standard devi-
ation of QoS values from ui. We use 3σi because of the
3 − σ rule, which helps to normalize the value into the
range of [0, 1].

rui,sj = 0.5 +
rui,sj − r̄ui

2× 3σi
(1)

Given a dataset consisting of M service users and N
Web services, the invocation records between users and
services can be denoted by a M × N matrix, called the
user-service matrix. A user-service matrix example is given
in Table 2. Every entry in this matrix ru1,s1 represents a
record of invocation (QoS values, e.g., response time and
throughput). For example, the response time for user u1

to invoke service s1 is 100ms, and the throughput is 0.13.
Then the vector ru1,s1 is (100, 0.13) if we consider these
two QoS parameters only. If user u1 has not invoked the
service s3, then ru1,s3 = null.

Table 2 user-service matrix

s1 s2 s3
u1 ⟨0.4s, 0.13⟩ ⟨1.6s, 0.23⟩ ?
u2 ⟨2.6s, 1.44⟩ Null ⟨3.5s, 6.12⟩
u3 ⟨0.8s, 0.45⟩ ⟨0.9s, 6.55⟩ ⟨5.1s, 7.12⟩
u4 ⟨8s, 0.8⟩ ⟨3.0s, 0.92⟩ Null
u5 ⟨4.3s, 3.3⟩ ⟨3.5s, 2.3⟩ ⟨1.6s, 0.95⟩

2.3. Similarity Computation

This section introduces the similarity computation method
of different service users as well as different Web services.
Existing work [7–9] about QoS prediction uses PCC to
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compute the similarity of users or services. In this paper,
Euclidean Distances is introduced to define the similarity
of users or services.

After analyzing real-world Web service QoS values,
we find the similarity of users or services is impacted by
them itself. For example, due to the reason of a fast net-
work, the response time of service si to all users, which
invoked it, is lower than 200ms. In such situations, the
similarity between these users is larger using Euclidean
Distances. As a result, it will overestimate the similarities
of users who are actually not similar but happen to have
similar QoS experience on a few co-invoked Web services
[4]. Also, this will impact the final prediction accuracy. In
order to address the problem, we adjust the traditional Eu-
clidean Distances by using d.

The similarity between two users u1 and u2 based on
the services they commonly invoke is computed using the
following equation:

ϕu1,u2 =
1√∑

s∈S
(ru1,s−ru2,s)

2

|S|

× ds (2)

Where Sk = Su1

k ∩ Su2

k is the set of services that are
both invoked by user u1 and u2, ru1,s is the vector of QoS
values of service s invoked by user u1, ru2,s is the vector
of QoS values of service s invoked by user u2, and ds is
the standard deviation of QoS values of service s.

In addition, the similarity between services is com-
puted using the following equation:

ϕs1,s2 =
1√∑

u∈U
(ru,s1−ru,s2 )

2

|U |

× du (3)

where U = Us1 ∩ Us2 is the set of users who both have
invoked services s1 and s2, ru,s1 is the vector of QoS val-
ues of service s1 invoked by u, ru,s2 is the vector of QoS
values of service s2 invoked by u, and ds is the standard
deviation of QoS values from user u.

2.4. Similar Neighbor Selection

In Section 2.3, we have calculated the similarities between
different users or services, and then we can choose a set of
similar neighbors for target users or services. The process
of selecting similar neighbor is crucial for the accuracy
of prediction because the prediction of a missing value
depends on the corresponding values of similar neighbor.
In existing works [9], using PCC, the similarity between
users or services is in the range of [−1, 1] with a larger
value indicating that u1 and u2 are more similar. PCC sim-
ilarities smaller or equal to 0 will be excluded. Hence, tra-
ditional Top-K algorithm is not suitable for this scenario.
Different from previous research, similarities is only larger
or equal to 0 using our adjusted Euclidean Distances. There-
fore, we use the traditional Top-K algorithm to select the
similar neighbors.

2.5. QoS Prediction

User-based prediction uses the data of similar users to pre-
dict the missing value of target service s to target user u as
follows:

Pu =
∑

u1∈Lu

ϕu,u1 × ru1,s∑
u1∈Lu

ϕu,u1

(4)

Where Pu is a vector of predicted QoS values of the miss-
ing value ru1,s in the user-item matrix, Lu is u’s similar
users. The equation of service-based prediction is as fol-
lows.

Ps =
∑

s1∈Ls

ϕs,s1 × ru,s1∑
s1∈Ls

ϕs,s1

(5)

When Lu and Ls is not empty, predicting the missing value
only with user-based methods or services-based methods
will potentially ignore that the information of the similar
users and similar services. They can make the prediction
more accurate. Therefore, the final QoS is estimated by
combining user-based method and service-based method.

Since these two predicted results are all computed based
on similarities, we should compute the confidence weight
of each predicted result to balance the results from these
two prediction methods. The confidence weight of user-
based prediction is defined as:

conu =

∑
u1∈Lu

ϕu,u1 × ϕu,u1∑
u1∈Lu

ϕu,u1

(6)

The confidence weight of service-based prediction is:

cons =

∑
s1∈Ls

ϕs,s1 × ϕs,s1∑
s1∈Ls

ϕs,s1

(7)

The value of confidence weight is in the range of [0, 1]
with a larger value indicating that the corresponding result
is more preferable. As the final predicted result is the ag-
gregation of user and service based predicted results, we
set the parameters w ∈ [0, 1] to determine how our QoS
prediction relies on each result. The final equation for QoS
prediction is as follows:

P (ru,s) = wu ∗ Pu + ws ∗ Ps (8)

where wu and ws are the weights of the user-based method
and the item-based method, respectively (wu + ws = 1).
wu is defined as:

wu =
conu ∗ w

cons ∗ (1− w) + conu ∗ w
(9)

and ws is defined as:

ws =
cons ∗ (1− w)

cons ∗ (1− w) + conu ∗ w
(10)

The parameter w, means the participation that the cor-
responding prediction result takes in the final result. If 0 <
w < 1, our prediction approach aggregate the final re-
sults from user and service based predicted results. If w =
1, our approach turns to be the user-based prediction ap-
proach. Similarly, if w = 0, our approach degrades to the
service-based approach.
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3. Experiments

In this section, we present an experimental evaluation of
the proposed approach by measuring (a) performance of
different approaches (UPCC, IPCC, WSRec, and Our Ap-
proach), in terms of Normalized Mean Absolute Error (NMAE);
(b) Impact of the adjusted Euclidean Distances;(c) impact
of the confidence weight; and (d) impact of parameter w.

3.1. Experimental Setup

We have conducted our experiments using a public real-
worldWeb service QoS dataset, which is collected by Zibin
Zheng et.al [9]. It contains the records of 1, 974, 675 Web
service invocations executed by 339 distributed service users
on 5825 Web services. The record of each invocation con-
tains 2 parameters: Response Time and Throughput. More
details about this dataset can be found in [6]. In this paper,
we randomly extract 150 users, 100 Web services and use
the invocation records between them as the experimental
data.

Our experiments are implemented with Matlab 7.0 and
mysql 5.0. They are conducted on a Dell Inspire R13 ma-
chine with a 2.27 GHz Intel Core I5 CPU and 2GB RAM,
running Windows 7 OS.

3.2. Evaluation Metric

In our experiments, NMAE is used to evaluate the ac-
curacy of prediction. Mean Absolute Error (MAE) is as
follows:

MAE =

∑
U,S |ru,s − r̂u,s|

N
(11)

where ru,s represents the predicted QoS value of service
s observed by user u, r̂u,s stands for the expected or real
QoS value and N is the total number of predictions. As
we know, services QoS value range may differ so tremen-
dously that only MAE is not objective enough. As an
adjustment, NMAE normalizes the differences range of
MAE by computing:

NMAE =
MAE∑
U,S

ru,s

N

(12)

The smaller NMAE, the more accurate QoS prediction.

3.3. Performance Comparison

We compare the proposed approach with three famous pre-
diction methods: User-based algorithm using PCC(UPCC),
Item-based algorithm using PCC(IPCC), and WSRec [9].
Note that Equation (4) and (5) are employed to calculate

UPCC and IPCC, respectively. To the best of our knowl-
edge, WSRec approach is the best one for QoS prediction
at present.

As the dataset used for experiments is the set of invoca-
tion records between 150 users and 100 Web services, we
create a 150 × 100 user-service matrix, where each entry
in it is a vector including two QoS values: Response Time,
Throughput. During the experiment, the 150× 100 matrix
is divided into two parts, N rows as the training matrix and
the other (150 − N ) rows as the testing one. The users in
testing matrix are called as target users. Then, the training
matrix density is thinned randomly to m% to simulate the
situation in which one user in the training matrix has em-
ployed only m% of all services. This step is used to make
the situation of experiments similar to the real scenario.
In addition, we vary the number of invocation records that
target users can provide(in other word, the number of Web
services that target users have invoked). To minimize error,
each experiment is looped 50 times and the average value
is reported.

Table 3 shows the prediction performance of above
four approaches on Response Time and Throughput em-
ploying 5%, 10%, 15%, and 20% density of the training
matrix respectively. For the users in testing matrix (tar-
get users), we vary the number of invoked Web services
as 10, 20, and 30 by randomly sampling (named as g10,
g20, g30 in Table 3). In addition, we consider the influence
of the size of the training matrix, and vary the number of
training users, i.e., T = 100 or 140. Empirically, we set
w = 0.5, and K = 10 (the number of similar neighbors
in Top-K Algorithm). From Table 3, we find that our pre-
diction approach obtains smaller NMAE values, which
means higher prediction accuracy in all cases, especially
under the training matrix is sparse. This demonstrates that
our approach gives more accurate prediction. Comparing
the prediction results for cases of T = 100 and 140, we
can find that the latters NMAE values are smaller, which
indicates that the increase of T improves the prediction ac-
curacy. Similarly, the increase of the density of a training
matrix improves the accuracy. It can be easily explained as
higher density means more training data. Furthermore, the
increase of the number of invoked services (g10, g20, and
g30) also improves the prediction accuracy.

3.4. Evaluation of the adjusted Euclidean
Distances

To study its impact to the performance of the adjusted Eu-
clidean Distances, we implement two versions of our pre-
diction approach, one version employs the traditional Eu-
clidean Distances and the other employs the adjusted Eu-
clidean Distances for the similarity calculation. In the ex-
periment, we set w = 0.5 and K = 10. Figure 1(a)-(d)
shows the performance of the two versions on the train-
ing matrix of Response Time when T is 100 and 140,
while Figure 1(e)-(h) shows that on the training matrix of
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Table 3 Comparison of Prediction Accuracy (a smaller value means a better performance)

Density Methods
T=100

Response Time Throughput
g10 g20 g30 g10 g20 g30

5%

UPCC 0.609 0.5625 0.5534 0.8949 0.8369 0.8201
IPCC 0.5749 0.5552 0.548 0.8286 0.8261 0.8204

WSRec 0.5212 0.5107 0.4902 0.7832 0.7721 0.7716
OurApproach 0.4391 0.4089 0.3794 0.67 0.6611 0.6604

10%

UPCC 0.5543 0.5479 0.547 0.8391 0.8233 0.8167
IPCC 0.4746 0.4512 0.4234 0.7629 0.7363 0.7124

WSRec 0.4404 0.404 0.3855 0.7329 0.6955 0.6818
OurApproach 0.3552 0.3144 0.3009 0.6295 0.5949 0.5793

15%

UPCC 0.5195 0.5061 0.4903 0.7878 0.7746 0.7717
IPCC 0.4385 0.4121 0.411 0.7242 0.7182 0.6712

WSRec 0.3925 0.3855 0.3738 0.698 0.6776 0.6393
OurApproach 0.321 0.2907 0.2854 0.5943 0.5864 0.5719

20%

UPCC 0.4903 0.4852 0.4733 0.7554 0.7504 0.7414
IPCC 0.4093 0.3767 0.3674 0.701 0.6971 0.6625

WSRec 0.3653 0.3411 0.3305 0.6479 0.6377 0.6211
OurApproach 0.3107 0.2869 0.2792 0.5589 0.5356 0.5213

Density Methods
T=140

Response Time Throughput
g10 g20 g30 g10 g20 g30

5%

UPCC 0.6103 0.5717 0.5497 0.9199 0.8171 0.8082
IPCC 0.5531 0.5348 0.5241 0.8548 0.8243 0.7688

WSRec 0.5036 0.4808 0.4614 0.7813 0.7423 0.7158
OurApproach 0.389 0.3921 0.3858 0.6873 0.636 0.6085

10%

UPCC 0.5486 0.5399 0.5019 0.8255 0.7953 0.7791
IPCC 0.4626 0.4358 0.4225 0.7388 0.6769 0.6525

WSRec 0.4138 0.3914 0.3884 0.706 0.618 0.6176
OurApproach 0.3277 0.3127 0.2899 0.6168 0.5092 0.5001

15%

UPCC 0.4864 0.4711 0.4505 0.7946 0.7659 0.7261
IPCC 0.3976 0.377 0.3635 0.6971 0.6432 0.6397

WSRec 0.3539 0.3289 0.323 0.6757 0.6528 0.6078
OurApproach 0.2986 0.2591 0.2543 0.5727 0.5658 0.5365

20%

UPCC 0.4792 0.4602 0.4433 0.7492 0.7405 0.7171
IPCC 0.3703 0.3498 0.3406 0.6709 0.6362 0.6297

WSRec 0.3278 0.3136 0.3028 0.6382 0.5849 0.5731
OurApproach 0.2775 0.2639 0.2476 0.5209 0.483 0.4799

Throughput. Note that the word Given number in below
figures means g, and the scale of y-coordinate(it denotes
NMAE) has small difference in Figure 1, Figure 2, and
Figure 3 for accurately showing the value of NMAE.

In Figure 1(a)-(b), g is fixed as 10. From Figure 1(a),
with the density of a training matrix varying from 5% to
40%, we can find that the prediction approach with the
adjusted Euclidean Distances outperforms the prediction
approach with the traditional Euclidean Distances. Figure
1(b) shows the performance comparison when the number
of T is 140, and the result is similar to Figure1(a). In Fig-
ure 1(c)-(d), the density of the training matrix is fixed as
10%. From Figure 1(c), we can find that the result is sim-
ilar to Figure 1(a)-(b) with g varying from 5 to 35. When
the number of T is 140, the improvement that the adjusted
Euclidean Distances brings to our prediction approach is

clearer. Moreover, from Figure 1(e)-(f), we can draw the
similar conclusion with Figure 1(a)-(d).

Figure 1 shows that our prediction approach obtains
better prediction accuracy. Clearly, the adjusted Euclidean
Distancess usage enhances the accuracy of prediction.

3.5. Impact of the confidence weight

Confidence weight determines how to make use of the pre-
dicted results from the user-based method and the service-
based method. To study its impact, we also implement two
versions of our prediction approach, one version employs
confidence weight, while the other version does not. In the
experiments, w = 0.5, T = 140, and K = 10. Figure 2(b)
and (d) show the trend of Response Time and Throughput
with given number change, while Figure 2(a) and (c) show
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1 Impact of the Adjusted Euclidean Distances
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(a) (b)

(c) (d)

Figure 2 Impact of the confidence weight

the trend of Response Time and Throughput with training
matrix density change. As shown in Figure 2, the version
with confidence weight outperforms the version without
confidence weight for both Response Time and Through-
put.

3.6. Impact of w

The value of w stands for the weight of user or service
based prediction. w makes our prediction method more
feasible and adaptable to different data sets. To study its
impact, we set K = 10 and T = 140. We vary the value of
w from 0 to 1 with a step value of 0.1. Figure 3(a) and 3(c)
show the results of g = 10; 20, and 30 with 10% density
training matrix of response time and throughput, respec-
tively. Figs. 3(b) and 3(d) show the results of g = 10; 20,
and 30 of response time and throughput, with 20% density
training matrix of response time and throughput, respec-
tively.

From Figure 3, we draw the conclusion that an optimal
w value improves the accuracy of the prediction while an
unsuitable value makes it worse. Another interesting ob-
servation is that, in Figure 3(a), with g increasing from 10
to 30, the optimal w value shifts from 0.5 to 0.7. In Figure
3(b), the optimal w value shifts from 0.6 to 0.8 as g varies
from 10 to 30.This indicates that the optimal w value is in-
fluenced by the given number. In Figure 3(d), the optimal

value is 0.5. Therefore, the optimal value is not influenced
by g but influenced by the nature of datasets for this exam-
ple.

4. Related Work

Some important problems have been widely discussed, for
example, reliability, substitutability, and adaption of ser-
vice. The problem of QoS-based service selection also at-
tracts many researchers attentions and was discussed in a
number of studies recently. A common premise of pre-
vious research is that the QoS values of services to tar-
get users are all known. However, there are often missing
QoS values of services to the consumer in a real situation.
Therefore, a fundamental process before QoS-based ser-
vice selection is to predict such missing values.

In this paper, we use a Collaborative Filtering based
approach to handle this problem. It is often classified as
memory-based or model-based one. In the memory-based
one, all training data are stored in memory. In the predic-
tion phase, similar objects (users or items) are sorted based
on their similarities with the active object. Pearson Corre-
lation Coefficient is widely used methods to compute the
similarities between objects. Based on the data from sim-
ilar users or items, a prediction result can be generated.
The most analyzed examples of memory-based methods

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



470 Yuyu Yin et al.: Towards QoS Prediction for Web Services...

(a) (b)

(c) (d)

Figure 3 Impact of w

include user-based methods [12–14], item-based methods
[15,16] and fusion methods [17]. The advantage of the
memory-based methods is that they are simple and intu-
itive on a conceptual level while avoiding the complica-
tions of a potentially expensive model-building stage. Their
drawbacks include: 1) scalability is not well; and 2) noth-
ing is really learned from the available user profiles and
very little general insight is gained. In the model-based
approach, training data are used to generate a predicting
model that is able to predict the missing data. The most
analyzed examples include decision tree [12], aspect mod-
els [18], latent semantic models [11,19].

Limited work has been done to predict the missing
QoS values. Shao et al. propose a user-based Collabora-
tive Filtering algorithm to make similarity mining and pre-
dict the QoS of Web services from consumers experiences
[8]. Zheng et al. present a hybrid approach which com-
bines user-based and item-based approach together to pre-
dict the QoS of Web services [9]. They employ two con-
fidence weights to balance these two predicted values. In
Section 3, we have shown that our approach outperforms
the WSRec approach. Chen et al. discover the great influ-
ence of a users location to the accuracy of prediction and
propose a region-based hybrid Collaborative Filtering al-
gorithm to predict the QoS of services [10].

In the paper, we also propose CF-based prediction to
handle the QoS prediction problem. Before similarity com-

putation, we introduce a data normalization process to re-
move the impact of different QoS scales. In the process
of similarity computation, we use the adjusted Euclidean
Distances equation to compute the service similarity to im-
prove the prediction accuracy. In the process of result gen-
eration, we use a fusion approach to generate the final re-
sult from two sources (user and service based).

5. Conclusion and Future Work

In this paper, we also present a CF-based prediction ap-
proach to predict the missing QoS values. Different from
the previous methods, we add a data normalization pro-
cess to remove the impact of different QoS scales, ad-
just the traditional Euclidean Distances by using standard
derivation of service and user to compute the service-based
similarity, and combine the user-based approach and the
service-based approach to predict the final results. The ex-
periments based on a public dataset prove that our predic-
tion approach outperforms the existing methods.

In our future work, the other parts in our CF-based
service selection framework will be explored. Further, we
will collect more QoS data of Web services to improve the
scale of our experiments.
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